
MIT CSAIL

6.869 Advances in Computer Vision

Fall 2018

Problem Set 3

Posted: Thursday, September 20, 2018 Due: Thursday, September 27, 2018

Submission Instructions: Please submit two separate files: 1) a report named
〈your kerberos〉.pdf, including your responses to all required questions with images and/or
plots showing your results, 2) a file named 〈your kerberos〉.zip, containing relevant source
code. Submissions that do not adhere to these instructions are subject to an
additional penalty.

Late Submission Policy: We do not accept late submissions. The submission dead-
line has a 50-minute soft cut-off; after midnight Thursday, submissions are penalized 2% per
minute late.

Collaborators: You are free to discuss problems with other students but all writing
must be done individually. Please list all collaborators at the top of your report.

Problem 1: Color

(a) Given a set of color primaries in the matrix, P , and given the color matching functions for
the eye responses, Ceye, write an expression for the color matching functions, C, associated
with the primaries P .

(b) Given a set of color matching functions, C, find an expression for an associated set of
color primaries, P , in terms of the eye response functions, Ceye.

(c) Show that if the spectral response curves of the eye (assumed to be nonnegative) were
orthogonal to each other (with a zero dot product), there would exist a corresponding set
of primaries with power spectra that were nonnegative. Hint: Try to construct nonnegative
primaries from the color matching functions.

(d) 6.869 only: For a set of primaries, P , and an associated set of color matching functions,
C: If the primaries P are specified, are the color matching functions C uniquely determined?
If the color matching functions are specified, are the corresponding primaries P uniquely
determined?

1



Problem 2: Structured light

surface

light ray 

uc -up

d

f
zp

xp
yp

z c

zc

xc
yc

{0,0,0}c {0,0,0}p

f

vc

uc

Photographed image

vp

up

Projected image

{0,0}c {0,0}c

CameraProjector

Figure 1: Left: A Kinect depth sensor, which consists of a projector and a camera (note:
there is also a second camera used to get better quality color images) [image source:
https://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1]. Middle: The geom-
etry of the projector-camera system we will consider. Right: The images seen from the
perspective of the camera and the projector, when we project a single red laser.

In this problem we will simulate a structured light depth camera, like the Microsoft Kinect.
The Kinect consists of a camera and a projector, as shown in Figure 1. The projector shines
a structured pattern of light on the world (in the infrared spectrum so that it is invisible to
our eyes). The camera can see this pattern and observes how the light warps over the scene
geometry. From the pattern of distortions, it is possible to recover a depth map. Let’s see
how this can be done.

(a) Using the geometry in Figure 1, write an expression for the world coordinates of the
indicated surface point, given that the projector emits a light ray that intersects its virtual
image plane at location {up, vp}, and the camera sees the reflected light on its image plane at
location {uc, vc}. Assume the camera and projector are offset a distance d from each other,
in the x direction. The focal length of the camera is f. uv-coordinates are represented in the
same units as f (in the code, we will use pixels as the units). We will consider two kinds of
world coordinates: {xc, yc, zc} are coordinates relative to the camera center (i.e. the camera
center, which is the yellow dot, is at zero in this reference frame). {xp, yp, zp} are coordinates
relative to the projector center. Write expressions for both {xc, yc, zc} and {xp, yp, zp} as a
function of {uc, vc}, {up, vp}, d, and f.

This equation shows the basic principle we will use to infer depth! We will shine a ray of
light out of the projector at coordinate {up, vp}, then find where the camera observes, in
camera image coordinates {uc, vc}. These two coordinates allow us to triangulate the world
coordinates of the object that the ray reflected off of.

(b) Now we will start simulating this setup in Matlab. Starter code is provided in code.m.
You will be filling in pieces of missing code.

Your first task is to simulate what the camera will see if we turn off all the lights and shine
a “laser” out of the projector (i.e. have the projector project a single ray of red light, like
in Figure 1). You are given a depth map zp and the direction {up, vp} in which we project
the laser. To simulate what the camera sees, we need to find where, in the camera image,

2



the surface point illuminated by the laser shows up. This means we need to transform from
{up, vp} to {uc, vc} given known scene geometry zp.

Note: for now, we are pretending that no rays are occluded, we will demonstrate how to deal
with occlusions later in the pset.

As an exercise, we will perform this transformation in homogeneous coordinates. The file
getTransformationMatrices.m contains four missing transformation matrices, which oper-
ate on homogeneous coordinates. In turn, these mappings are:

• T1 : {up, vp, 1/zp} to {xp, yp, zp} / projector image to projector world

• T2 : {xp, yp, zp} to {xc, yc, zc} / projector world to camera world

• T3 : {xc, yc, zc} to {uc, vc} / camera world to camera image

• T4 : {up, vp, 1/zp} to {uc, vc} / projector image to camera image

You should write the matrix T4 as a composition of T1, T2, and T3. The ability to do this kind
of algebra on transformations is one of the main reasons we like homogeneous coordinates.

(c) Now, run the code in the section %% (c) laser experiment, which will use the transfor-
mations you defined to simulate the laser scanning over a room.

Why does the path of the laser wiggle around from the camera’s view? Try changing the scan
path (scan left to right rather than top to bottom). Does the laser still wiggle? Why or why
not? Write a short explanation to explain why the path of the laser is qualitatively different
when you scan left to right compared to when you scan top to bottom.

(d) Now we will try to infer depth from the simulated image of the laser scanning over
the room. Suppose we shine the laser through {up, vp}, and we observe it in the cam-
era at location {uc, vc}. Use your expression from part (a) to fill in the code in the file
inferDepthFromMatchedCoords.m. This function computes zc from {up, vp}, {uc, vc}, f, and
d.

(e) In Matlab, run the code in the section %% (e) inferring depth in the laser illuminated

world, which will use the function you wrote for part (d). Verbally describe what you observe,
and share a screen capture of the result.

(f) Next, we will move away from lasers and describe “structured light”. Scanning across a
scene with a laser is a slow process, and lasers are expensive. The idea of structured light is
to project many rays of light at once – a whole projected image of light – in a pattern that
allows us to identify which ray of light ({up, vp}) created the illumination observed by the
camera at each point {uc, vc}. Recall from above, that if we know corresponding points in
the projector’s image and the camera’s image, then we can solve for depth.

3



In the Matlab code section %% (f) structured light, we have provided a pattern of stripes
L p img. Your task is to illuminate the scene with this pattern of light.

We have also provided a function render. This function takes as input a list of the coordinates
of all pixels in the image to be projected (each such pixel has a coordinate {up, vp}), and the
intensity of light projected through each of these pixels (represented via the image L p img).
render also requires the list of coordinates that these pixels map to in the camera image frame
(the list of corresponding {uc, vc}). You should fill in setupForRendering.m to generate these
lists.

render is very similar to the laser rendering code you used above, but handles occlusions
using a “depth buffer”, which checks for each surface point if it is the nearest point to the
camera among all points at that camera coordinate.

Try illuminating the scene with a different pattern of light (optional: try projecting a moving
pattern of lights, it looks cool). Show your results and describe or mark some regions of the
camera’s image where occlusion blocks the projected light.

Note: render assumes an unrealistic reflectance model, where the amount of reflected light
does not depend on surface orientation. In the final part of this pset, we will see what happens
if we move to a more realistic, Lambertian, reflectance model.

(g) The next step is to infer depth from the structured light image. Here, you must come up
with a pattern of light and a function F , such that you can decode

{up, vp} = F (Lc({uc, vc}), {uc, vc}),

where Lc({uc, vc}) is the intensity of light the camera sees at pixel {uc, vc}, and this pixel was
illuminated by the ray that was projected through {up, vp}. (Hint: F can be a trivial function
if you choose a certain pattern). Write code for F in F.m, and write code that generates the
light pattern (an image) in getStructuredLightPattern.m. Demonstrate success by using
the decoded coordinates to estimate depth zc. Notice that we were able to infer depth just
from a single photograph of the scene taken by the camera (we’ve denoted this photo as Lc)!

Can you think of other light patterns, paired with decoders F , that could be used? Describe
a few general strategies (you don’t have to implement these additional strategies).

(h) 6.869 only : As noted above, our simulation is not quite realistic because it assumed all
surfaces in the scene reflected the same amount of light regardless of their orientation. We
have provided a more realistic renderer in the function render Lambertian.m. This renderer
uses a Lambertian reflectance model: I = N · L, where I is the intensity of reflected light, N
is the surface normal vector, L is the direction of the incoming light ray with respect to the
surface normal, and · is the dot product. This equation says that surfaces that are illuminated
head on will look brighter than surfaces that are illuminated at an angle.

If we render the scene in this more realistic way, does your code from (g) still work? Why
or why not? You can use the render Lambertian function provided in section %% (h)

Lambertian rendering of the code.

Your task here is to design a new light pattern and new function F that works better in the

4



presence of Lambertian reflectance. Hint: try illuminating the scene with colored light.

5


