
MIT CSAIL

6.869 Advances in Computer Vision

Fall 2018

Problem Set 7

Posted: Thursday, November 15, 2018 Due: Thursday, November 29, 2018

Submission Instructions: Please submit two separate files: 1) a report named
〈your kerberos〉.pdf, including your responses to all required questions with images and/or
plots showing your results, 2) a file named 〈your kerberos〉.zip, containing relevant source
code. Submissions that do not adhere to these instructions are subject to an
additional penalty.

Late Submission Policy: We do not accept late submissions. The submission dead-
line has a 50-minute soft cut-off; after midnight Thursday, submissions are penalized 2% per
minute late.

Collaborators: You are free to discuss problems with other students but all writing
must be done individually. Please list all collaborators at the top of your report.

6.869 Required — 6.819 Extra Credit

Pset 7 is required for all students in the graduate version of this class: 6.869.

Pset 7 is optional for students in the undergraduate version: 6.819. Undergrad-registered
students can receive up to 4 extra credit points for completing this problem set. Since each
problem set is out of 10 possible points, this is the equivalent of 40% of one problem set. Points
will be spread out and applied to problem sets where you have gotten points off. Students
cannot receive more than 10 points (100%) for a problem set using these extra credit points,
so if you have received full marks on every problem set these extra credit points won’t give you
any bonus. These points will not be applied to your final project grade. Happy Thanksgiving!

Introduction

In this assignment, you will get hands-on experience coding and training GANs. We will
implement a GAN architecture called CycleGAN, which was designed for the task of image-
to-image translation. We’ll train the CycleGAN to convert between Apple-style and Windows-
style emojis.

You’ll gain experience implementing GANs by writing code for the generator, discriminator,
and training loop, for each model.

1

We provide a script to check your models, that you can run as follows:

python model_checker.py

This checks that the outputs of CycleGenerator match the expected outputs for specific
inputs. This model checker is provided for convenience only. It may give false negatives, so
do not use it as the only way to check that your model is correct.

Motivation: Image-to-Image Translation

Say you have a picture of a sunny landscape, and you wonder what it would look like in the
rain. Or perhaps you wonder what a painter like Monet or van Gogh would see in it? These
questions can be addressed through image-to-image translation wherein an input image is
automatically converted into a new image with some desired appearance.

Recently, Generative Adversarial Networks have been successfully applied to image trans-
lation, and have sparked a resurgence of interest in the topic. The basic idea behind the
GAN-based approaches is to use a conditional GAN to learn a mapping from input to output
images. The loss functions of these approaches generally include extra terms (in addition to
the standard GAN loss), to express constraints on the types of images that are generated.

A recently-introduced method for image-to-image translation called CycleGAN is particularly
interesting because it allows us to use un-paired training data. This means that in order to
train it to translate images from domain X to domain Y , we do not have to have exact
correspondences between individual images in those domains. For example, in the paper that
introduced CycleGANs, the authors are able to translate between images of horses and zebras,
even though there are no images of a zebra in exactly the same position as a horse, and with
exactly the same background, etc.

Thus, CycleGANs enable learning a mapping from one domain X (say, images of horses) to
another domain Y (images of zebras) without having to find perfectly matched training pairs.

To summarize the differences between paired and un-paired data, we have:

• Paired training data: {(x(i), y(i))}Ni=1

• Un-paired training data:

– Source set: {x(i)}Ni=1 with each x(i) ∈ X

– Target set: {y(j)}Mj=1 with each y(j) ∈ Y

– For example, X is the set of horse pictures, and Y is the set of zebra pictures,
where there are no direct correspondences between images in X and Y

2

conv deconv conv deconv

Apple
Emoji

Windows
Emoji

Apple
Emoji

conv

GXtoY GYtoX

DY

[0, 1]

Does the generated
image look like it came

from the set of Windows
emojis?

GYtoX GXtoY

Emoji CycleGAN

Now we’ll build a CycleGAN and use it to translate emojis between two different styles, in
particular, Windows ↔ Apple emojis.

Generator [30%]

The generator in the CycleGAN has layers that implement three stages of computation: 1)
the first stage encodes the input via a series of convolutional layers that extract the image
features; 2) the second stage then transforms the features by passing them through one or
more residual blocks; and 3) the third stage decodes the transformed features using a series of
transpose convolutional layers, to build an output image of the same size as the input.

The residual block used in the transformation stage consists of a convolutional layer, where
the input is added to the output of the convolution. This is done so that the characteristics
of the output image (e.g., the shapes of objects) do not differ too much from the input.

Implement the following generator architecture by completing the __init__ method of the
CycleGenerator class in models.py.

def __init__(self, conv_dim=64, init_zero_weights=False):

super(CycleGenerator, self).__init__()

###

3

FILL THIS IN: CREATE ARCHITECTURE

###

1. Define the encoder part of the generator

self.conv1 = ...

self.conv2 = ...

2. Define the transformation part of the generator

self.resnet_block = ...

3. Define the decoder part of the generator

self.deconv1 = ...

self.deconv2 = ...

To do this, you will need to use the conv and deconv functions, as well as the ResnetBlock

class, all provided in models.py.

deconv2deconv1conv2conv1

32

32

3

16

16
32

8

8
64

4

4
128

tanhBatchNorm & ReLU

CycleGAN Generator

BatchNorm & ReLU BatchNorm & ReLU

100

32

32

3

16

16
32

8

8
64

Redidual block

BatchNorm & ReLU

Note: There are two generators in the CycleGAN model, GX→Y and GY→X , but their
implementations are identical. Thus, in the code, GX→Y and GY→X are simply different
instantiations of the same class.

CycleGAN Training Loop [30%]

Next, we will implement the CycleGAN training procedure.

4

Algorithm 1 CycleGAN Training Loop Pseudocode

1: procedure TrainCycleGAN
2: Draw a minibatch of samples {x(1), . . . , x(m)} from domain X
3: Draw a minibatch of samples {y(1), . . . , y(m)} from domain Y
4: Compute the discriminator loss on real images:

J (D)
real =

1

m

m∑
i=1

(DX(x(i))− 1)2 +
1

n

n∑
j=1

(DY (y(j) − 1)2

5: Compute the discriminator loss on fake images:

J (D)
fake =

1

m

m∑
i=1

(DY (GX→Y (x(i))))2 +
1

n

n∑
j=1

(DX(GY→X(y(j))))2

6: Update the discriminators
7: Compute the Y → X generator loss:

J (GY →X) =
1

n

n∑
j=1

(DX(GY→X(y(j)))− 1)2 + J (Y→X→Y)
cycle

8: Compute the X → Y generator loss:

J (GX→Y) =
1

m

m∑
i=1

(DY (GX→Y (x(i)))− 1)2 + J (X→Y→X)
cycle

9: Update the generators

Tthis training loop is not as difficult to implement as it may seem. There is a lot of symmetry
in the training procedure, because all operations are done for both X → Y and Y → X direc-
tions. Complete the training_loop function in cycle_gan.py, starting from the following
section:

==

TRAIN THE DISCRIMINATORS

==

###

FILL THIS IN

###

Train with real images

d_optimizer.zero_grad()

1. Compute the discriminator losses on real images

D_X_loss = ...

D_Y_loss = ...

There are 5 bullet points in the code for training the discriminators, and 6 bullet points in
total for training the generators. Due to the symmetry between domains, several parts of the

5

code you fill in will be identical except for swapping X and Y ; this is normal and expected.

Cycle Consistency

The most interesting idea behind CycleGANs (and the one from which they get their name)
is the idea of introducing a cycle consistency loss to constrain the model. The idea is that
when we translate an image from domain X to domain Y , and then translate the generated
image back to domain X, the result should look like the original image that we started with.

The cycle consistency component of the loss is the mean squared error between the input
images and their reconstructions obtained by passing through both generators in sequence
(i.e., from domain X to Y via the X → Y generator, and then from domain Y back to X via
the Y → X generator). The cycle consistency loss for the Y → X → Y cycle is expressed as
follows:

1

m

m∑
i=1

(y(i) −GX→Y (GY→X(y(i))))2)

The loss for the X → Y → X cycle is analogous.

Implement the cycle consistency loss by filling in the following section in cycle_gan.py. Note
that there are two such sections, and their implementations are identical except for swapping
X and Y . You must implement both of them.

if opts.use_cycle_consistency_loss:

reconstructed_X = G_YtoX(fake_Y)

3. Compute the cycle consistency loss (the reconstruction loss)

cycle_consistency_loss = ...

g_loss += cycle_consistency_loss

CycleGAN Experiments [40%]

Training the CycleGAN from scratch can be time-consuming if you don’t have a GPU. In this
part, you will train your models from scratch for just 600 iterations, to check the results. To
save training time, we provide the weights of pre-trained models that you can load into your
implementation. In order to load the weights, your implementation must be correct.

1. Train the CycleGAN without the cycle-consistency loss from scratch using the command:

python cycle_gan.py

6

This runs for 600 iterations, and saves generated samples in the samples_cyclegan

folder. In each sample, images from the source domain are shown with their translations
to the right. Include in your writeup the samples from both generators at either iteration
400 or 600, e.g., sample-000400-X-Y.png and sample-000400-Y-X.png.

2. Train the CycleGAN with the cycle-consistency loss from scratch using the command:

python cycle_gan.py --use_cycle_consistency_loss

Similarly, this runs for 600 iterations, and saves generated samples in the samples_cyclegan_cycle
folder. Include in your writeup the samples from both generators at either iteration 400
or 600 as above.

3. Now, we’ll switch to using pre-trained models, which have been trained for 40000 it-
erations. Run the pre-trained CycleGAN without the cycle-consistency loss using the
command:

python cycle_gan.py --load=pretrained --train_iters=100

You only need 100 training iterations because the provided weights have already been
trained to convergence. The samples from the generators will be saved in the folder
samples_cyclegan_pretrained. Include the sampled output from your model.

4. Run the pre-trained CycleGAN with the cycle-consistency loss using the command:

python cycle_gan.py --load=pretrained_cycle \

--use_cycle_consistency_loss \

--train_iters=100

The samples will be saved in the folder samples_cyclegan_cycle_pretrained. In-
clude the final sampled output from your model.

5. Do you notice a difference between the results with and without the cycle consistency
loss? Write down your observations (positive or negative) in your writeup. Can you
explain these results, i.e., why there is or isn’t a difference between the two?

Further Resources

For further reading on GANs in general, and CycleGANs in particular, the following links
may be useful:

1. Unpaired image-to-image translation using cycle-consistent adversarial networks (Zhu
et al., 2017)

2. Generative Adversarial Nets (Goodfellow et al., 2014)

3. An Introduction to GANs in Tensorflow

4. Generative Models Blog Post from OpenAI

5. Official PyTorch Implementations of Pix2Pix and CycleGAN

7

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1406.2661.pdf
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
https://blog.openai.com/generative-models/
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

