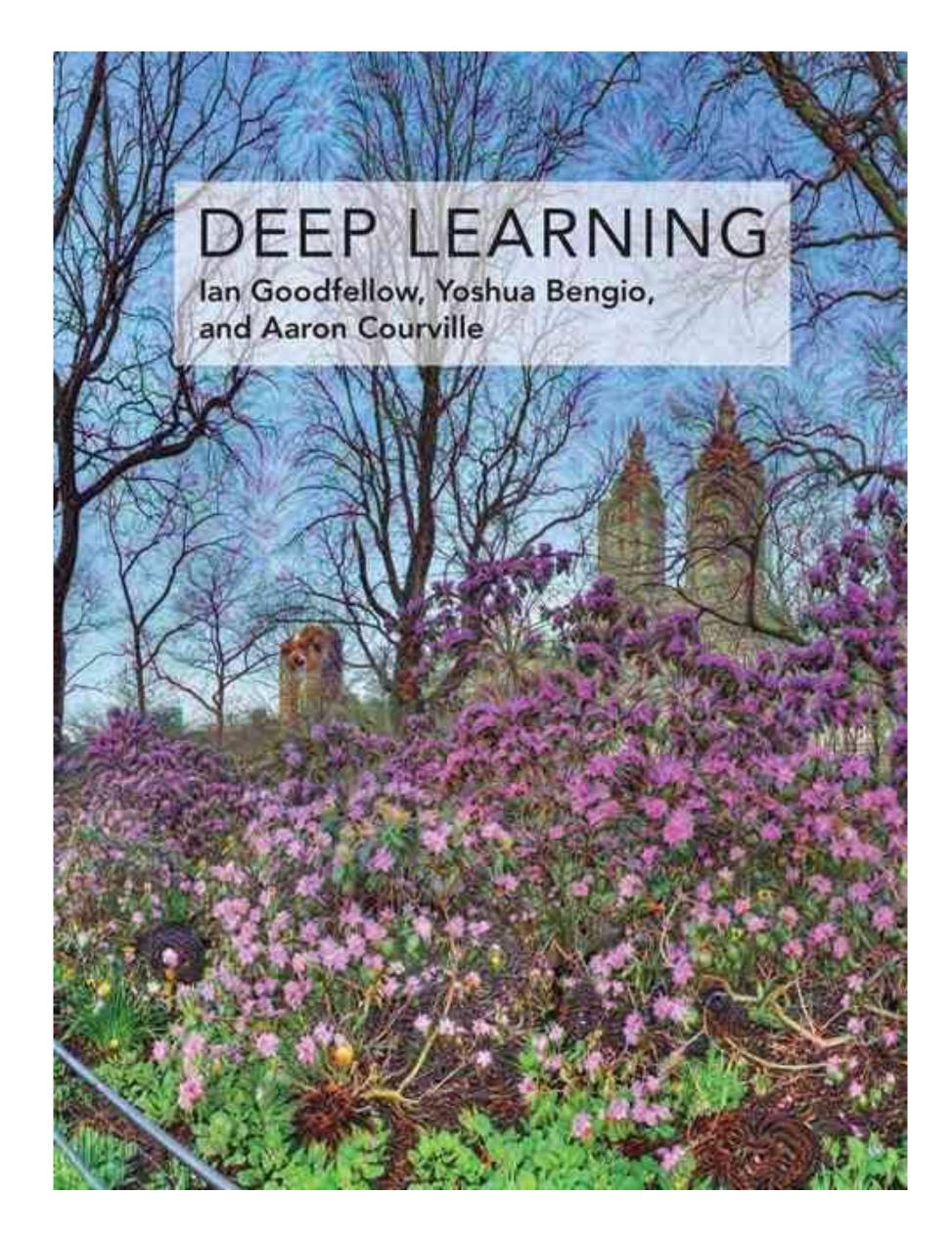


# CNNs and Spatial Processing

Bill Freeman, Antonio Torralba, Phillip Isola 6.819 / 6.869

Hi!



http://www.deeplearningbook.org/

By Ian Goodfellow, Yoshua Bengio and Aaron Courville

November 2016

Today: parts of chapter 9

Review lectures 5 through 8 for background on signal processing, convolution, and multiscale image processing — this is the technology that underlies convnets!

# Today

- How to use networks for images
- Why "C"-NNs
- Standard building blocks of CNNs
- Some important networks & their tricks
- Some debugging tools

# Image classification

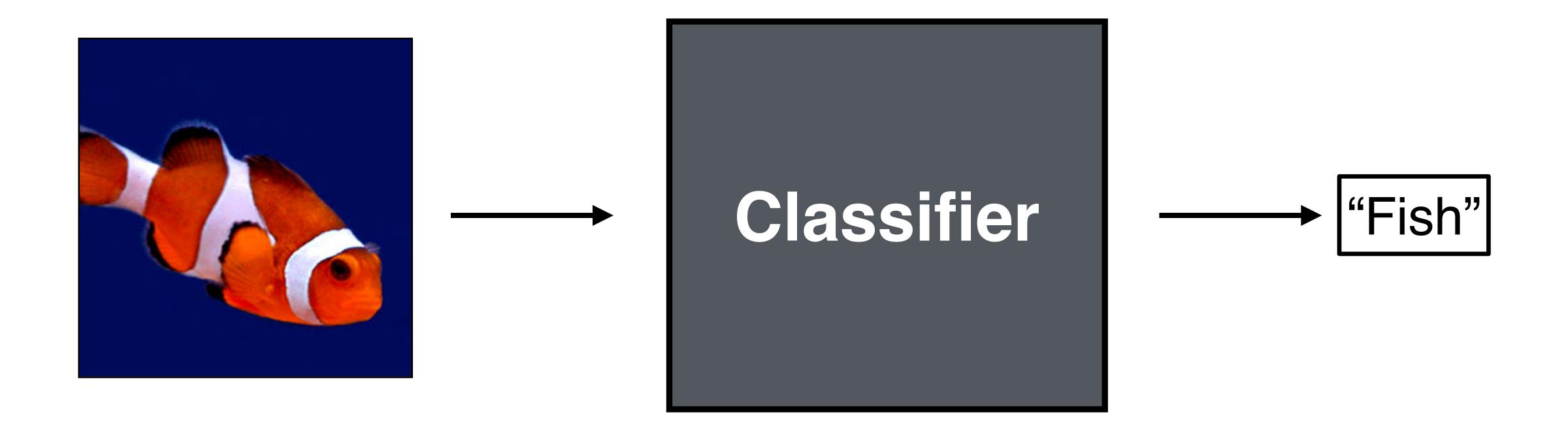
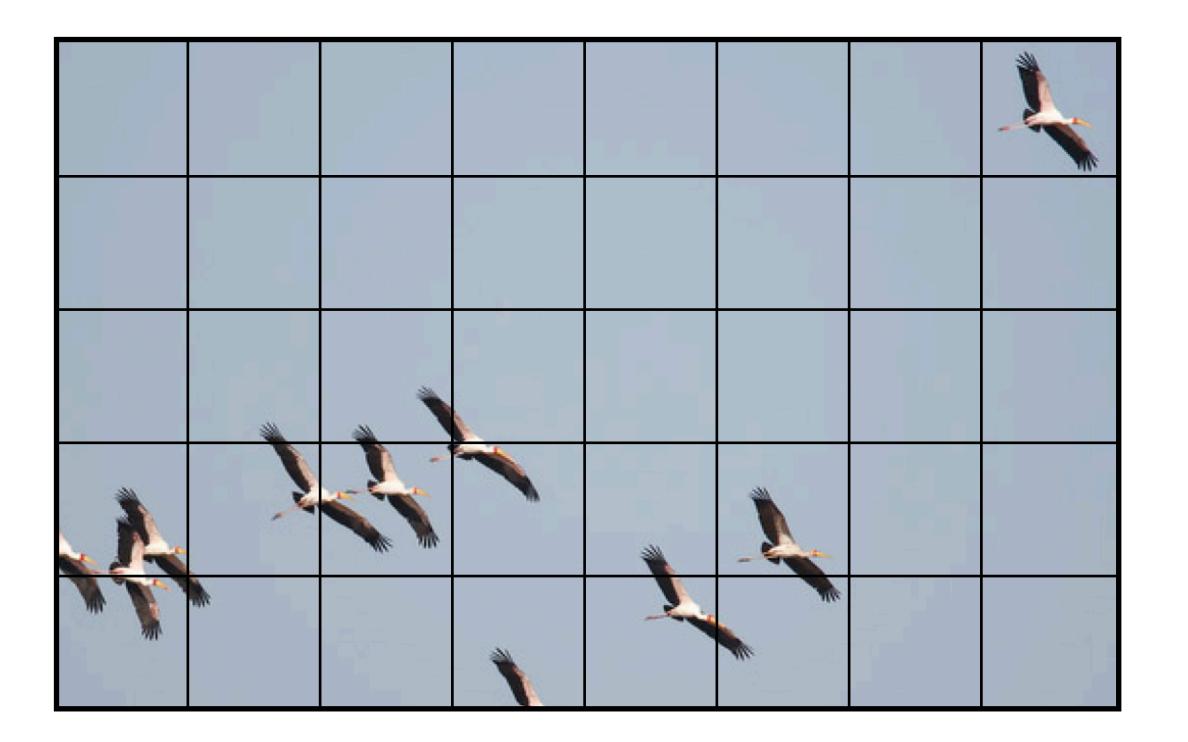
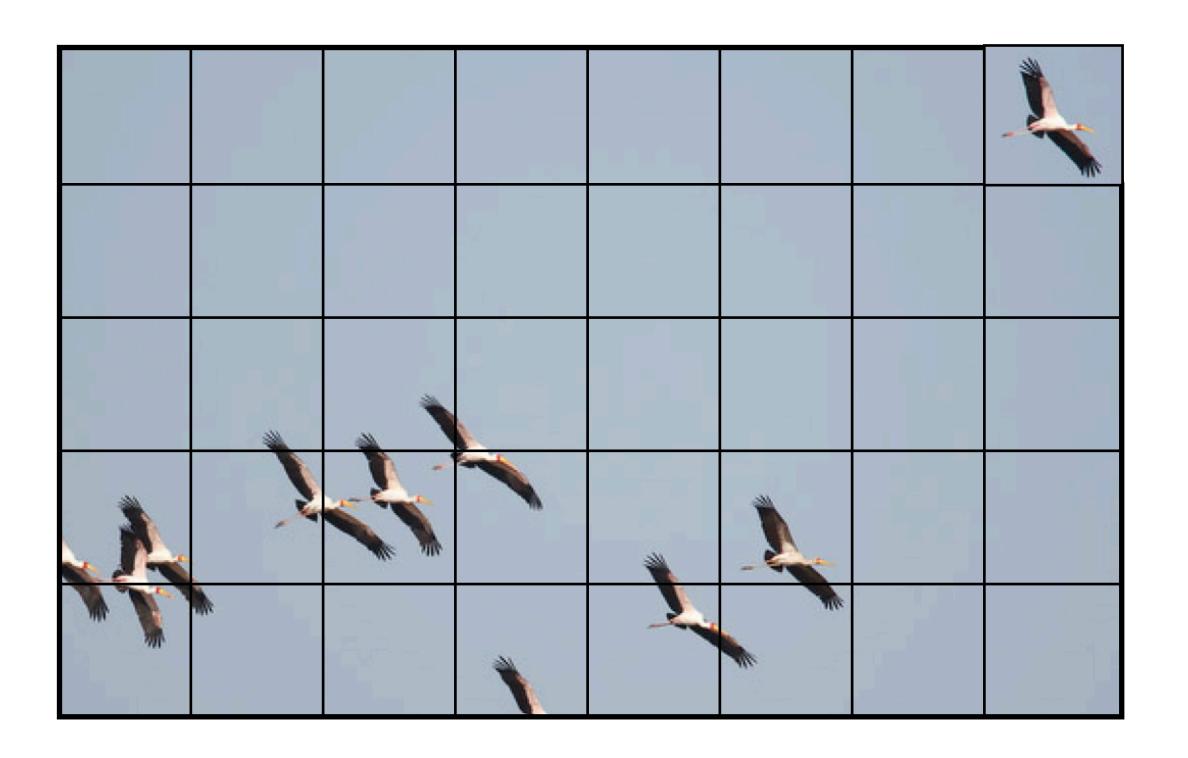
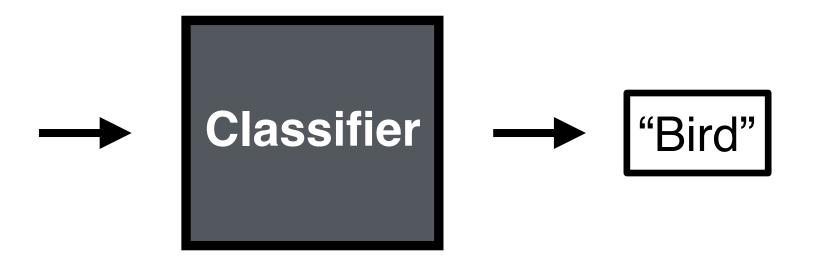


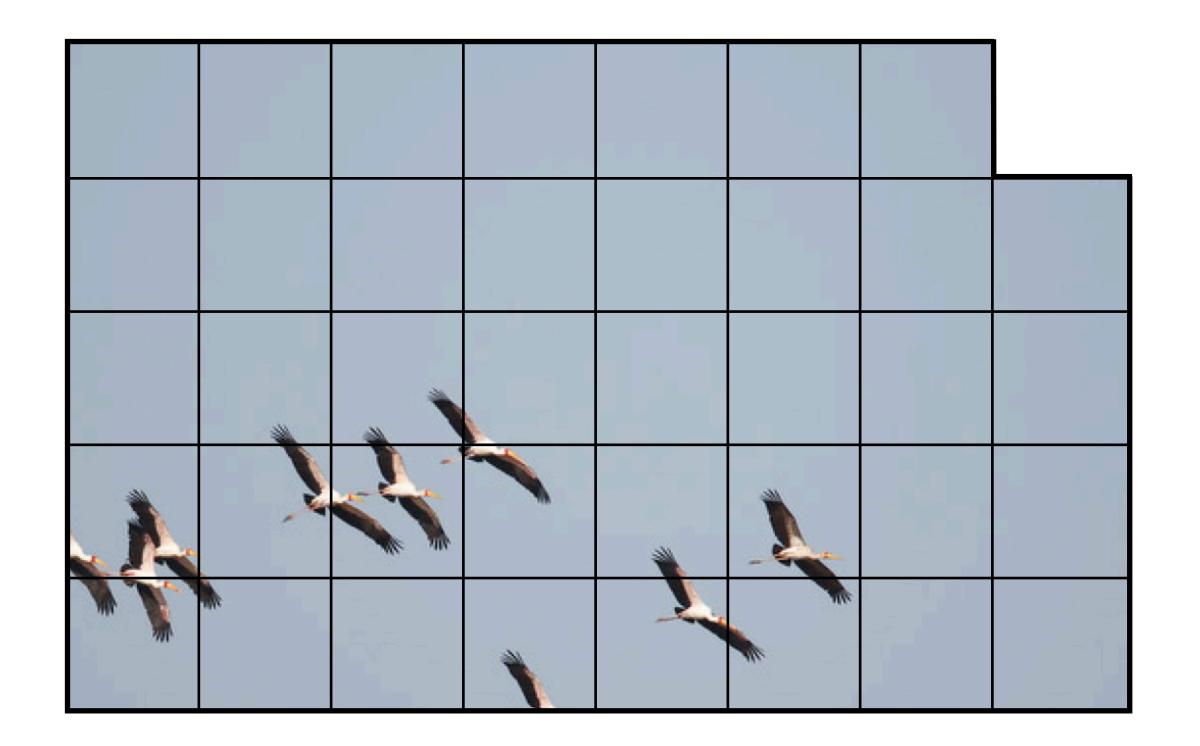
image x

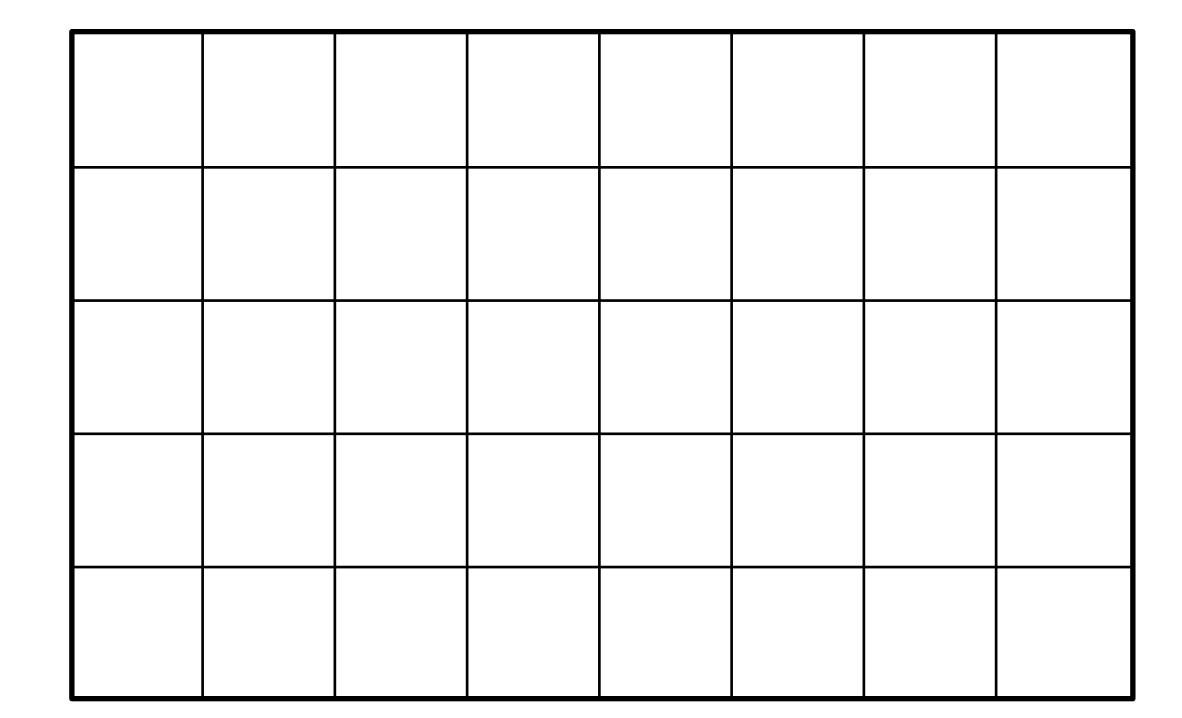




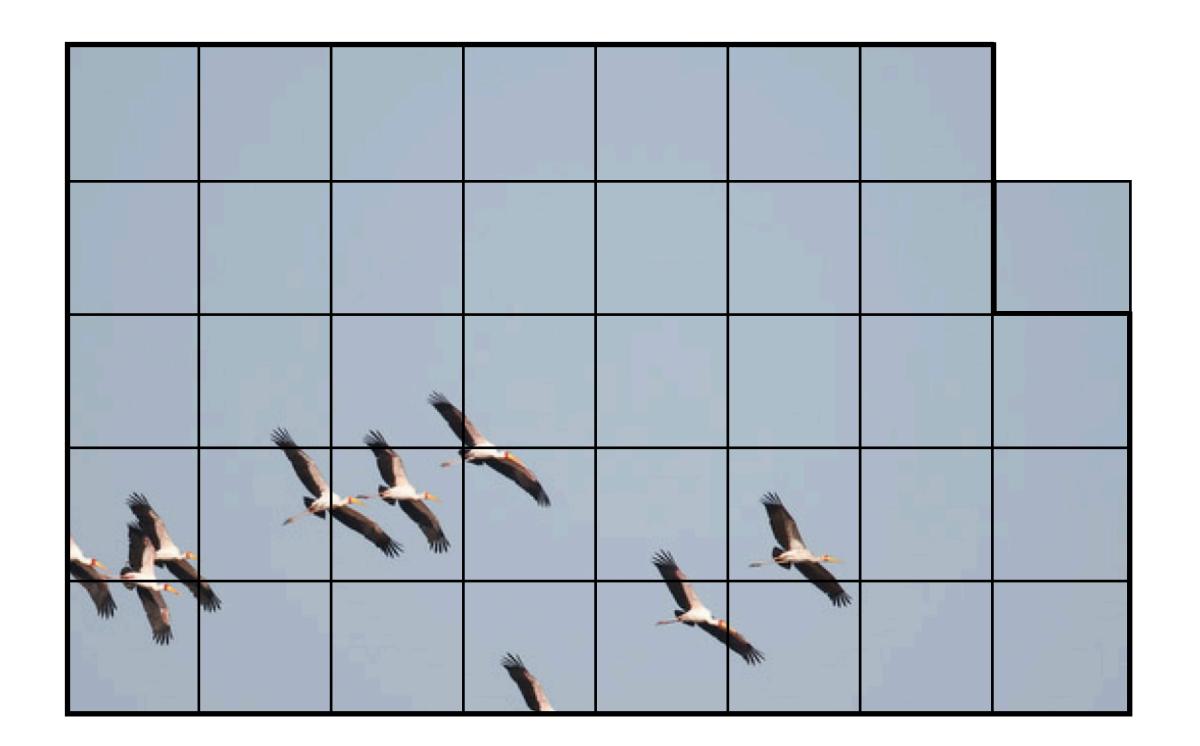


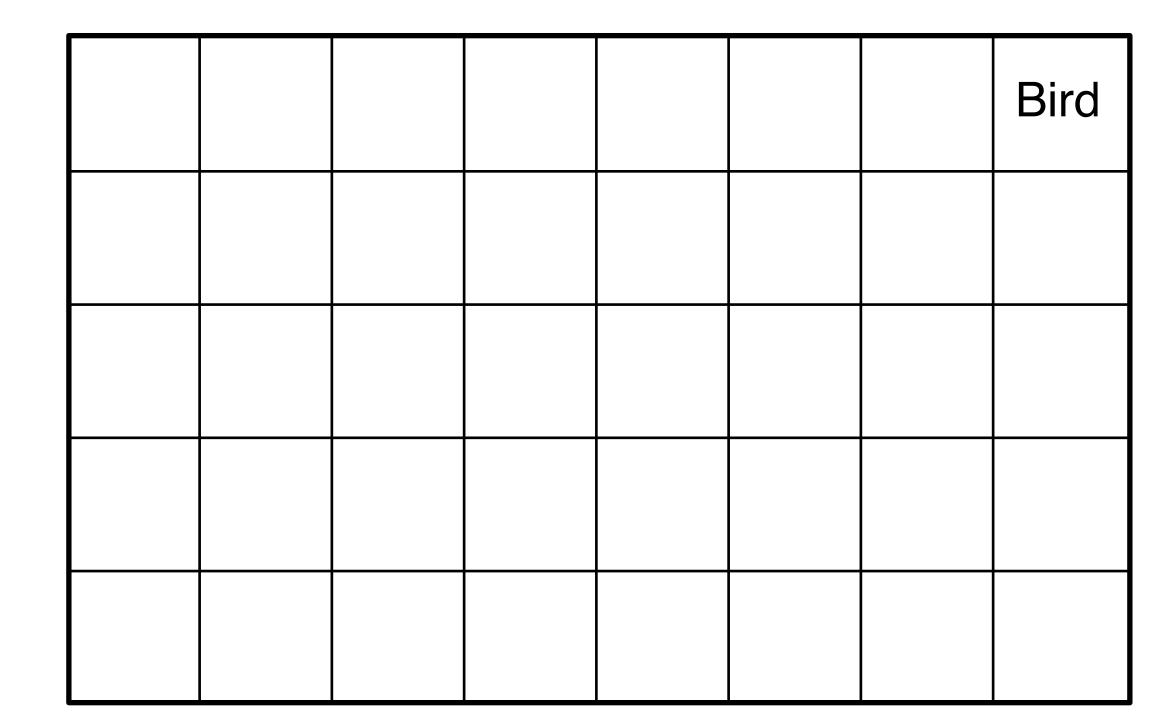


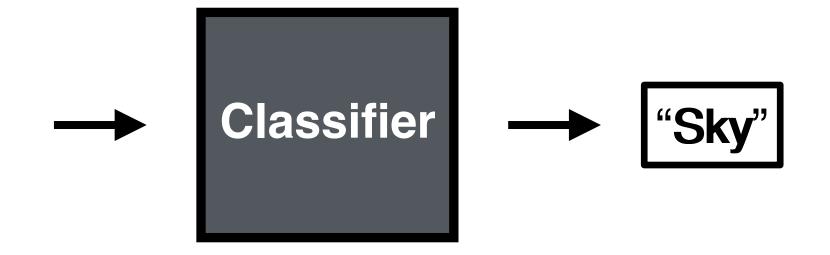


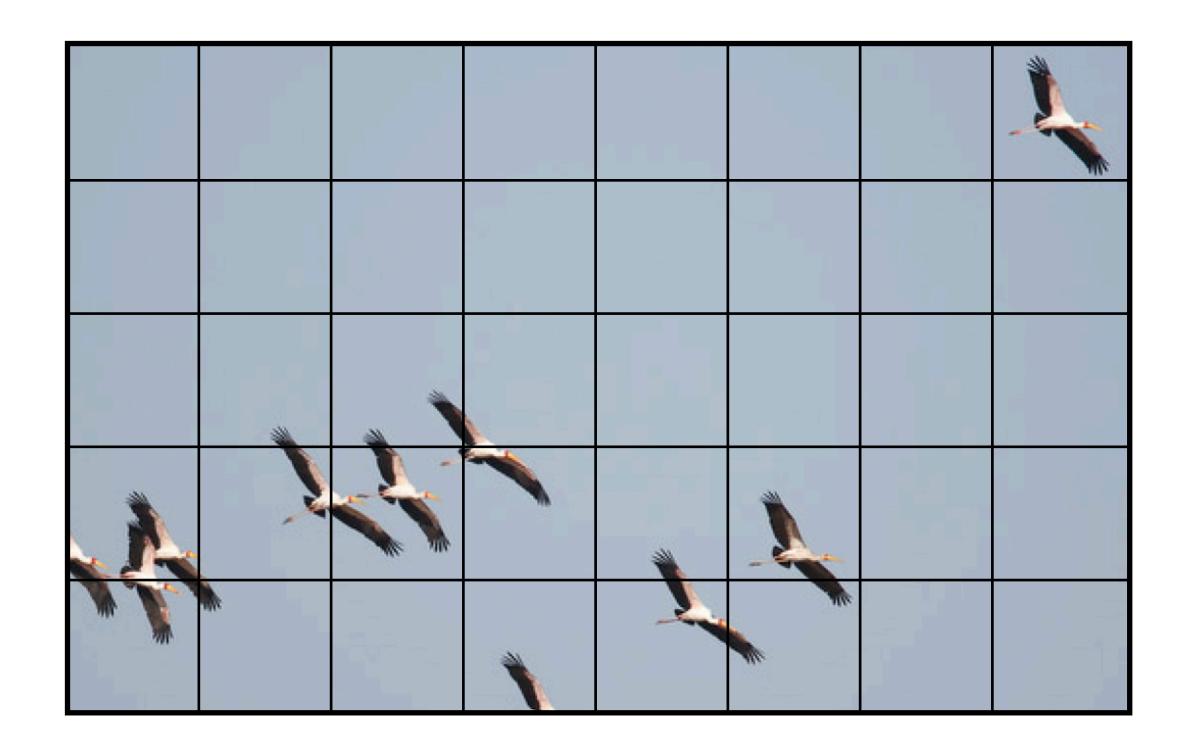




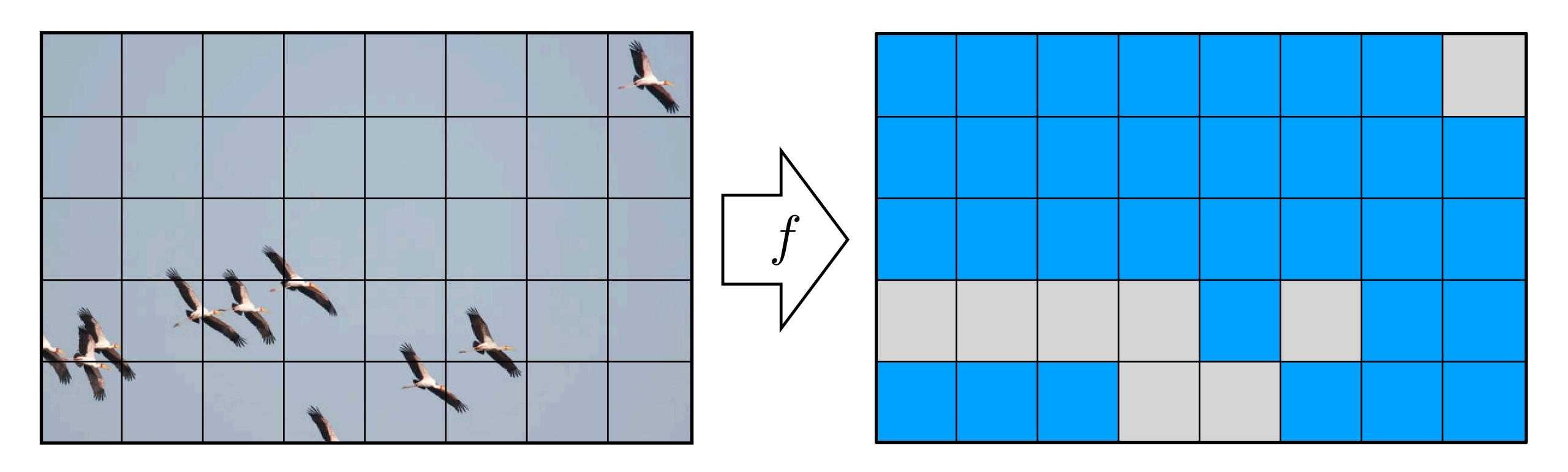








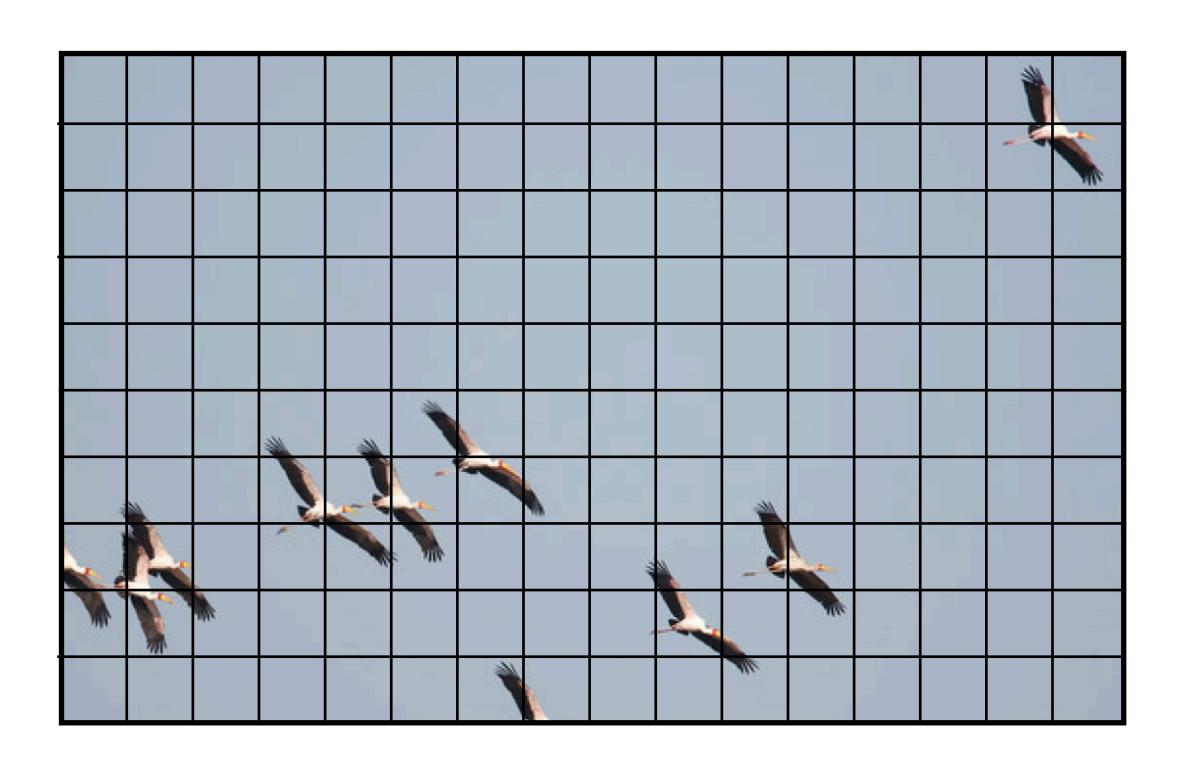
| Sky  | Sky  | Sky  | Sky  | Sky  | Sky | Sky | Bird |
|------|------|------|------|------|-----|-----|------|
| Sky  | Sky  | Sky  | Sky  | Sky  | Sky | Sky | Sky  |
| Sky  | Sky  | Sky  | Sky  | Sky  | Sky | Sky | Sky  |
| Bird | Bird | Bird | Sky  | Bird | Sky | Sky | Sky  |
| Sky  | Sky  | Sky  | Bird | Sky  | Sky | Sky | Sky  |



### Problem:

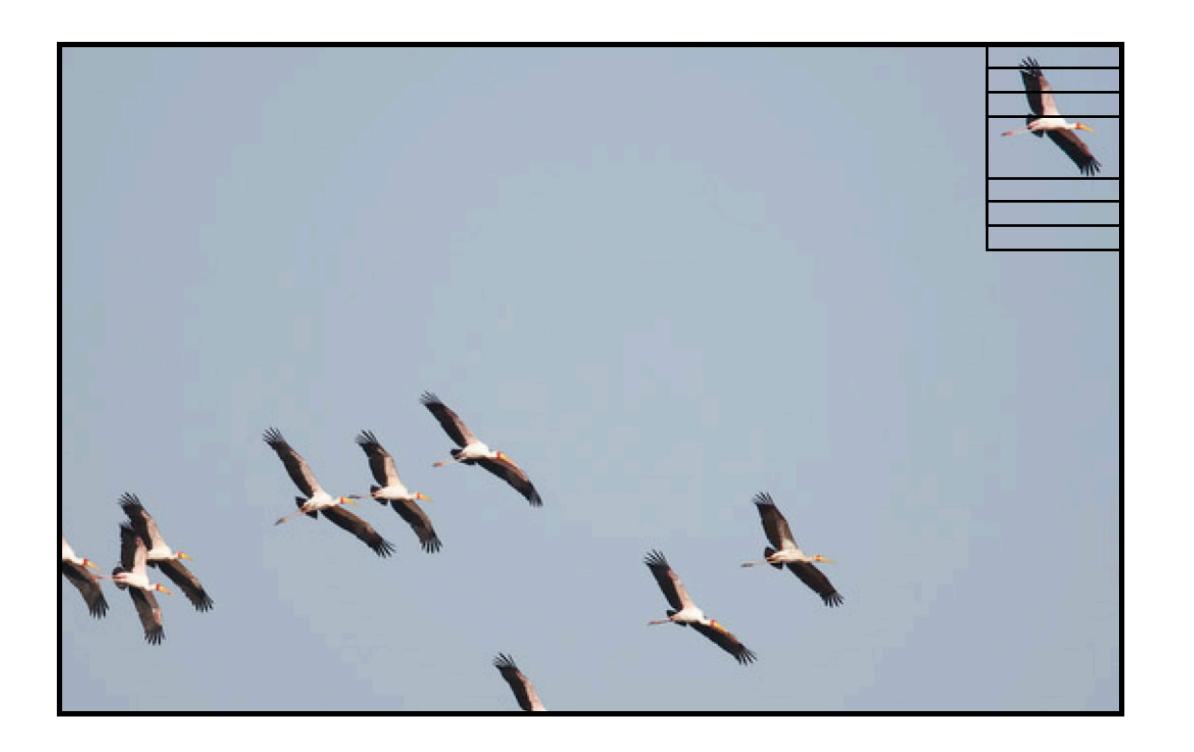
What happens to objects that are bigger?

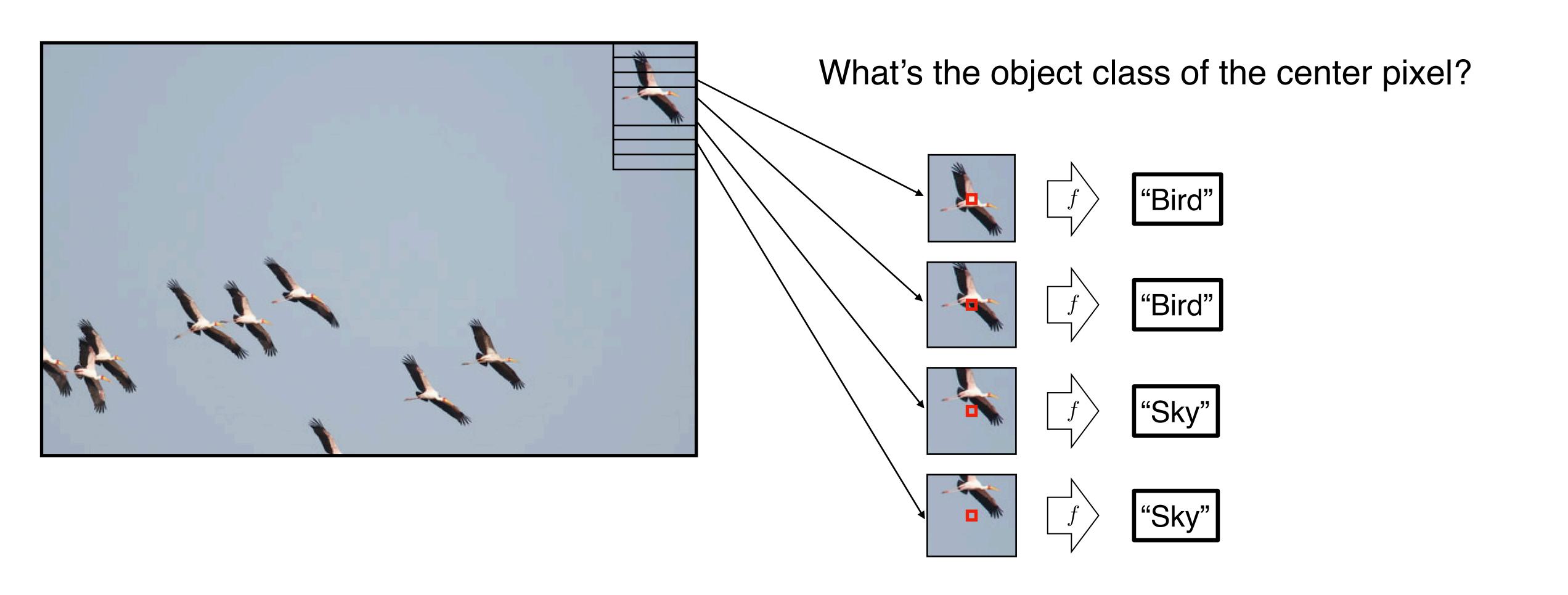
What if an object crosses multiple cells?

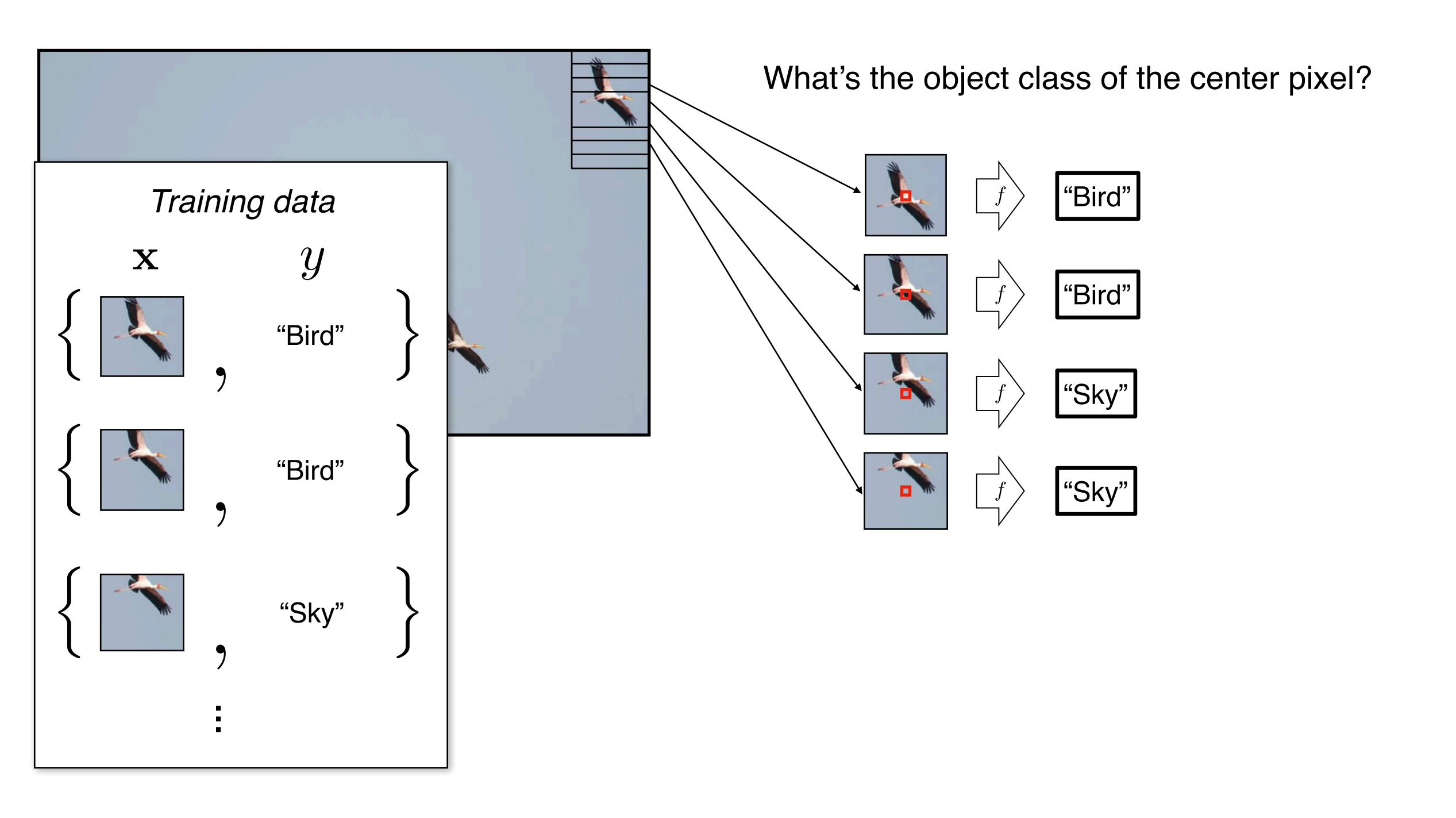


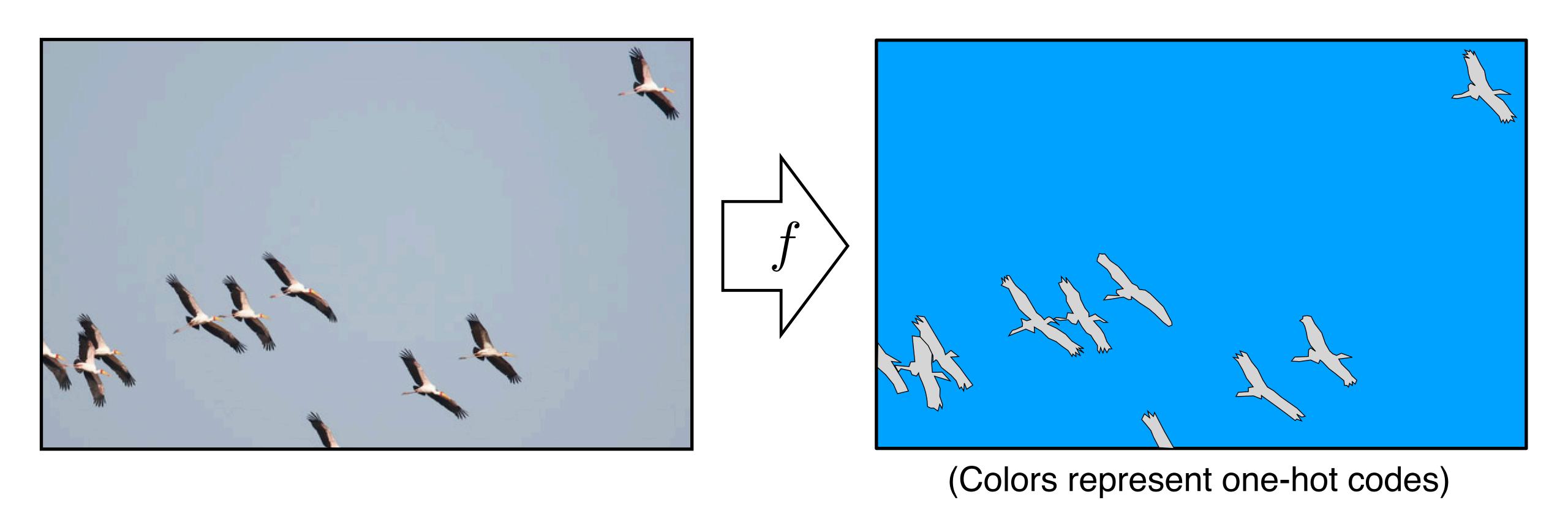
"Cell"-based approach is limited.

What can we do instead?

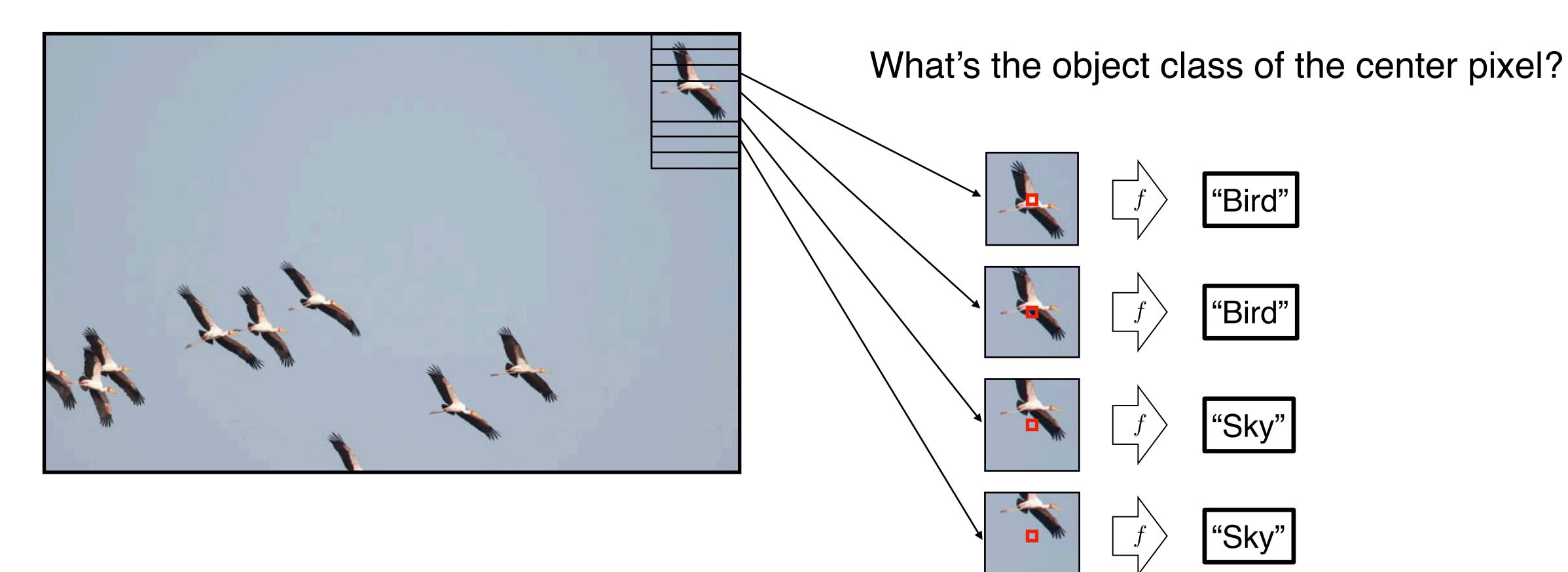


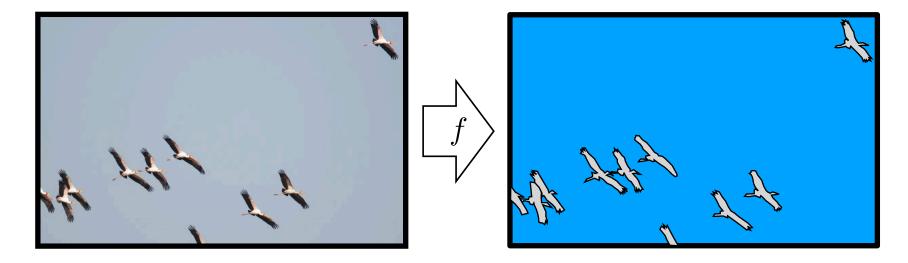






This problem is called semantic segmentation



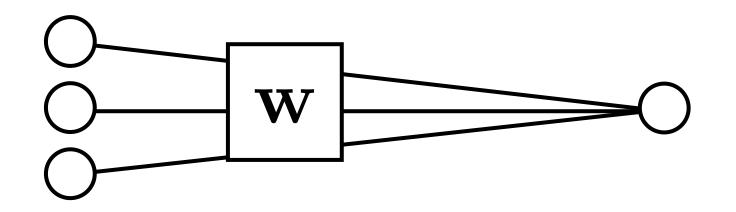


An equivariant mapping:

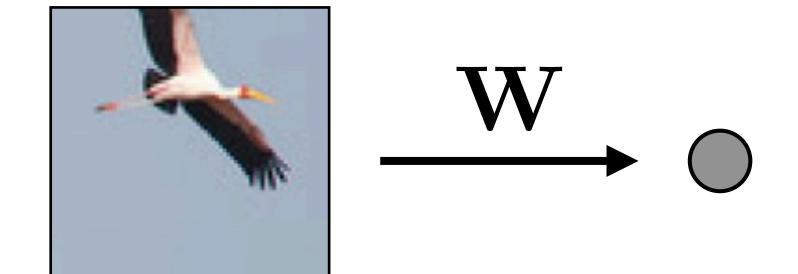
f(translate(x)) = translate(f(x))

Translation invariance: process each patch in the same way.

#### W computes a weighted sum of all pixels in the patch



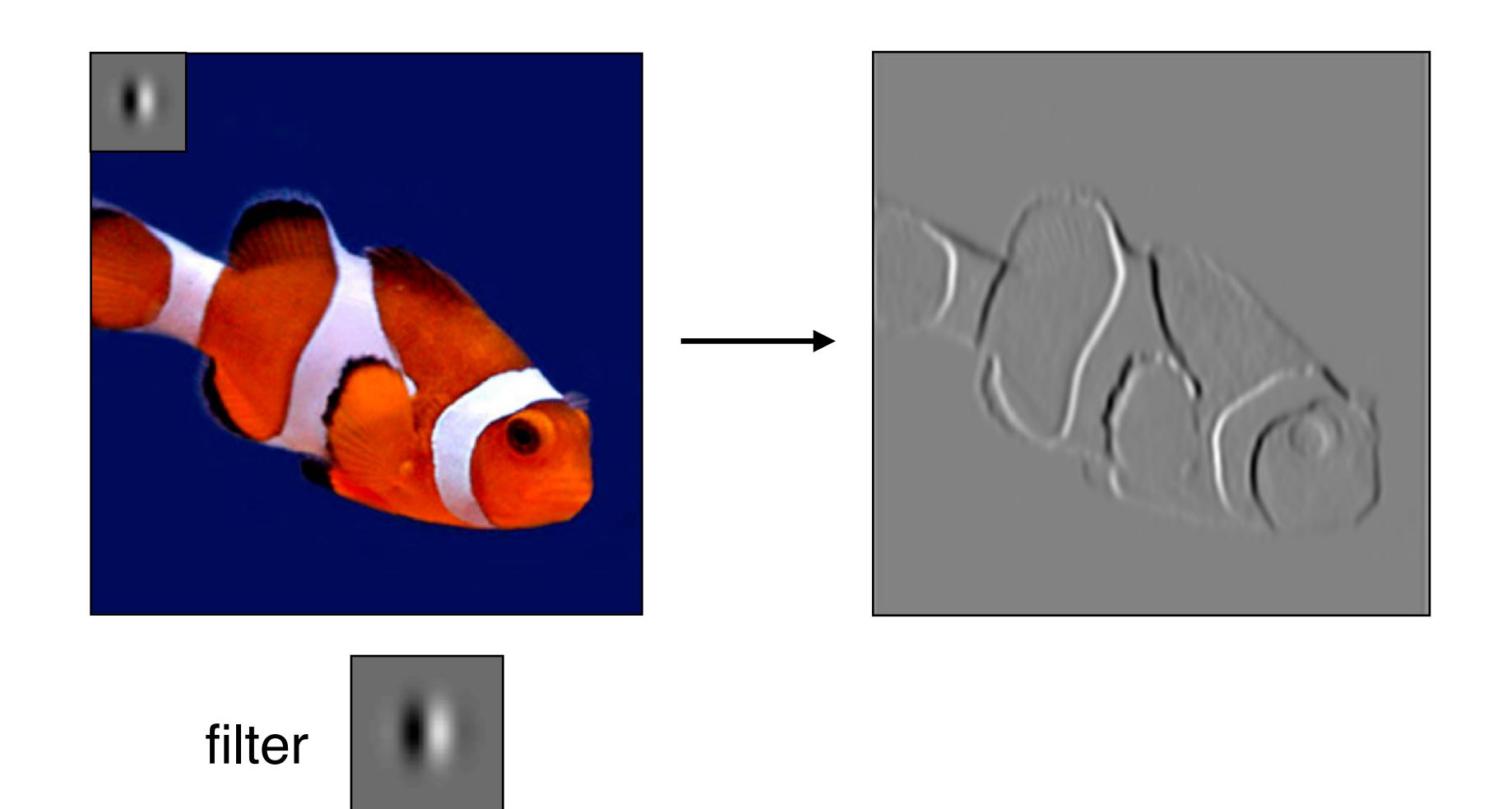




W is a convolutional kernel applied to the full image!

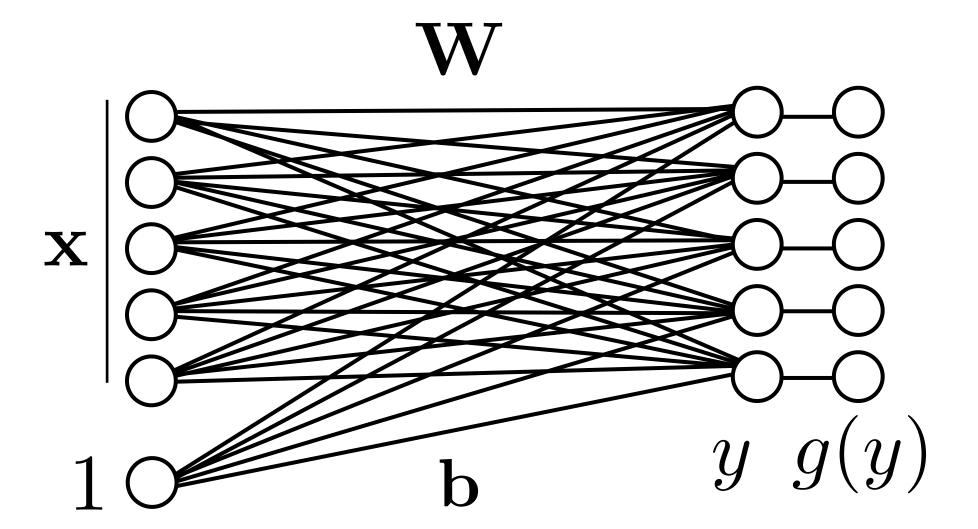


# Convolution

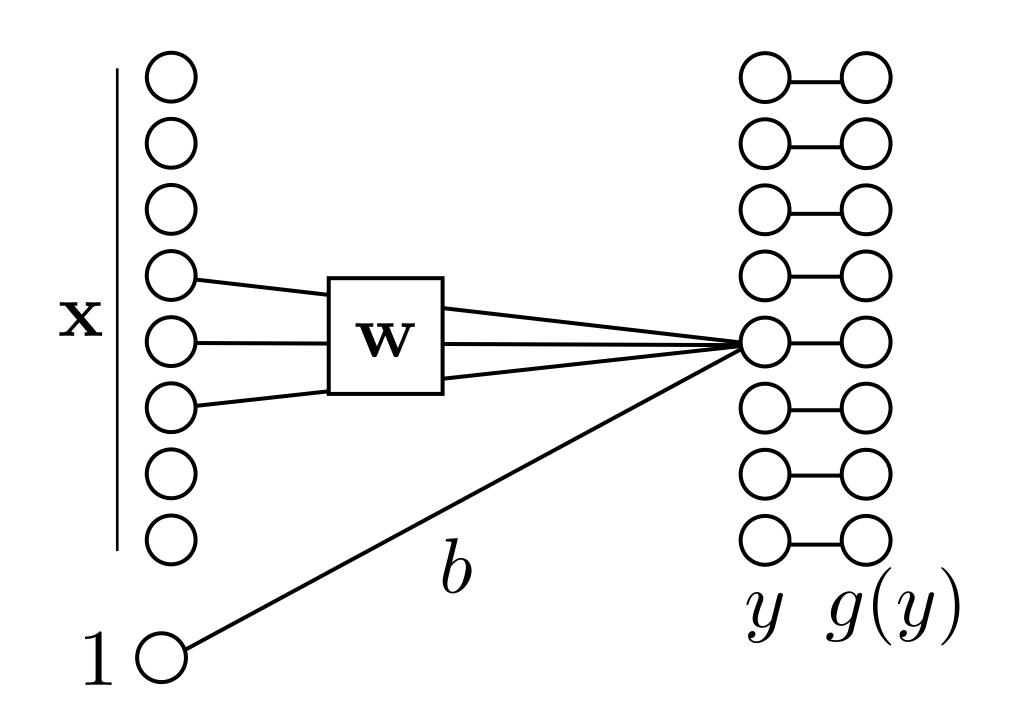


# Fully-connected network

#### Fully-connected (fc) layer



### Locally connected network

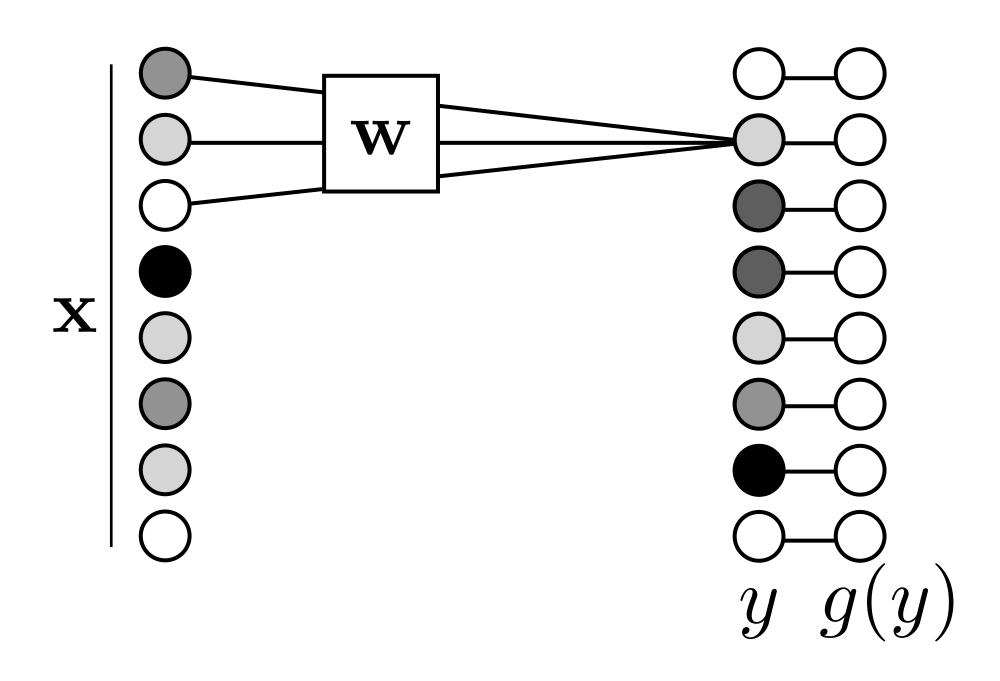


Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

#### Convolutional neural network

#### **Conv layer**

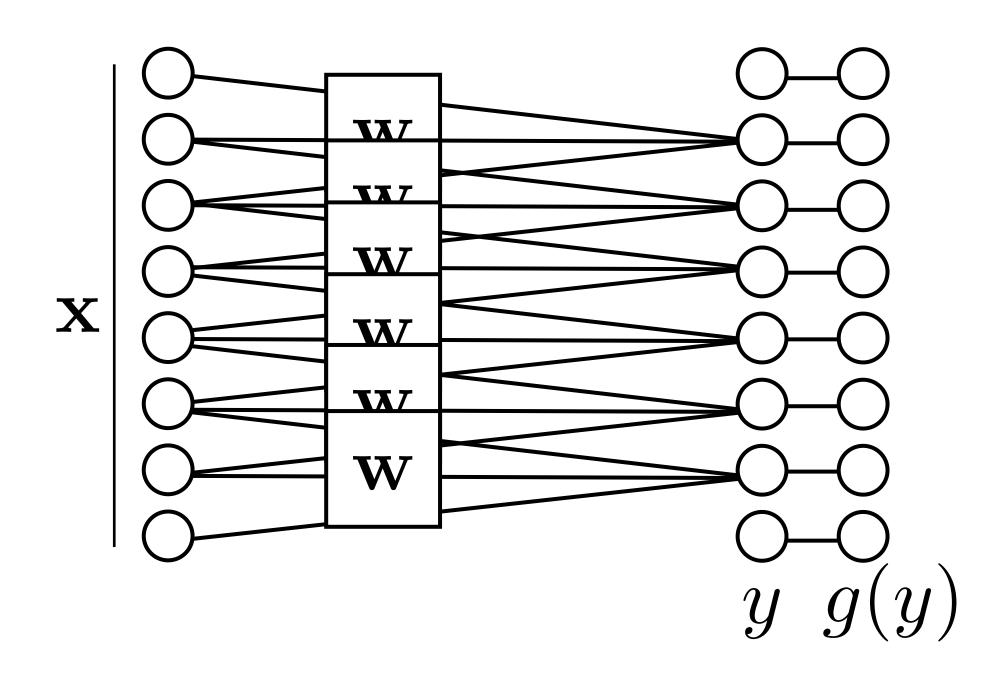


Often, we assume output is a local function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

# Weight sharing

#### Conv layer

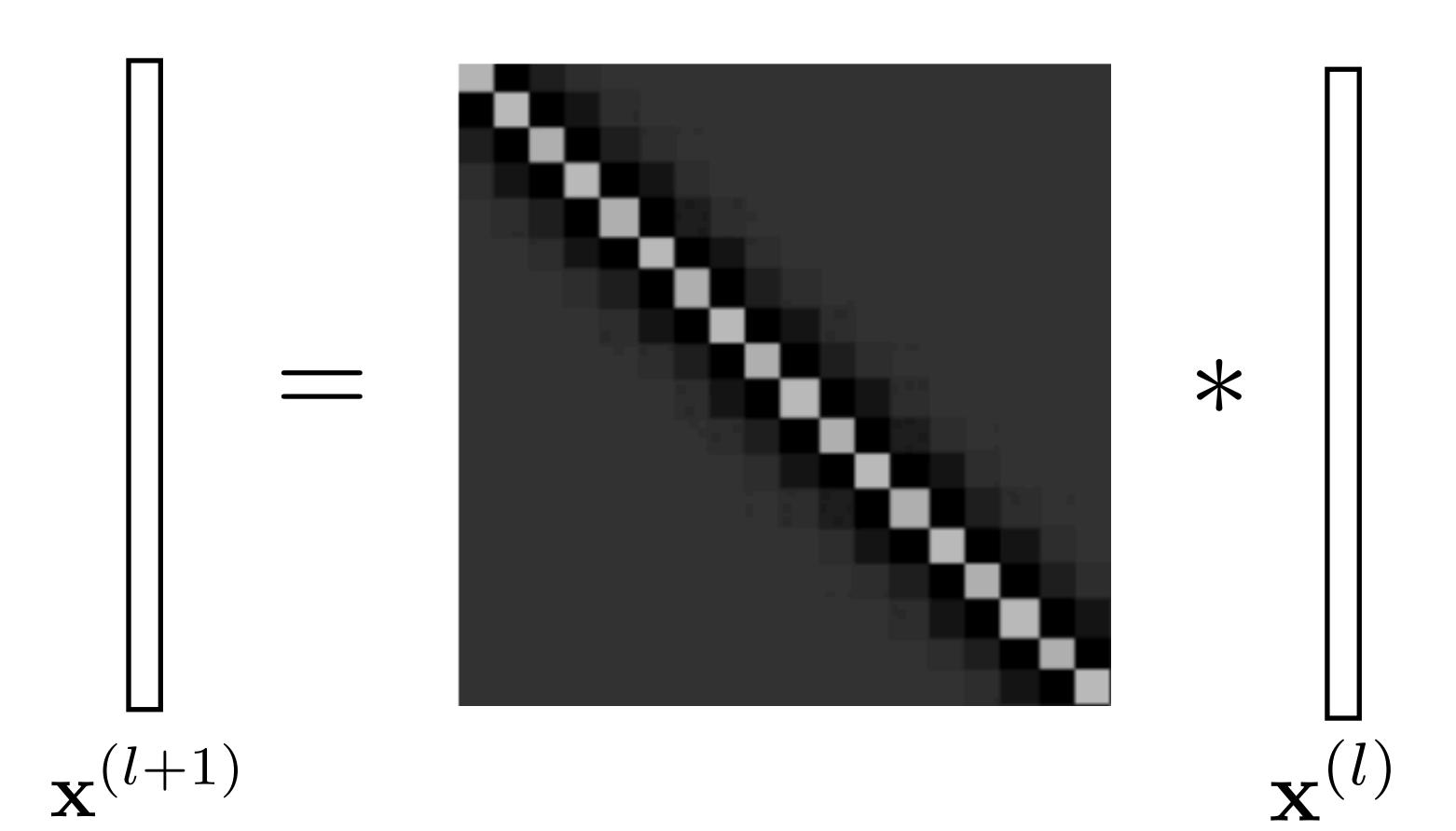


Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

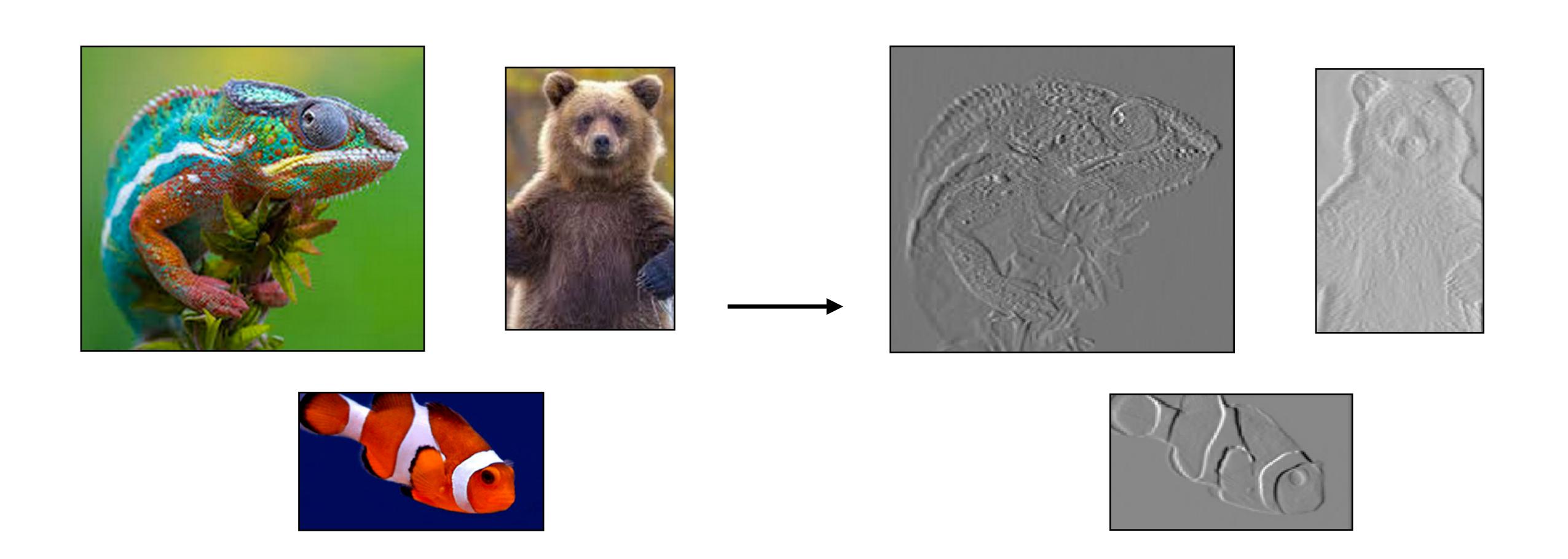
#### **Toeplitz matrix**

$$egin{pmatrix} a & b & c & d & e \ f & a & b & c & d \ g & f & a & b & c \ h & g & f & a & b \ i & h & g & f & a \ \end{pmatrix}$$

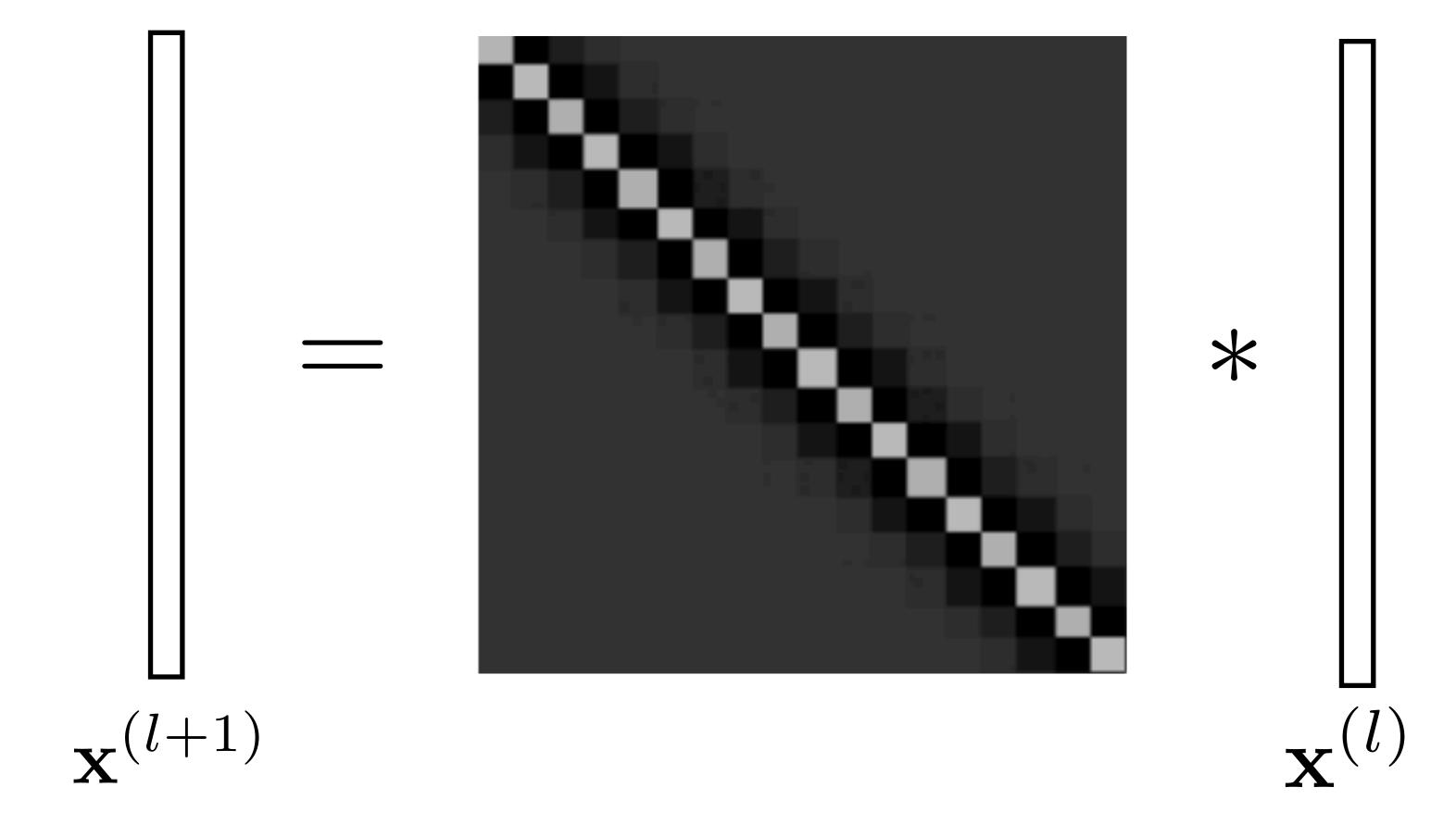


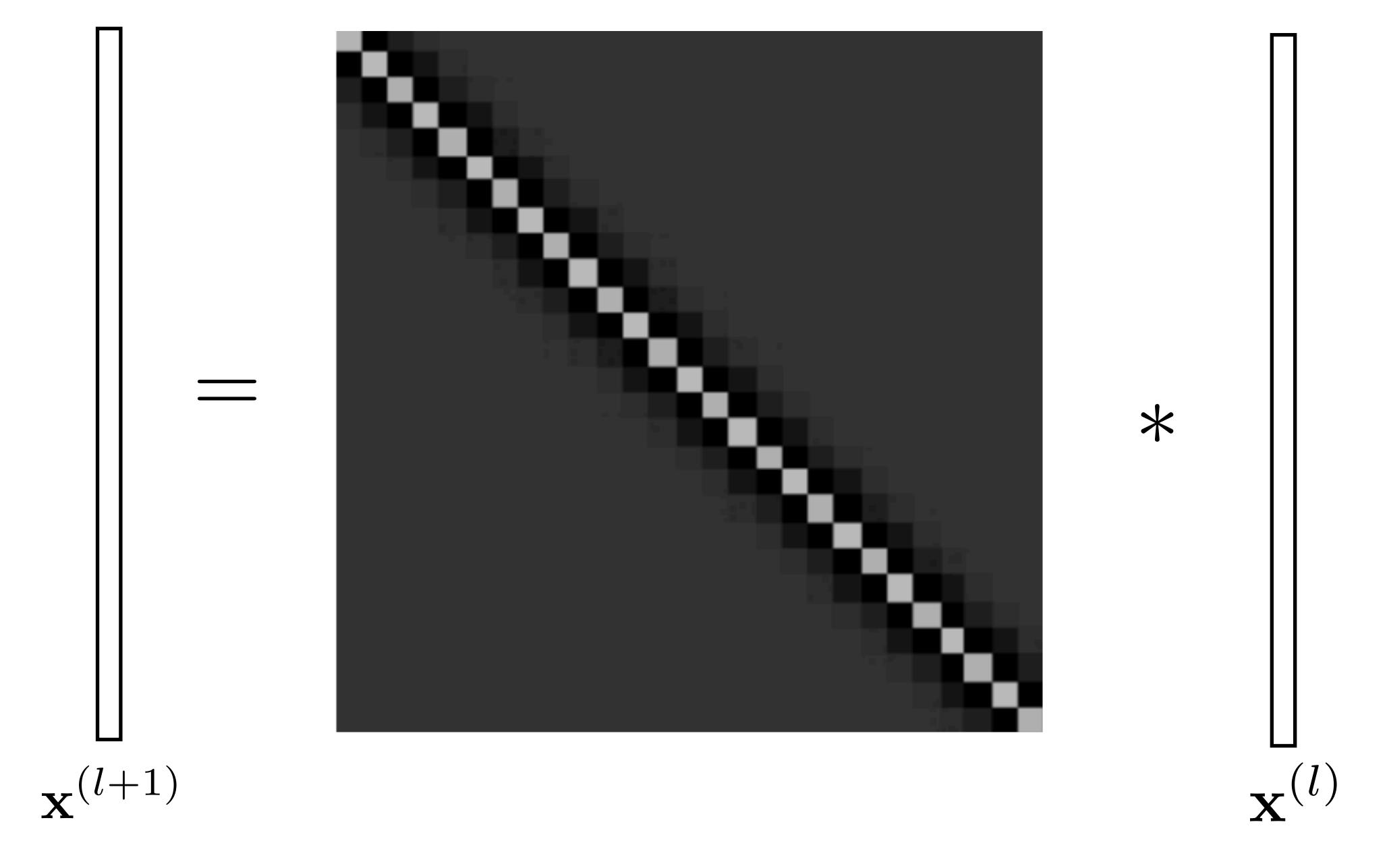
e.g., pixel image

- Constrained linear layer
- Fewer parameters —> easier to learn, less overfitting



Conv layers can be applied to arbitrarily-sized inputs

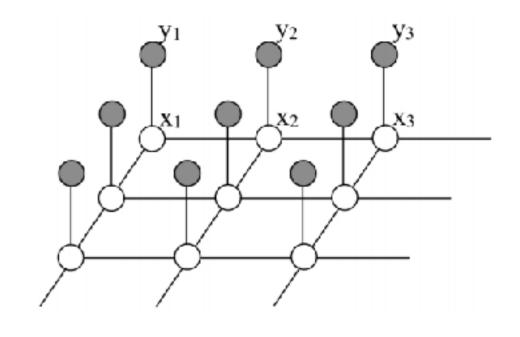




# Five views on convolutional layers

1. Equivariant with translation (stationarity) f(translate(x)) = translate(f(x))

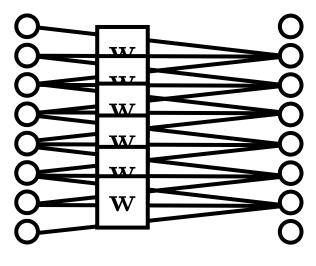
2. Patch processing (Markov assumption)



3. Image filter



4. Parameter sharing



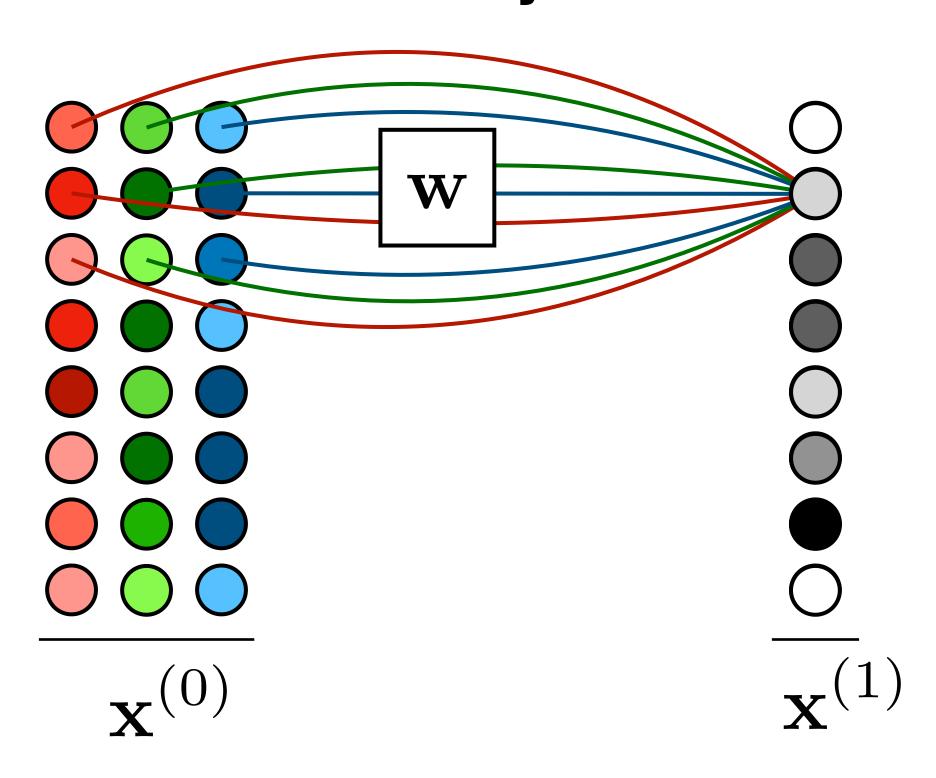
5. A way to process variable-sized tensors

# What if we have color?

(aka multiple input channels?)

# Multiple channels

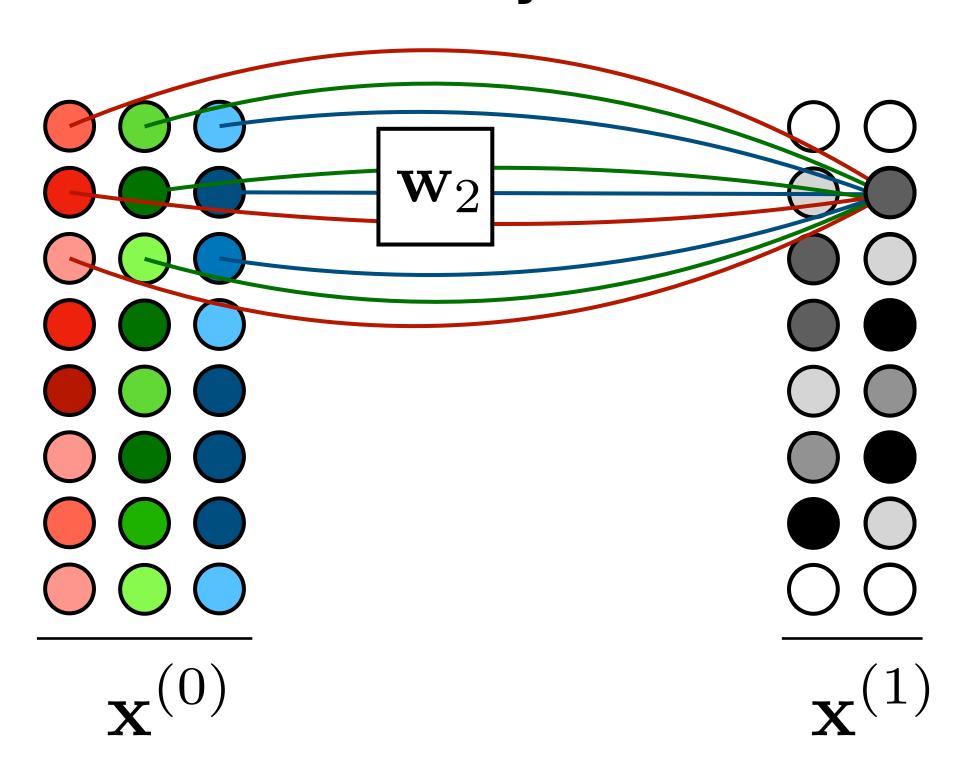
#### **Conv layer**



$$\mathbb{R}^{N \times C} \to \mathbb{R}^{N \times 1}$$

## Multiple channels

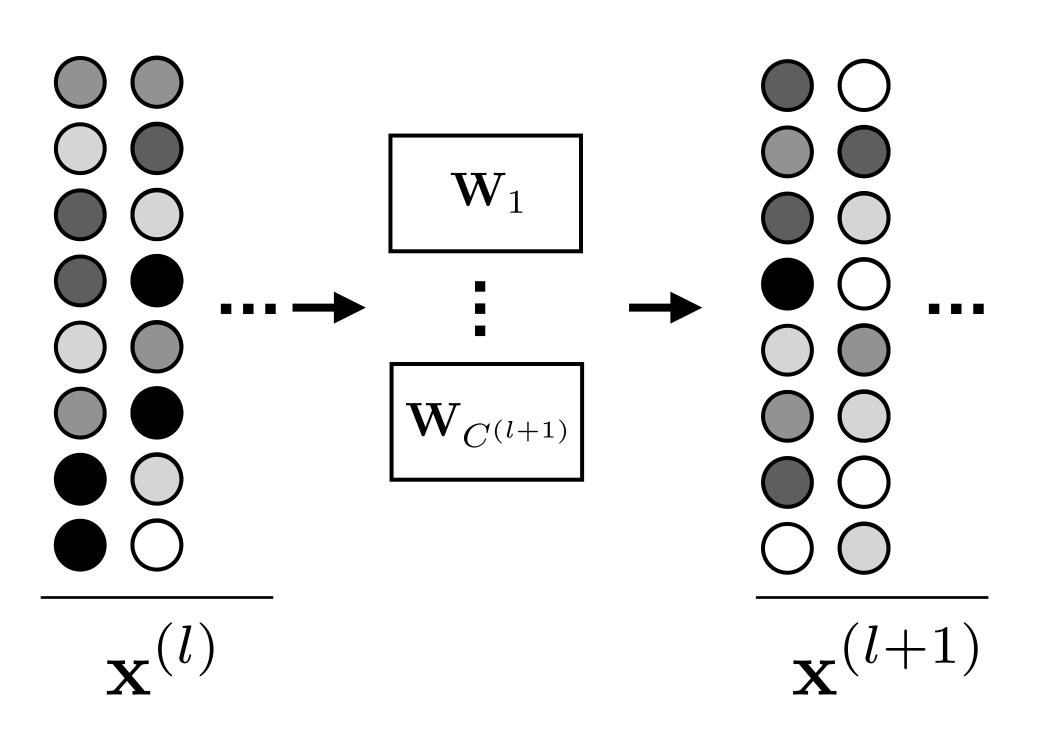
#### **Conv layer**



$$\mathbb{R}^{N \times C^{(0)}} \to \mathbb{R}^{N \times C^{(1)}}$$

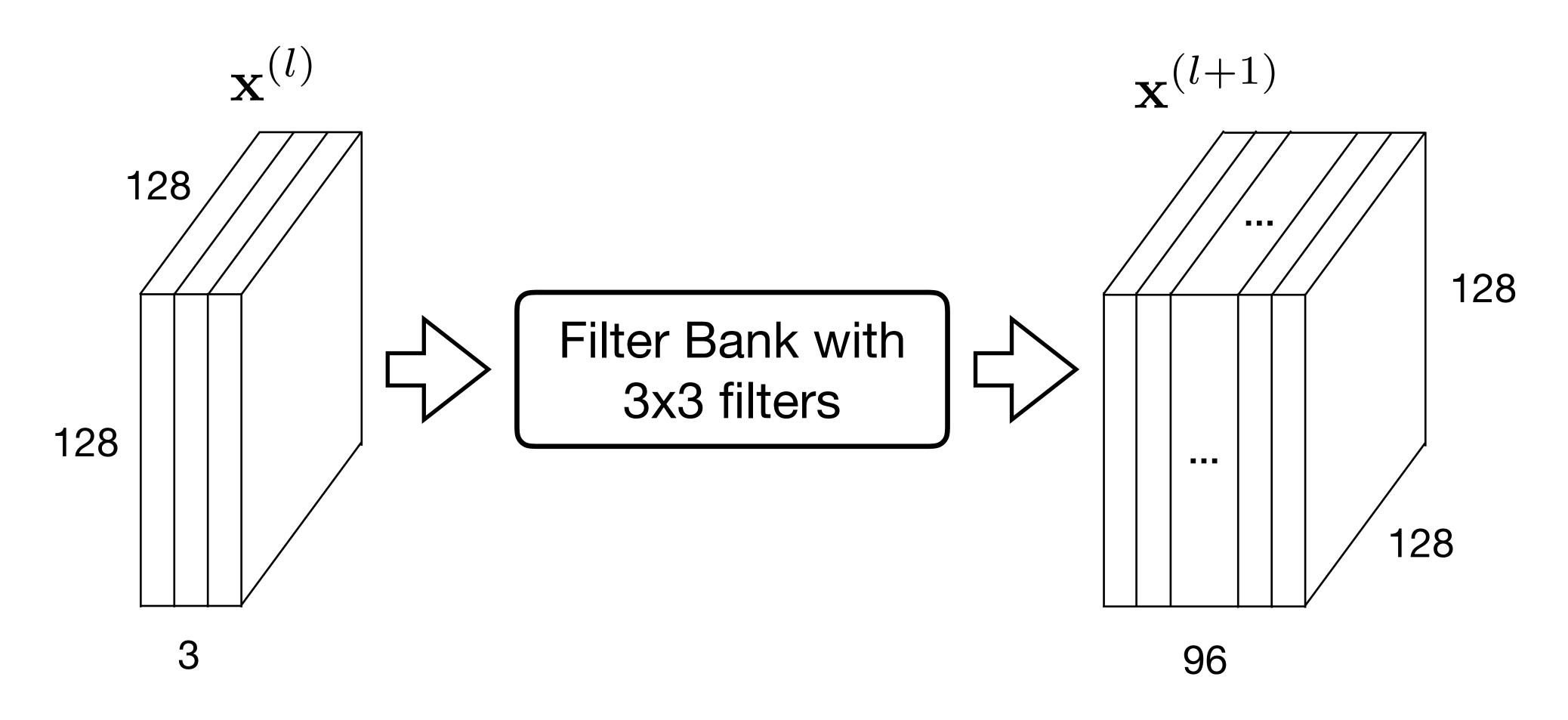
## Multiple channels

#### **Conv layer**



$$\mathbb{R}^{N \times C^{(l)}} \to \mathbb{R}^{N \times C^{(l+1)}}$$

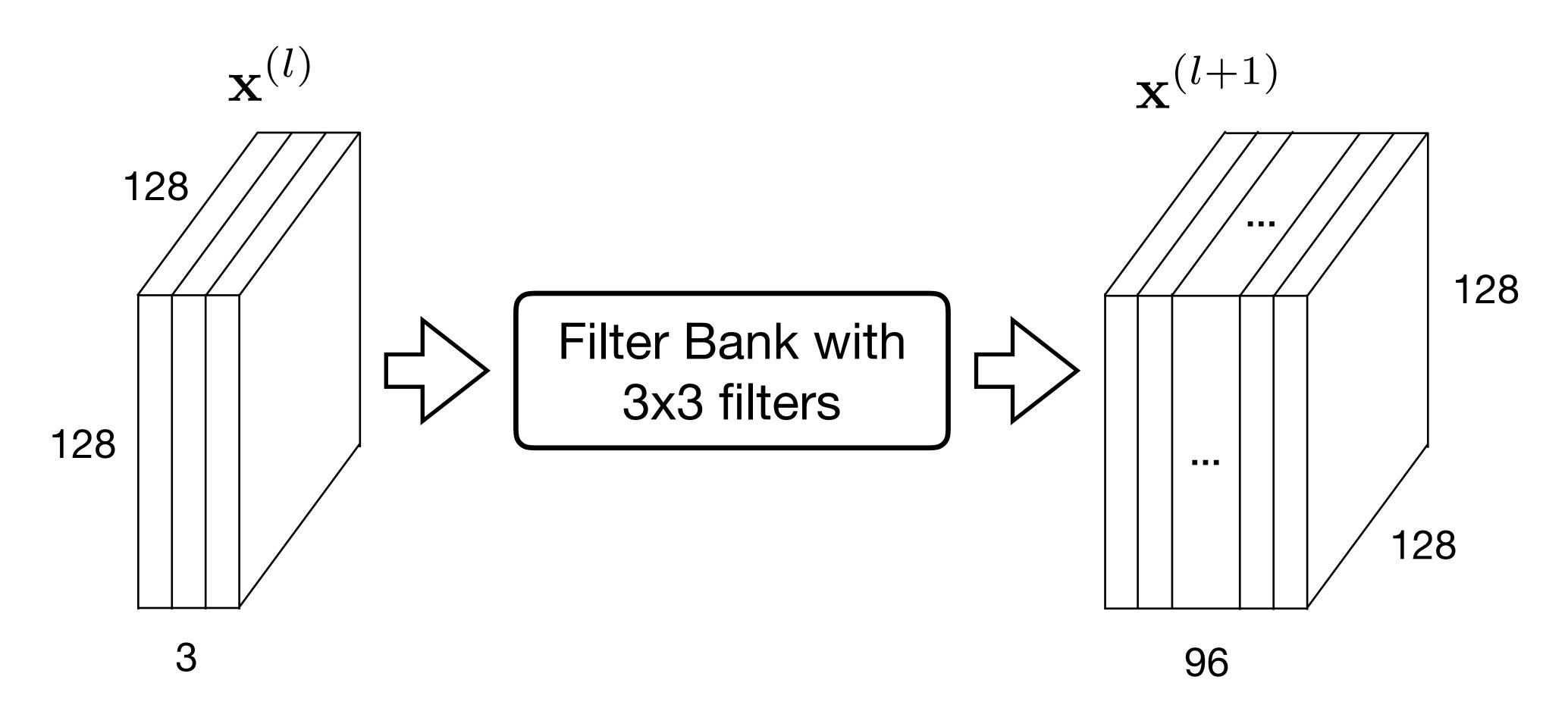
## Multiple channels: Example



How many parameters does each filter have?

(a) 9 (b) 27 (c) 96 (d) 864

### Multiple channels: Example



How many filters are in the bank?

(a) 3 (b) 27 (c) 96 (d) can't say

# Filter sizes

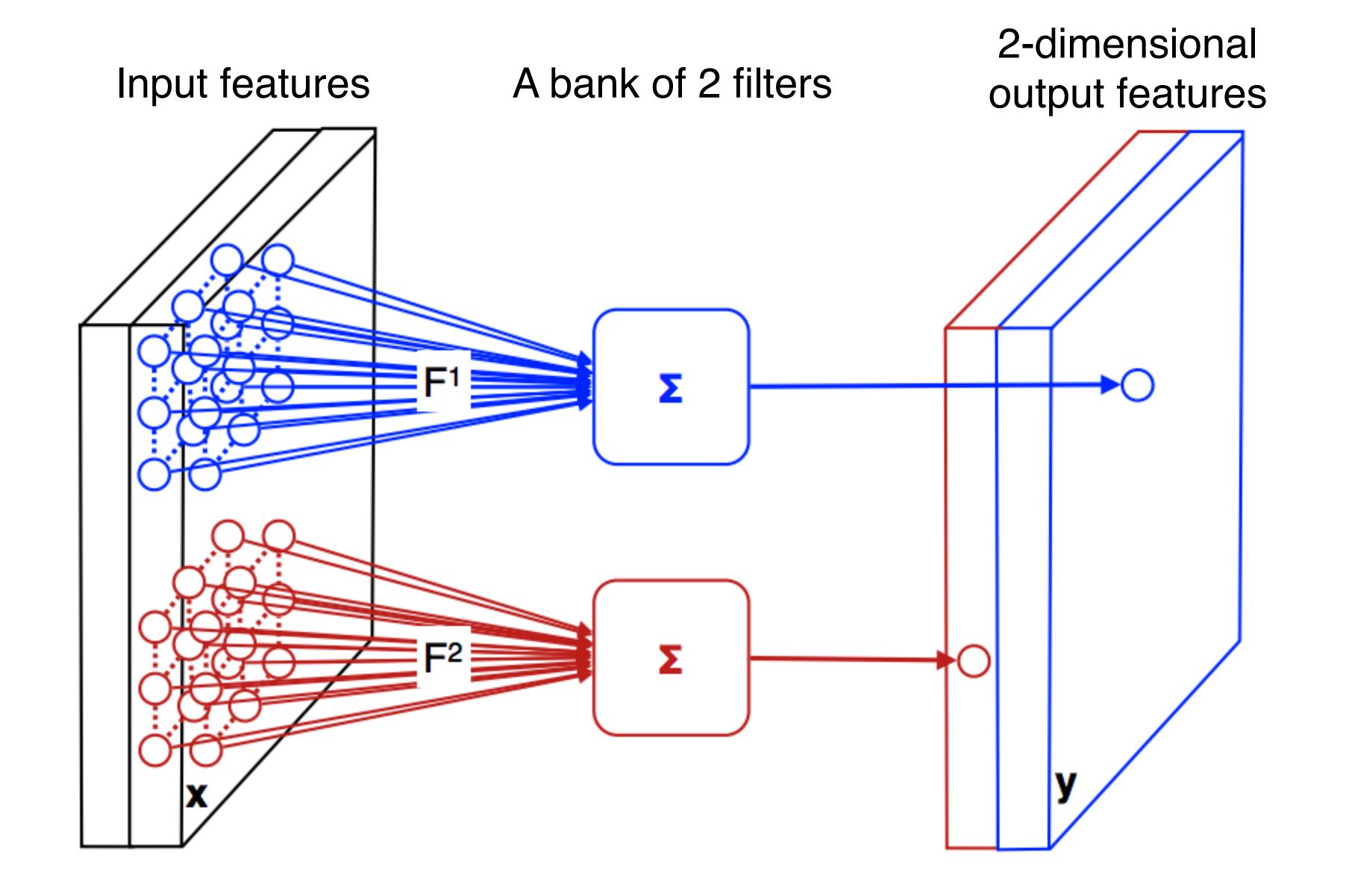
When mapping from

$$\mathbf{x}^{(l)} \in \mathbb{R}^{H \times W \times C^{(l)}} \to \mathbf{x}^{(l+1)} \in \mathbb{R}^{H \times W \times C^{(l+1)}}$$

using an filter of spatial extent  $M \times N$ 

Number of parameters per filter:  $M \times N \times C^{(l)}$ 

Number of filters:  $C^{(l+1)}$ 



$$\mathbb{R}^{H \times W \times C^{(l)}} \to \mathbb{R}^{H \times W \times C^{(l+1)}}$$

[Figure from Andrea Vedaldi]

# Image classification

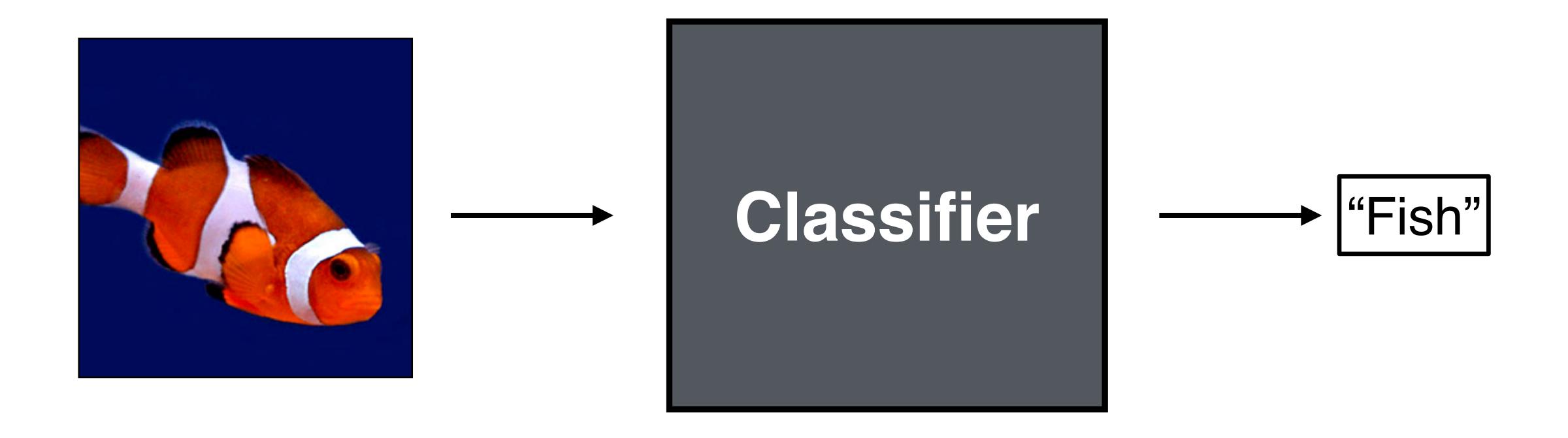


image x

# Image classification

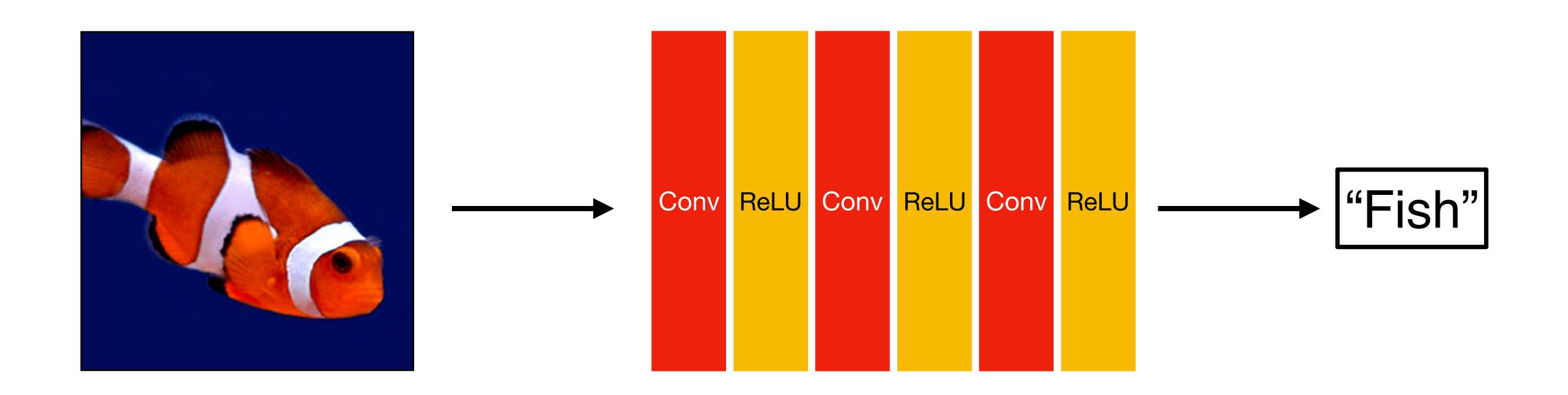
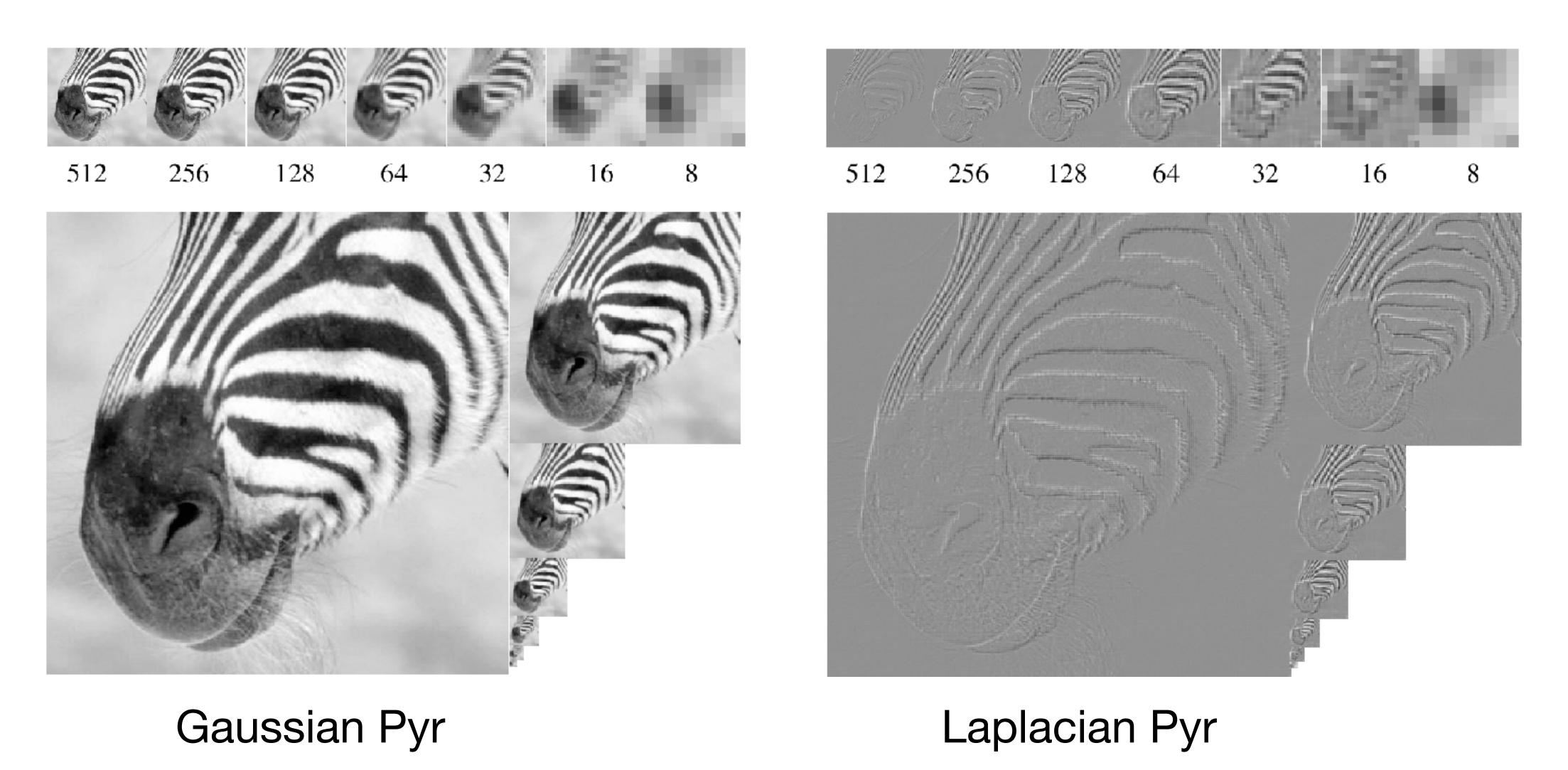


image x

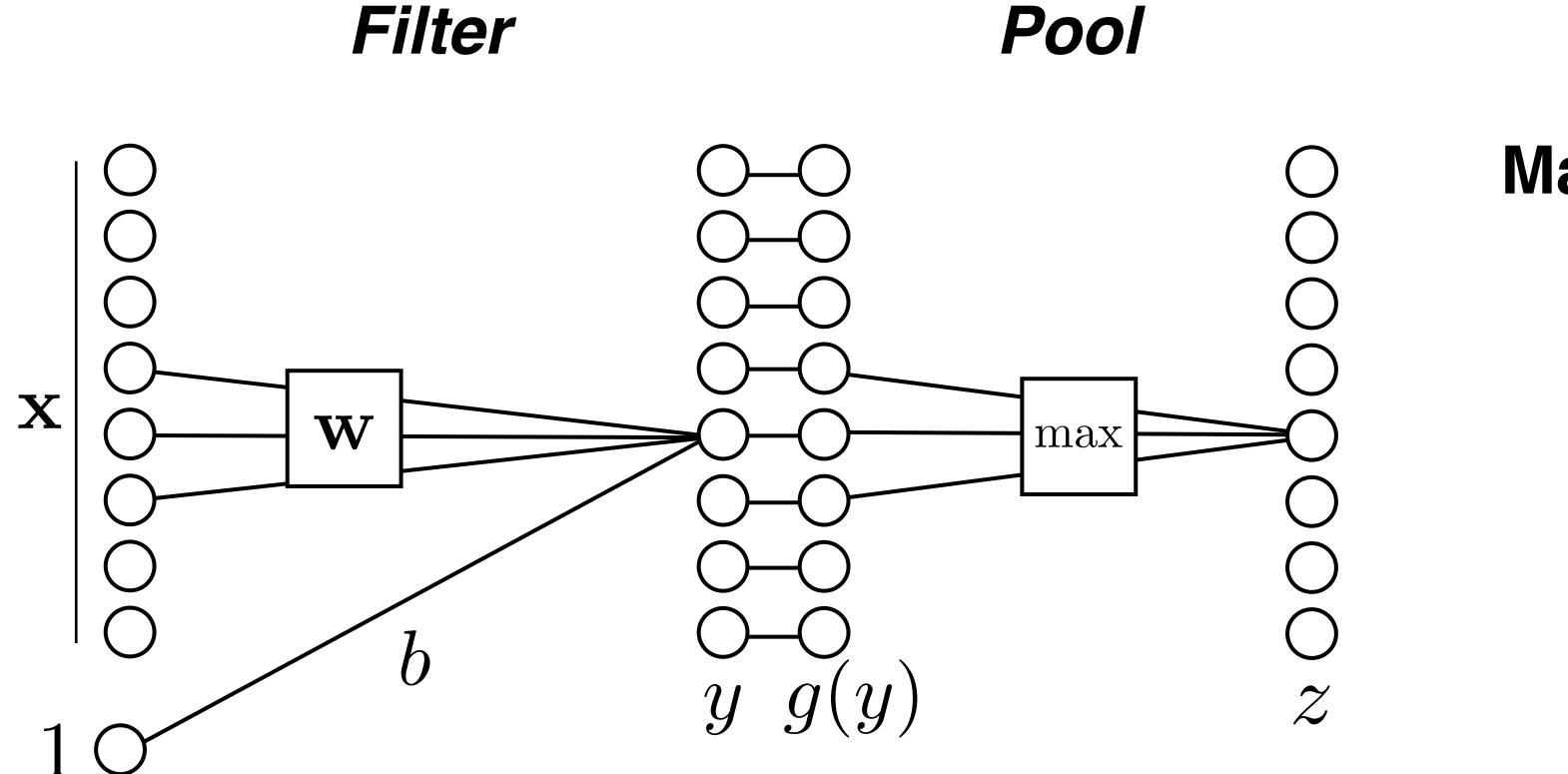
label y

### Multiscale representations are great!



How can we use multi-scale modeling in Convnets?

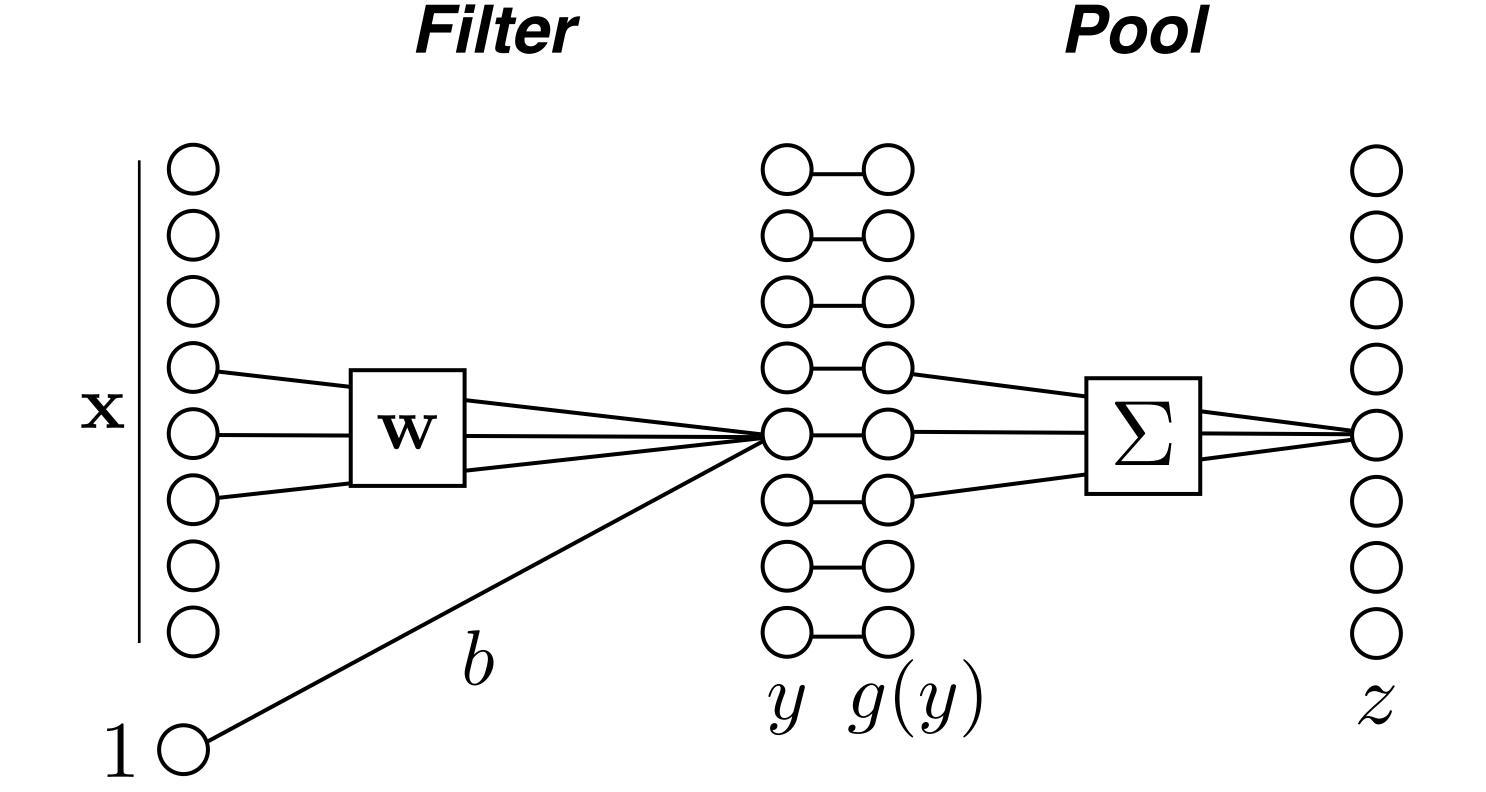
## Pooling



### Max pooling

$$z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$$

## Pooling



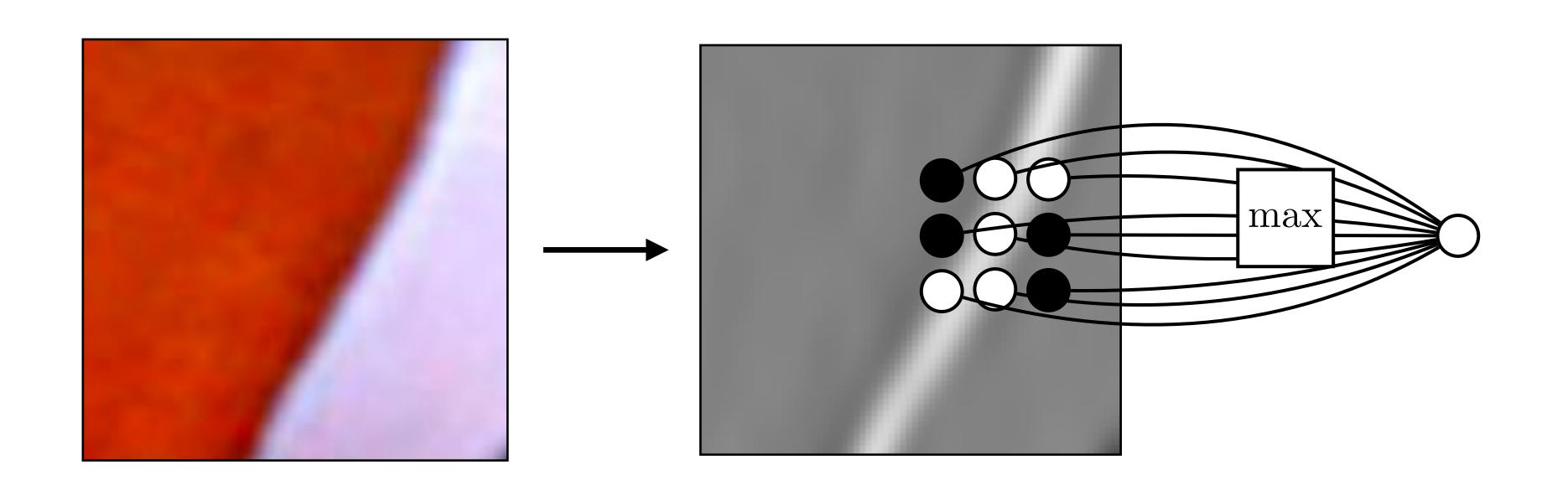
### Max pooling

$$z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$$

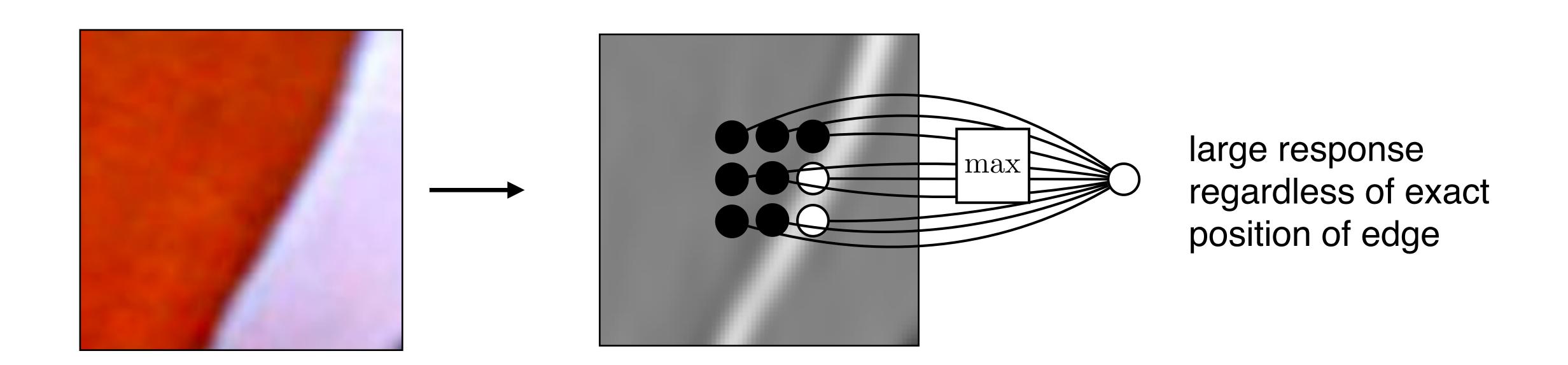
### Mean pooling

$$z_k = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}(j)} g(y_j)$$

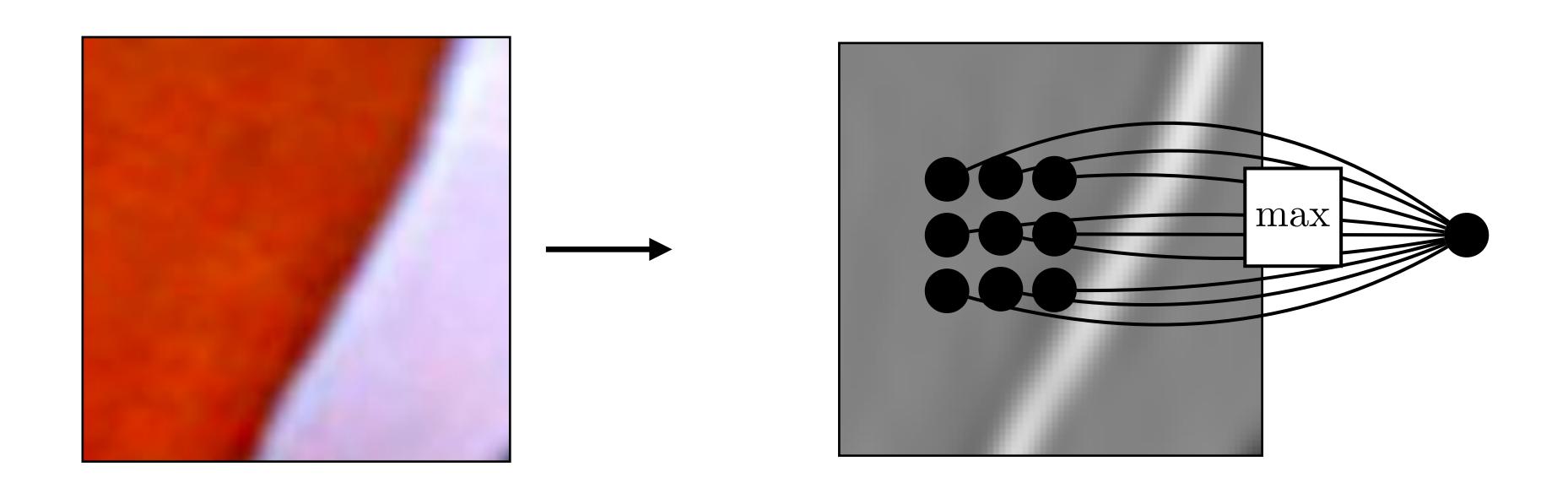
Pooling across spatial locations achieves stability w.r.t. small translations:



Pooling across spatial locations achieves stability w.r.t. small translations:



Pooling across spatial locations achieves stability w.r.t. small translations:



### CNNs are stable w.r.t. diffeomorphisms

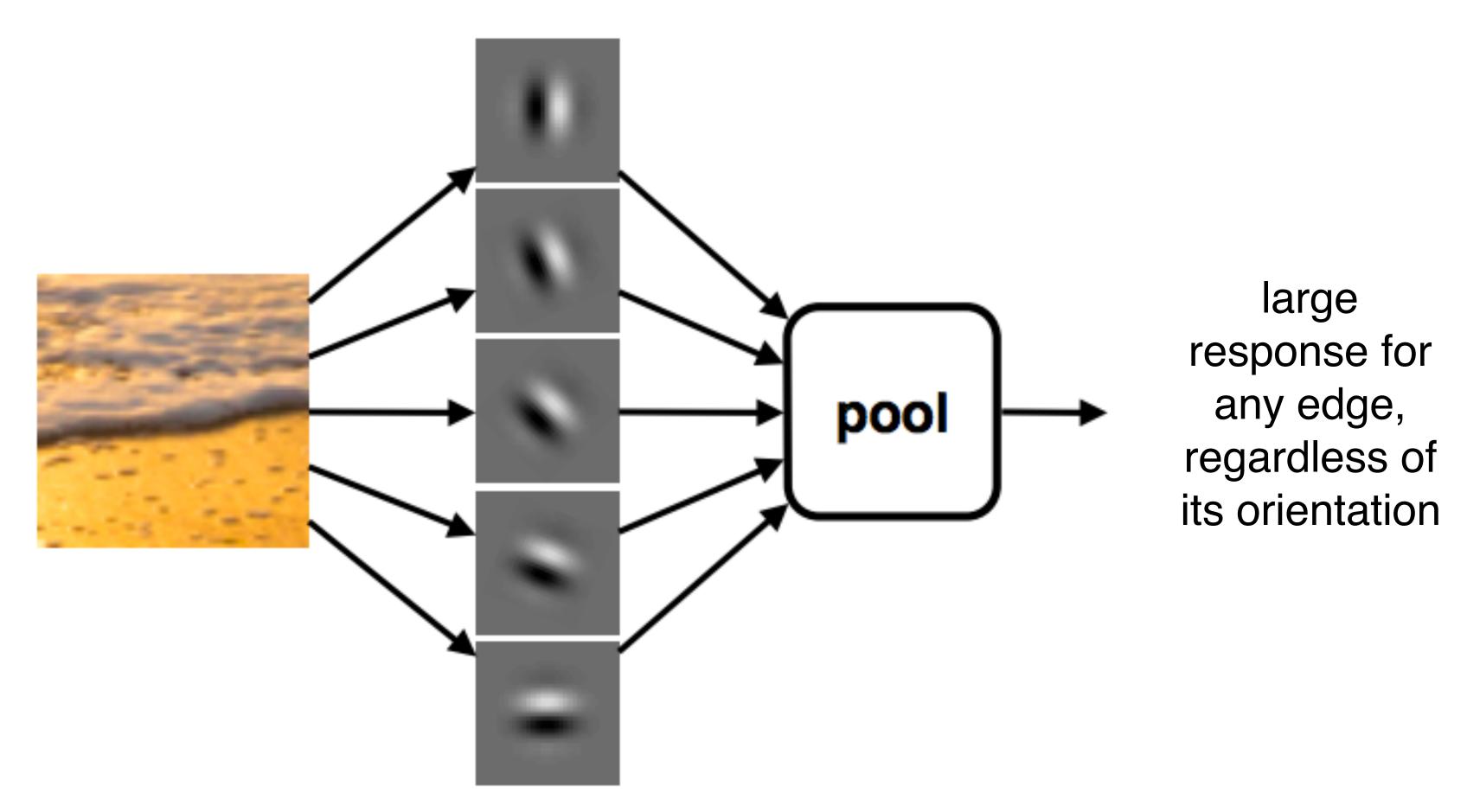






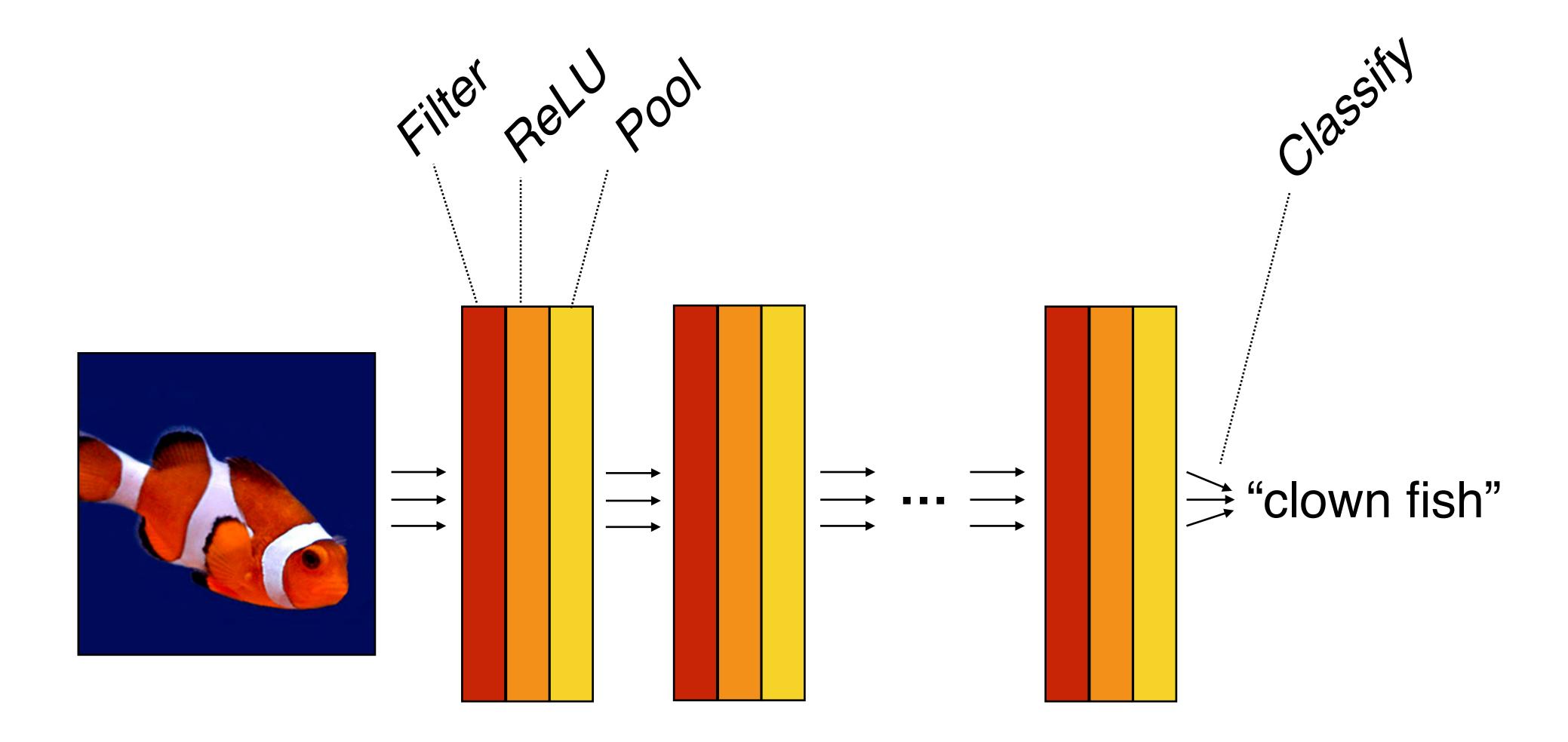
["Unreasonable effectiveness of Deep Features as a Perceptual Metric", Zhang et al. 2018]

Pooling across feature channels (filter outputs) can achieve other kinds of invariances:



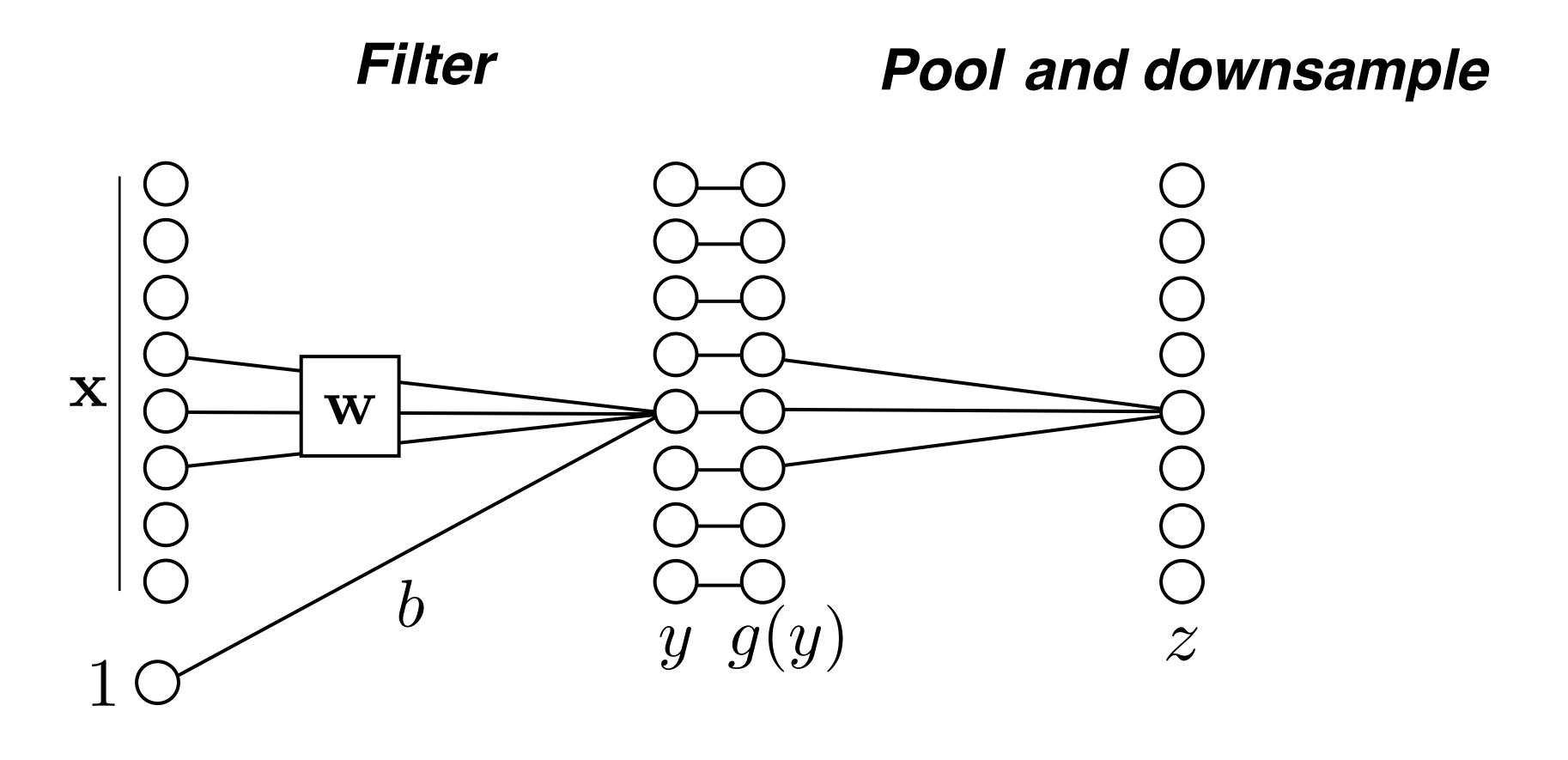
[Derived from slide by Andrea Vedaldi]

## Computation in a neural net

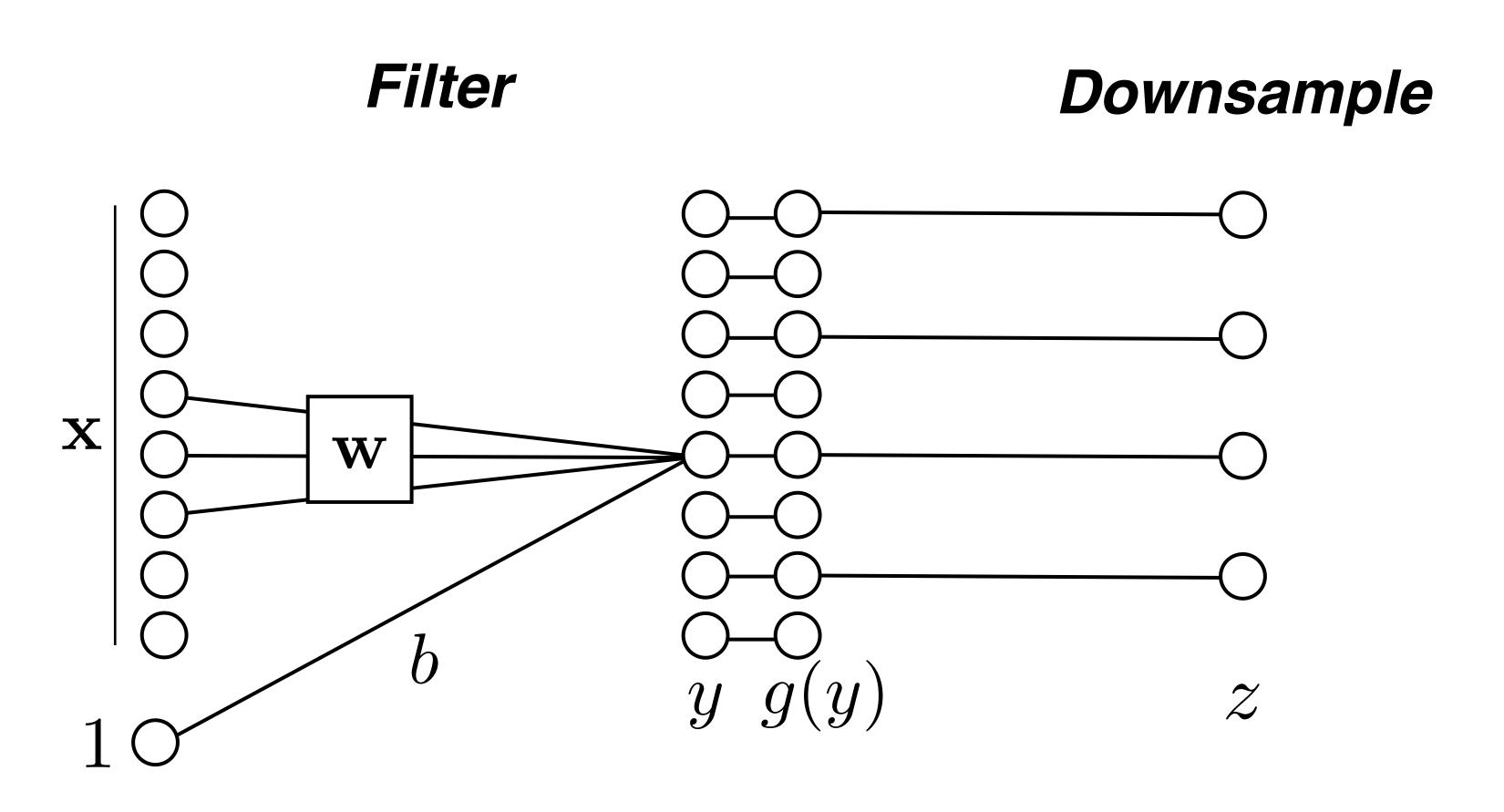


$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

## Downsampling



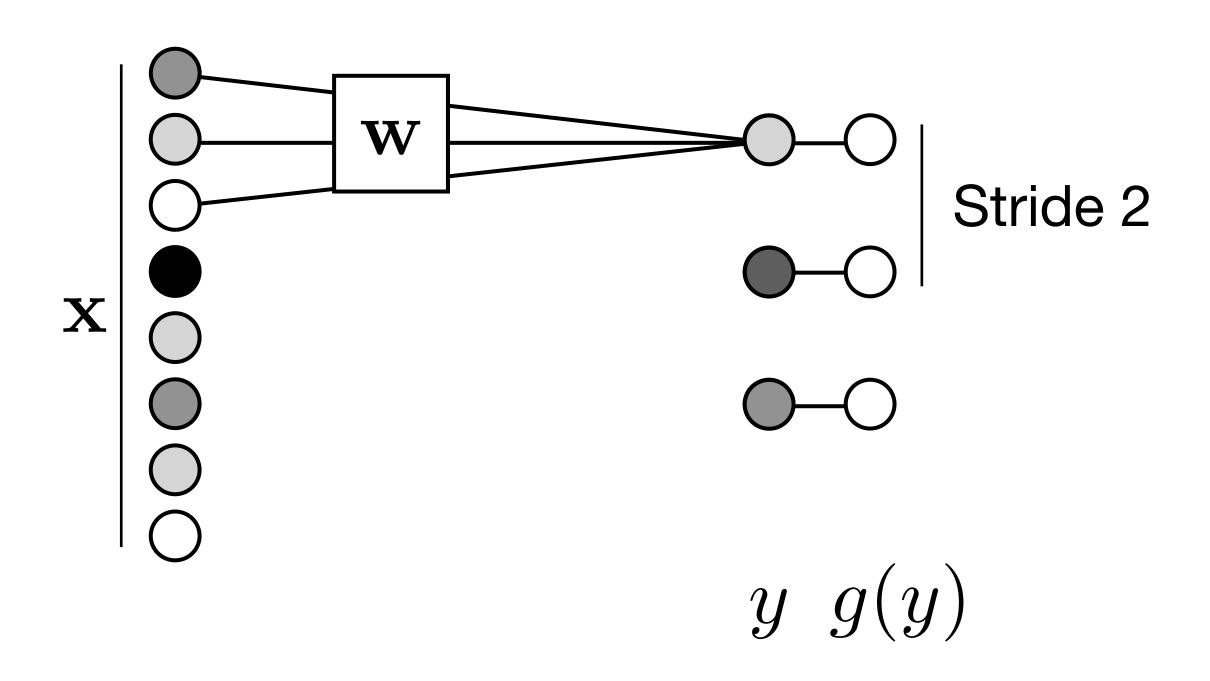
## Downsampling



$$\mathbb{R}^{H^{(l)} \times W^{(l)} \times C^{(l)}} \to \mathbb{R}^{H^{(l+1)} \times W^{(l+1)} \times C^{(l+1)}}$$

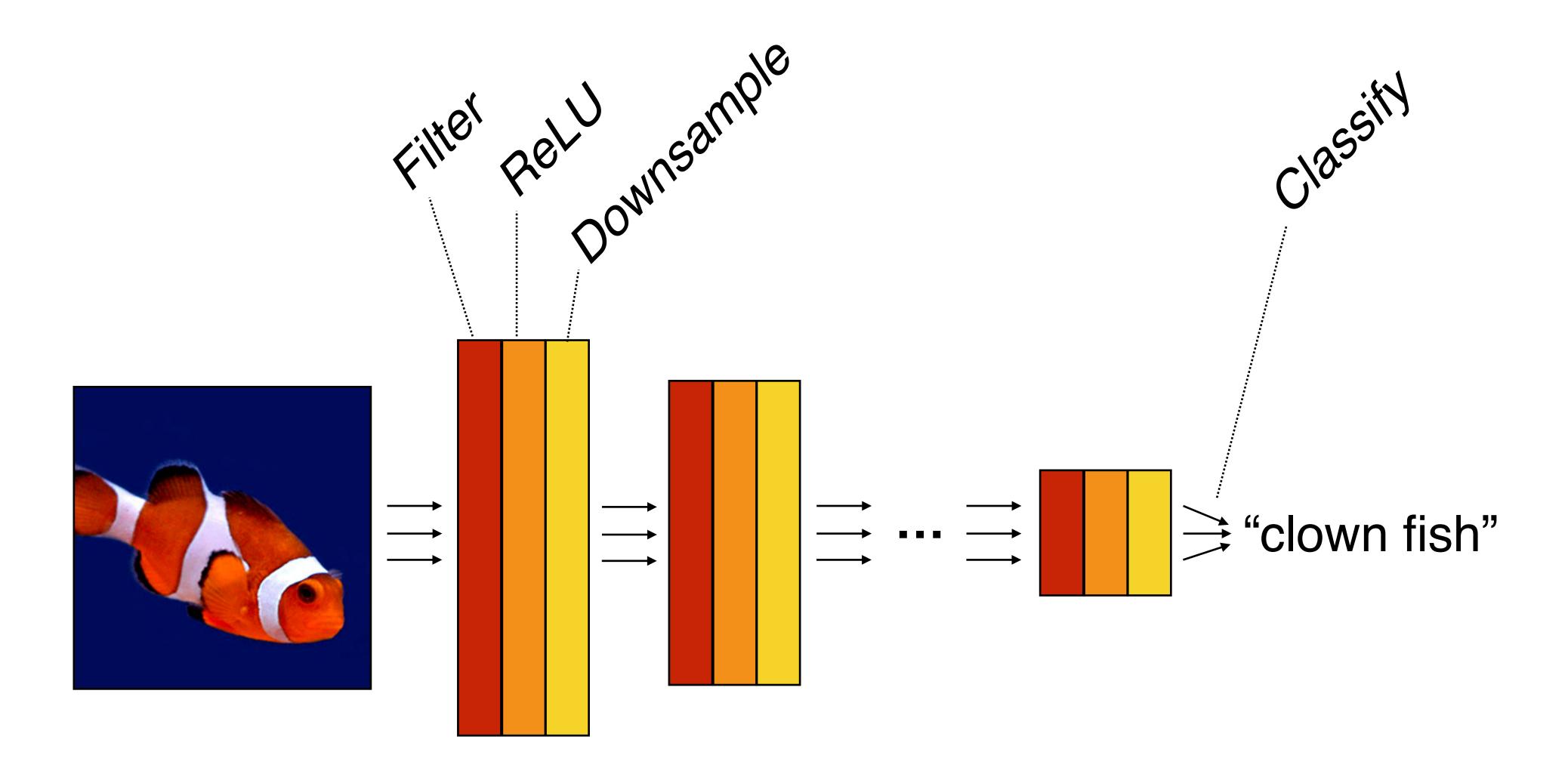
## Strided operations

### Conv layer



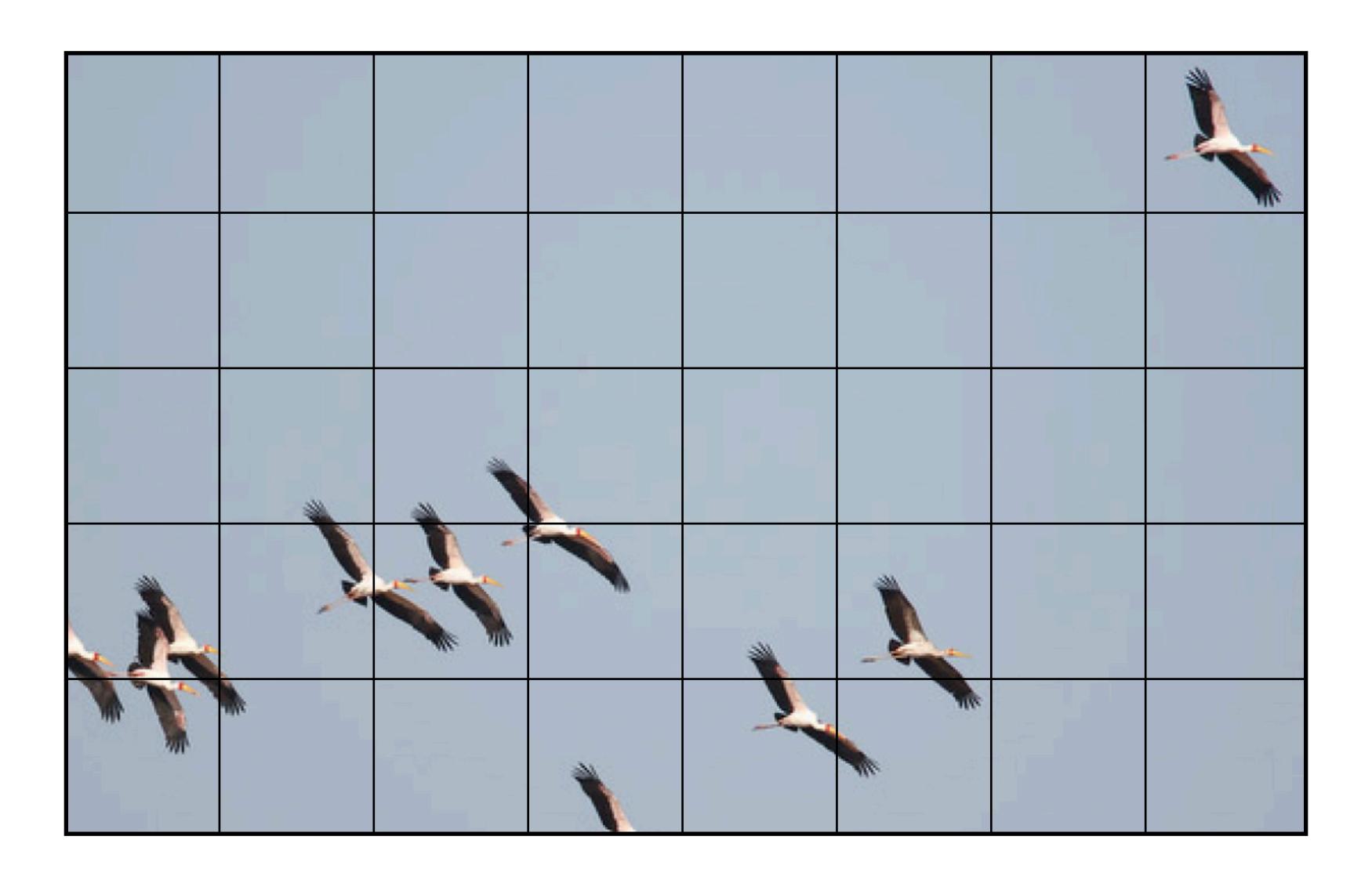
Strided operations combine a given operation (convolution or pooling) and downsampling into a single operation.

## Computation in a neural net

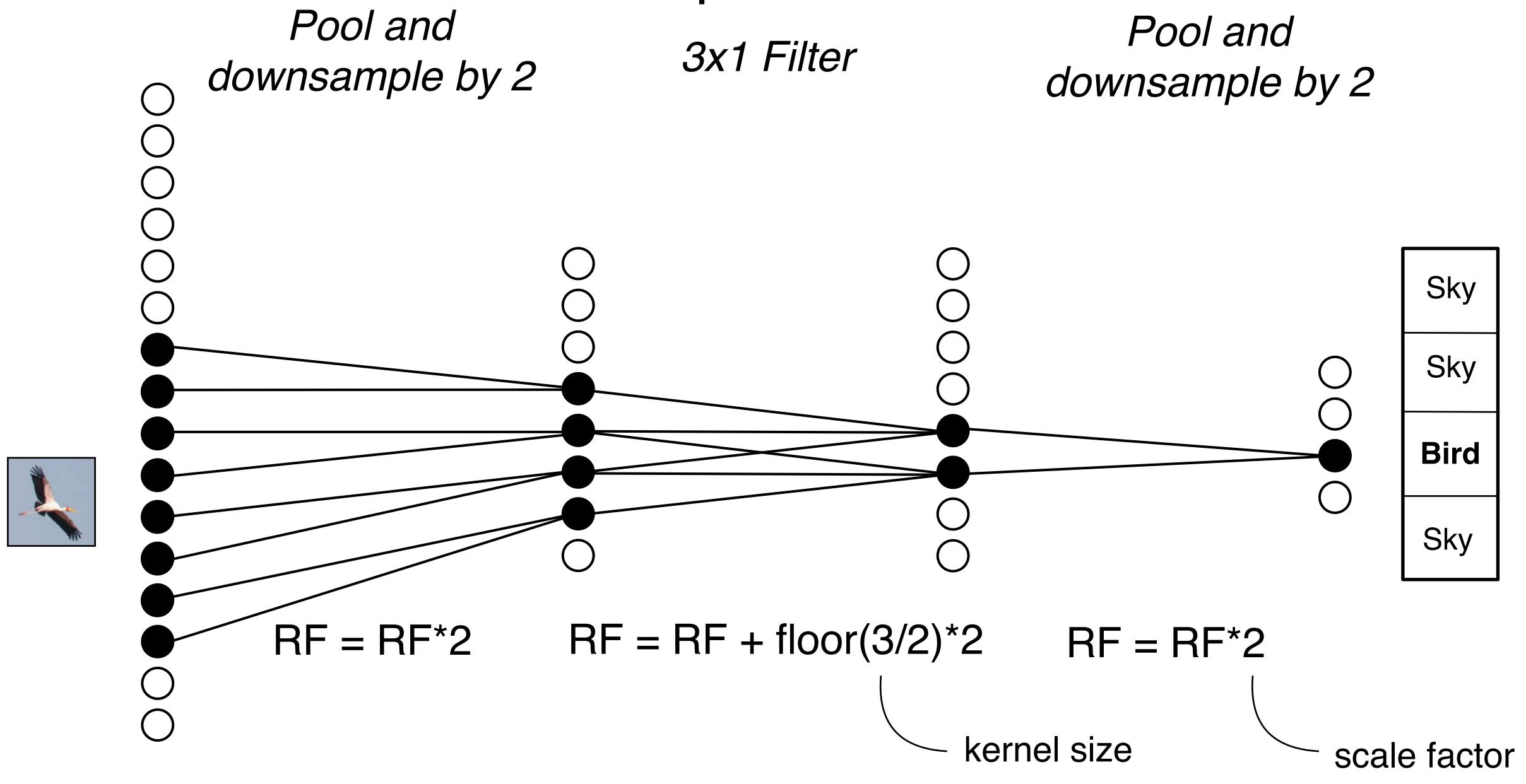


$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

## Receptive fields



### Receptive fields



#### **Effective Receptive Field**

Contributing input units to a convolutional filter.

@jimmfleming // fomoro.com

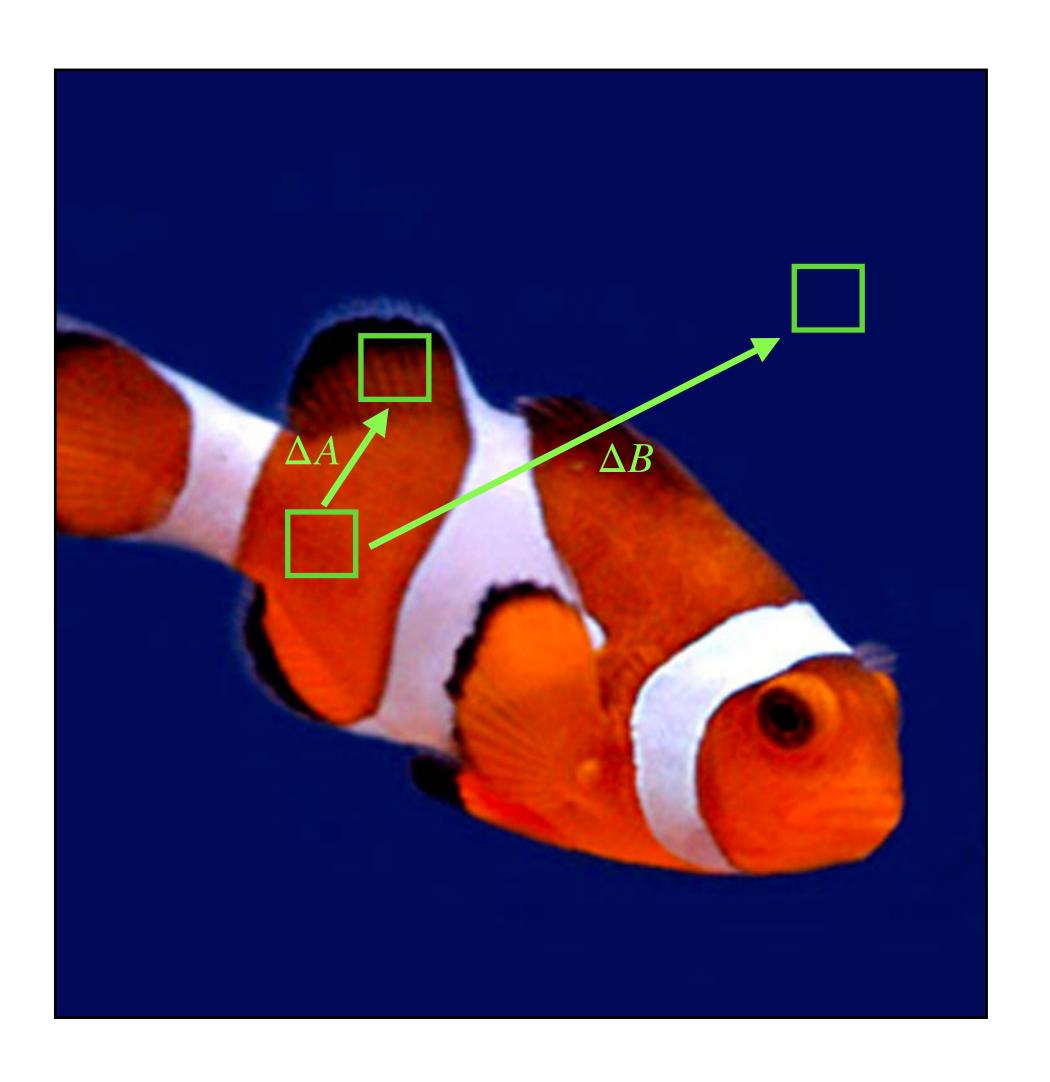


[http://fomoro.com/tools/receptive-fields/index.html]

# Gradient / Backprop equations

... to be derived in the PSet (for Conv and Pool operations)

# Local vs. global processing



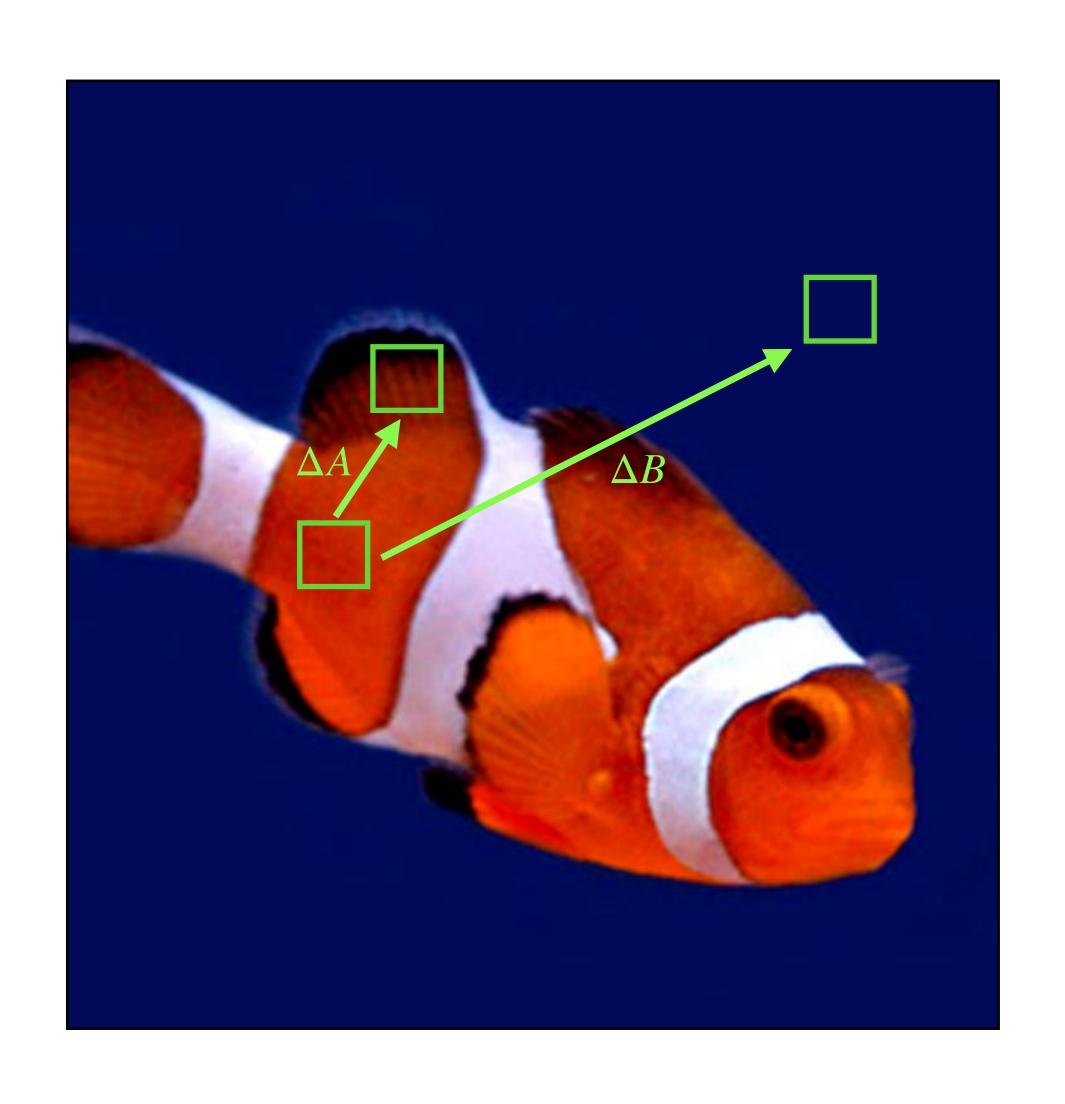
### Across all images, which is higher:

(1) correlation between points with distance  $\Delta A$ 

(2) correlation between points with distance  $\Delta B$ 

(3) can't say

# Local vs. global processing



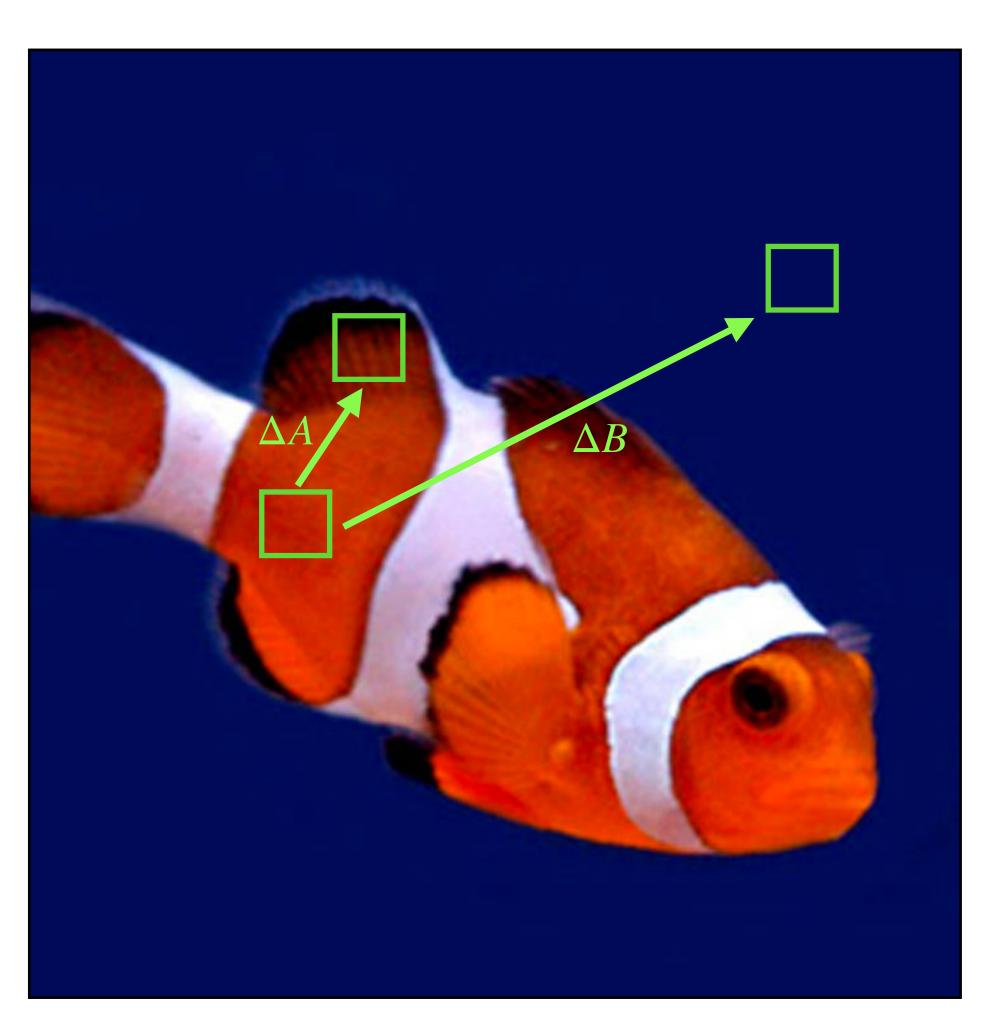
### Across all images, which is higher:

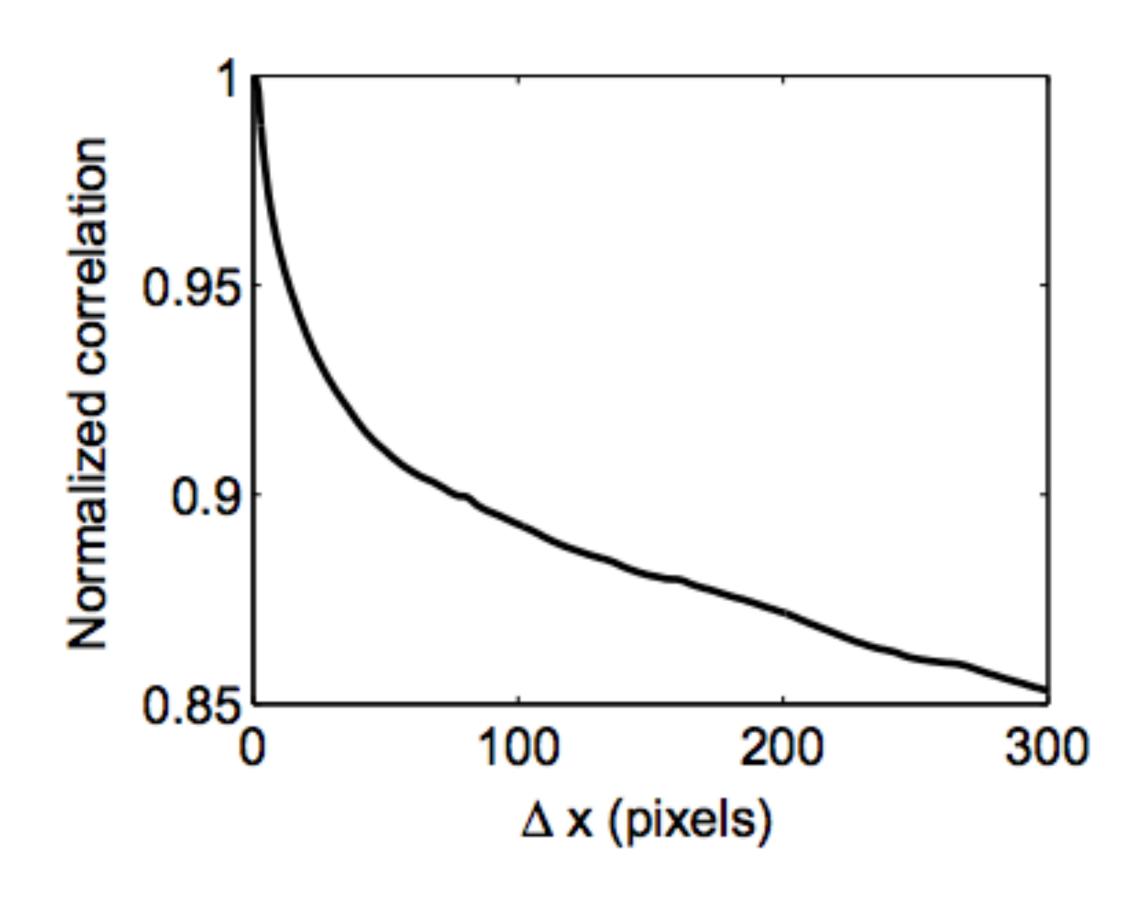
(1) correlation between points with distance  $\Delta A$ 

(2) correlation between points with distance  $\Delta B$ 

(3) can't say

# Local vs. global processing





## CNNs — Why?

Statistical dependences between pixels decay as a power law of distance between the pixels.

It is therefore often sufficient to model local dependences only. -> Convolution

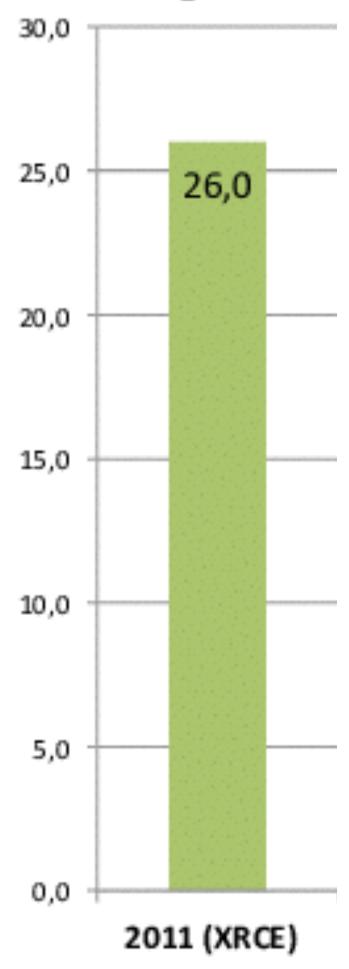
More generally, we should allocate parameters that model dependencies in proportion to the strength of those dependences. —> Multiscale, hierarchical representations

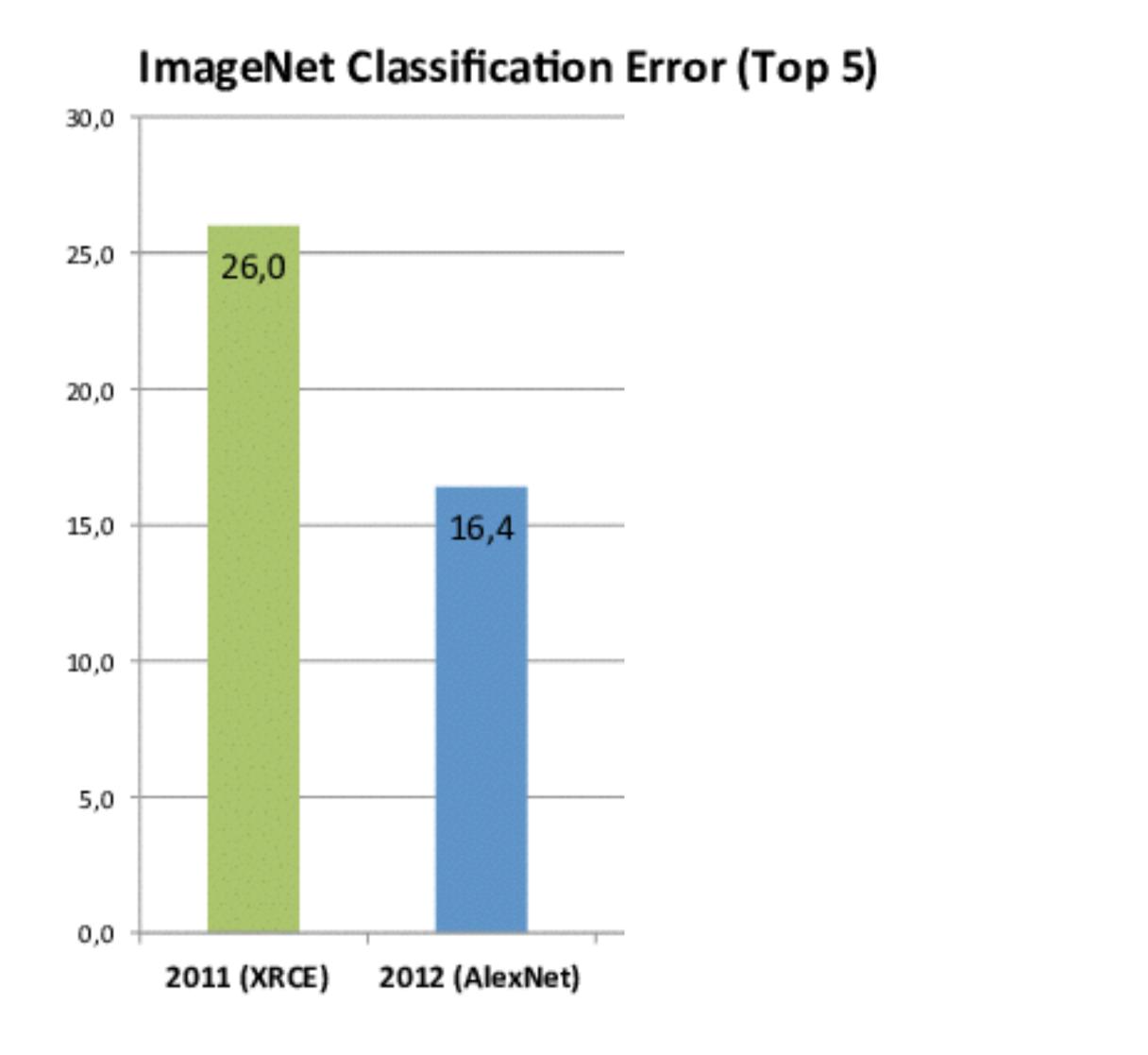
[For more discussion, see "Why does Deep and Cheap Learning Work So Well?", Lin et al. 2017]

## Some networks

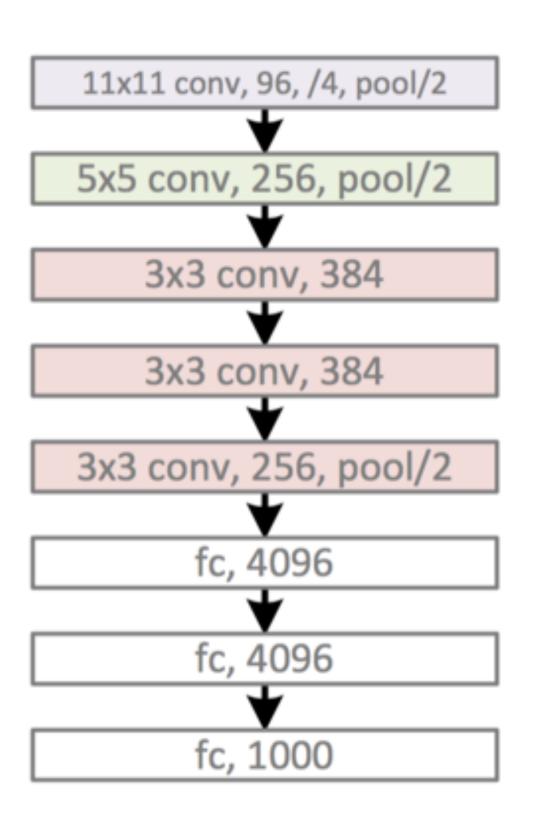
... and what makes them work

### ImageNet Classification Error (Top 5)





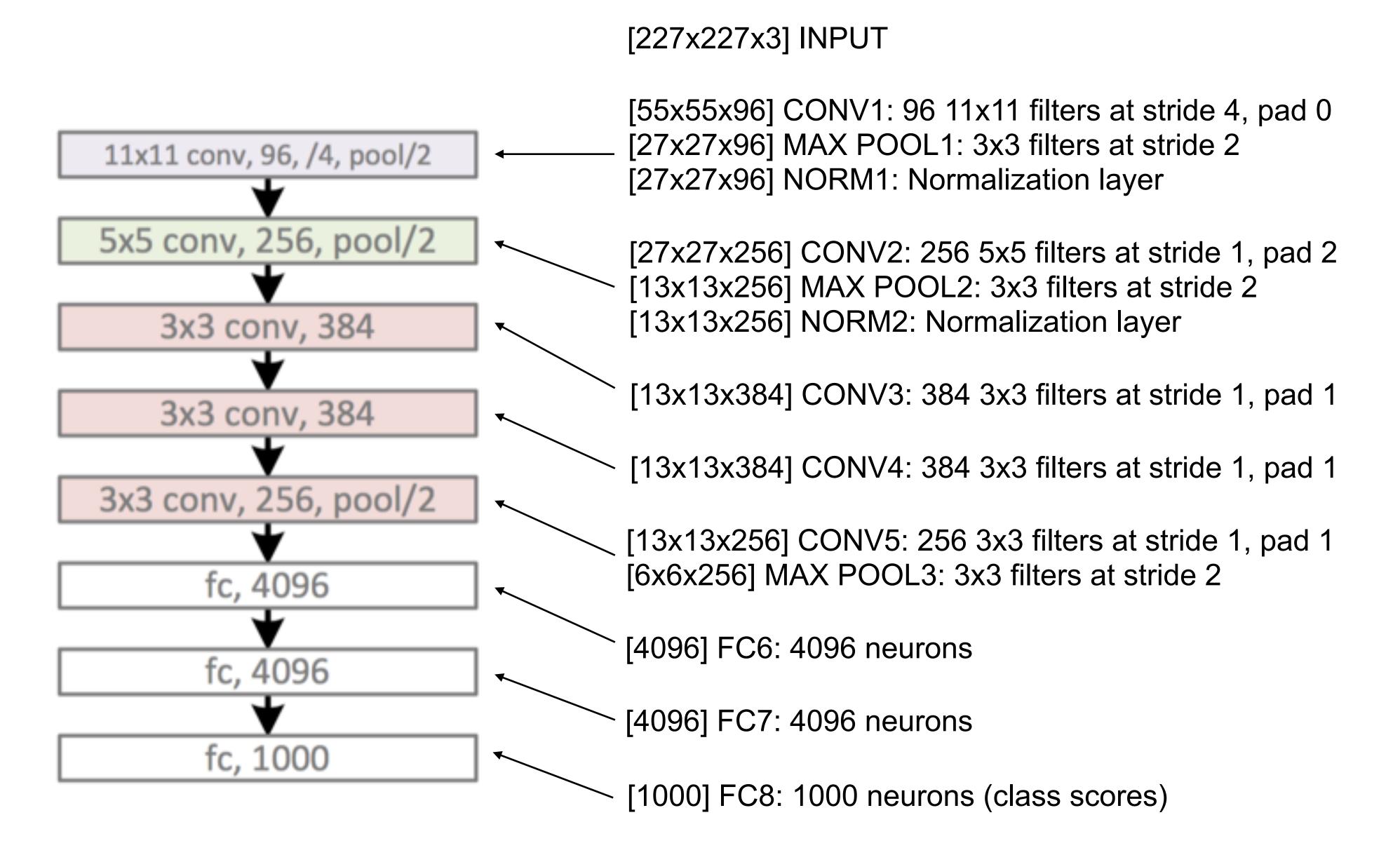
2012: AlexNet 5 conv. layers

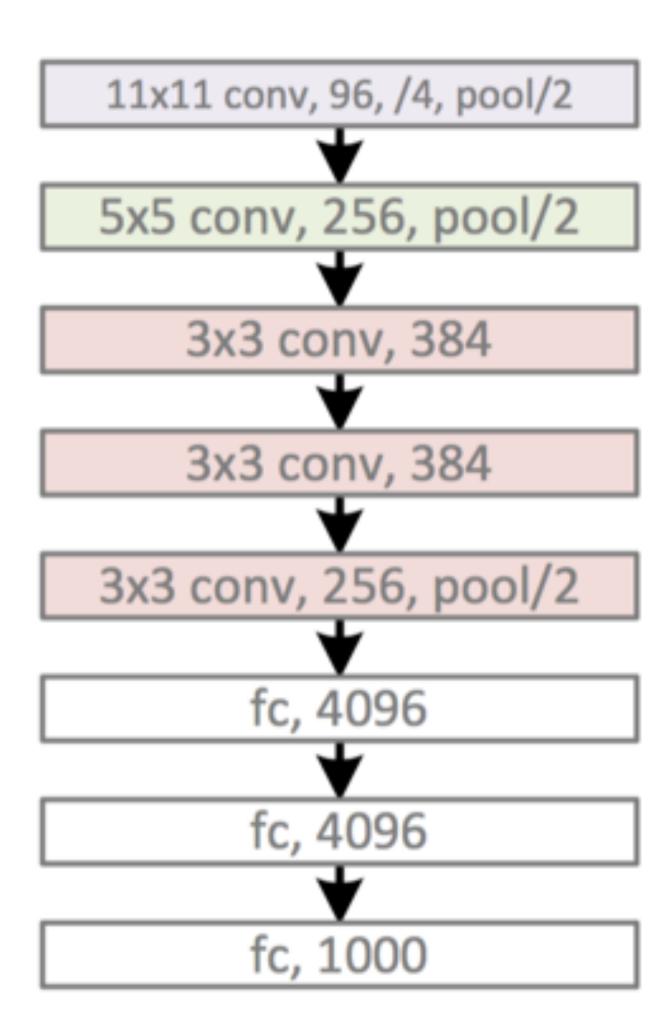


Error: 16.4%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]

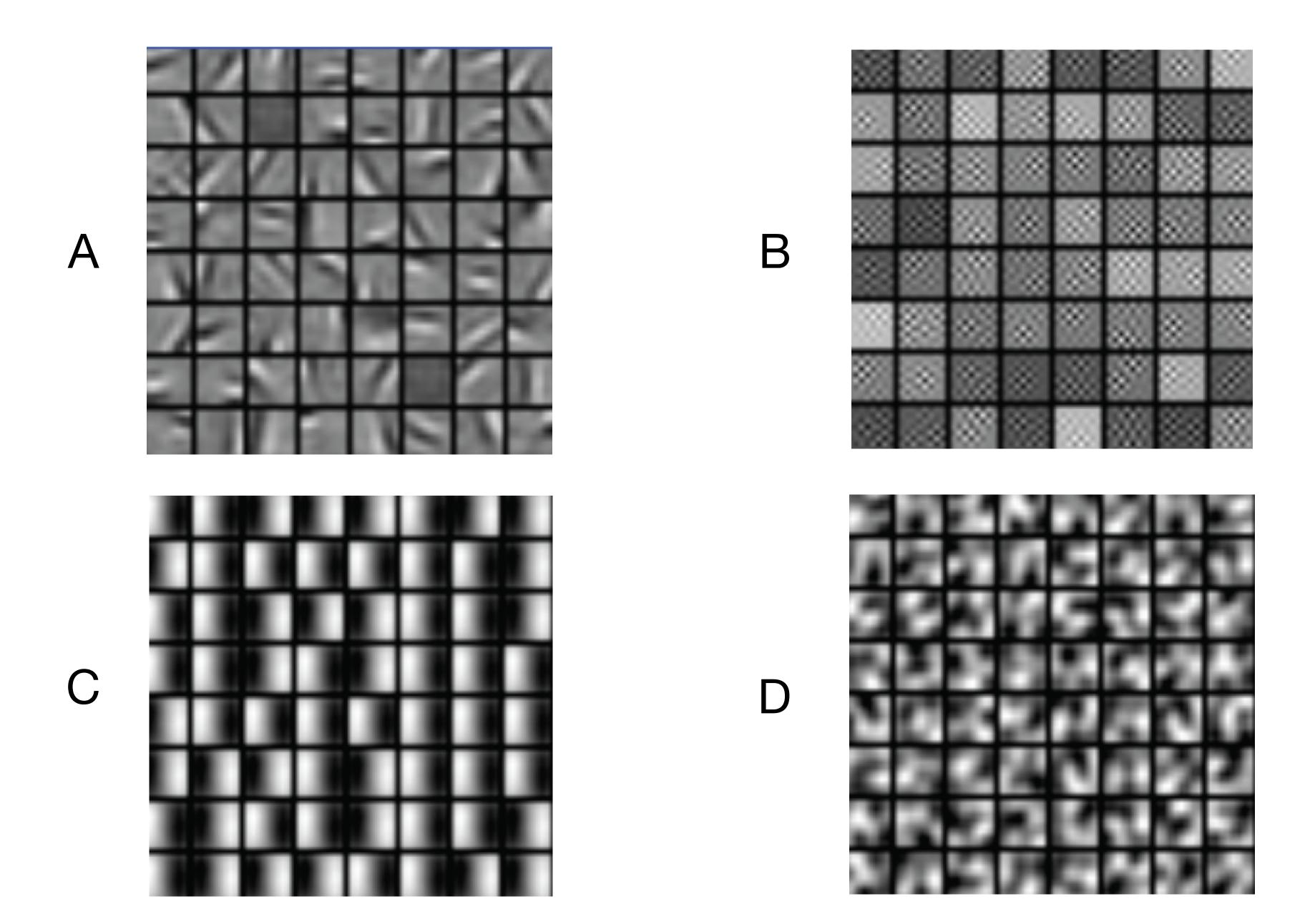
## Alexnet — [Krizhevsky et al. NIPS 2012]

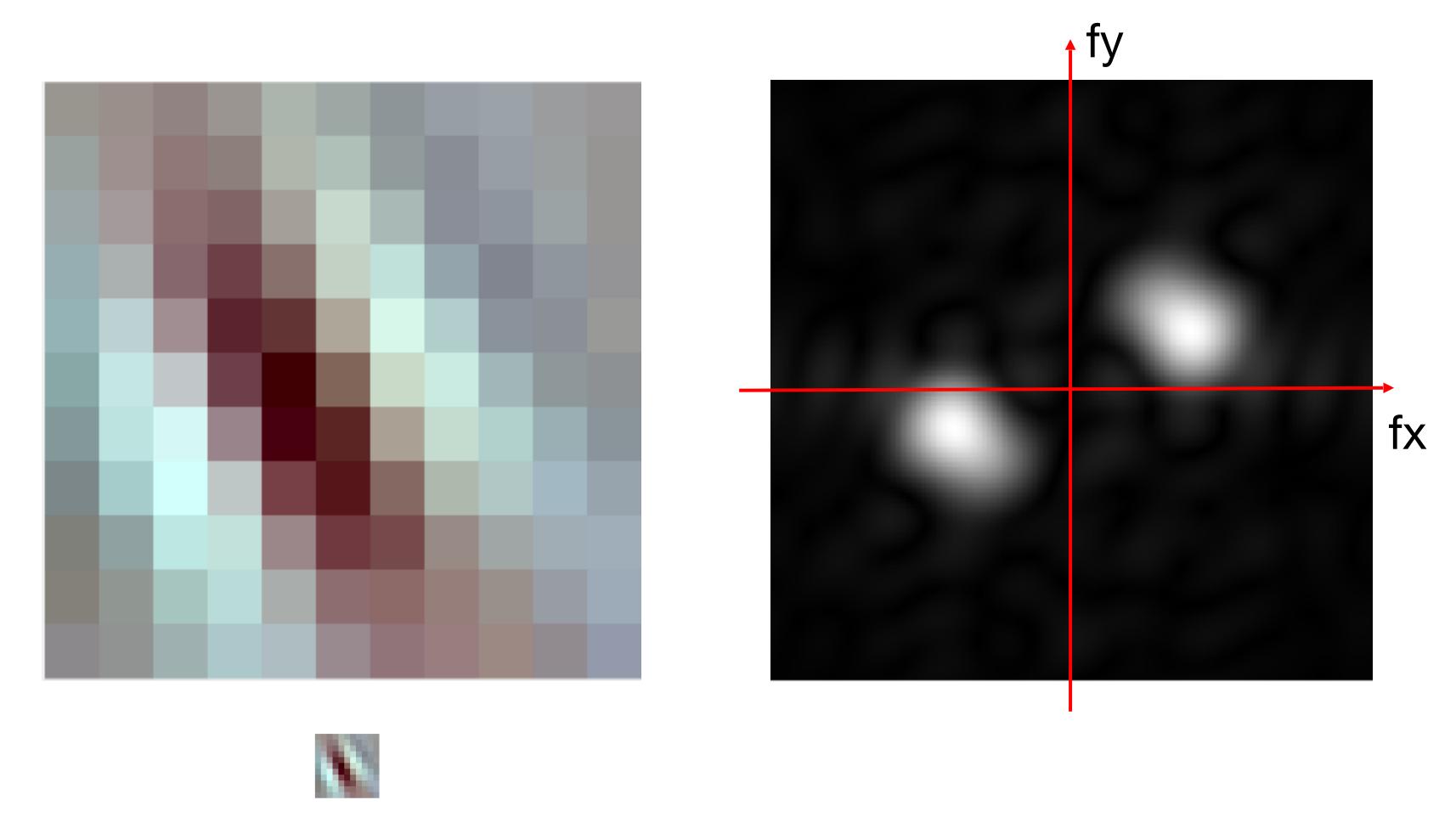




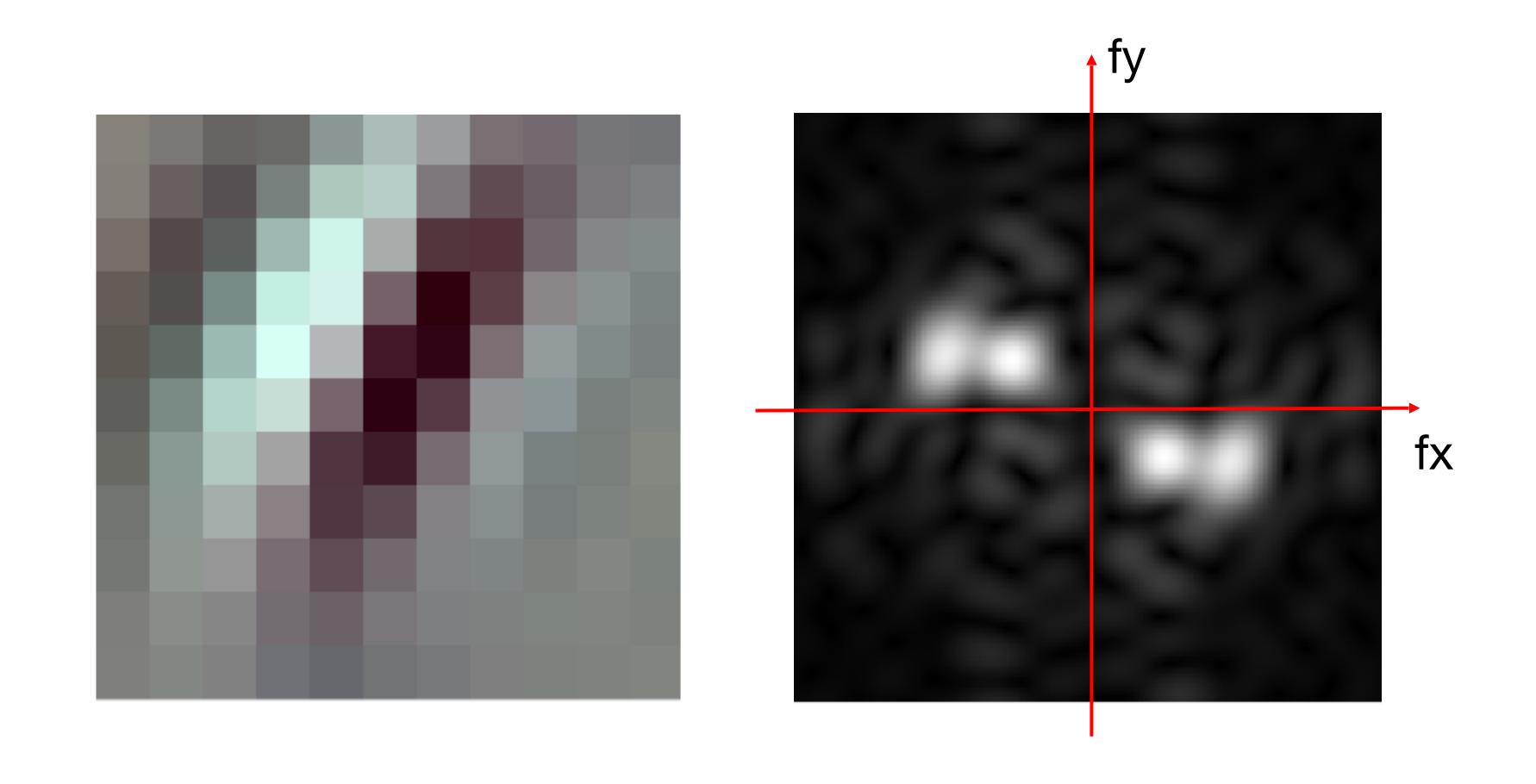
### What filters are learned?

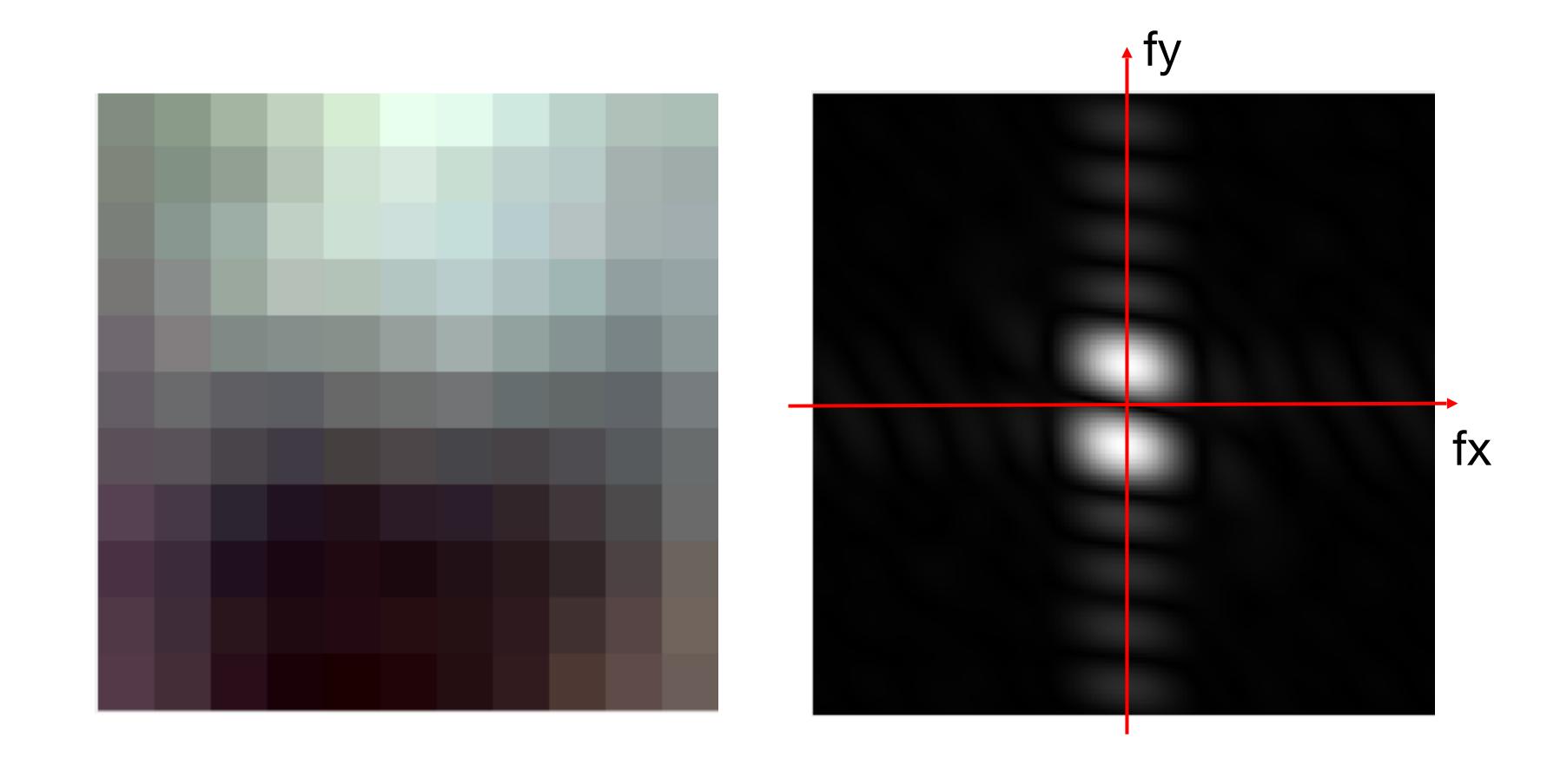
### What filters are learned?

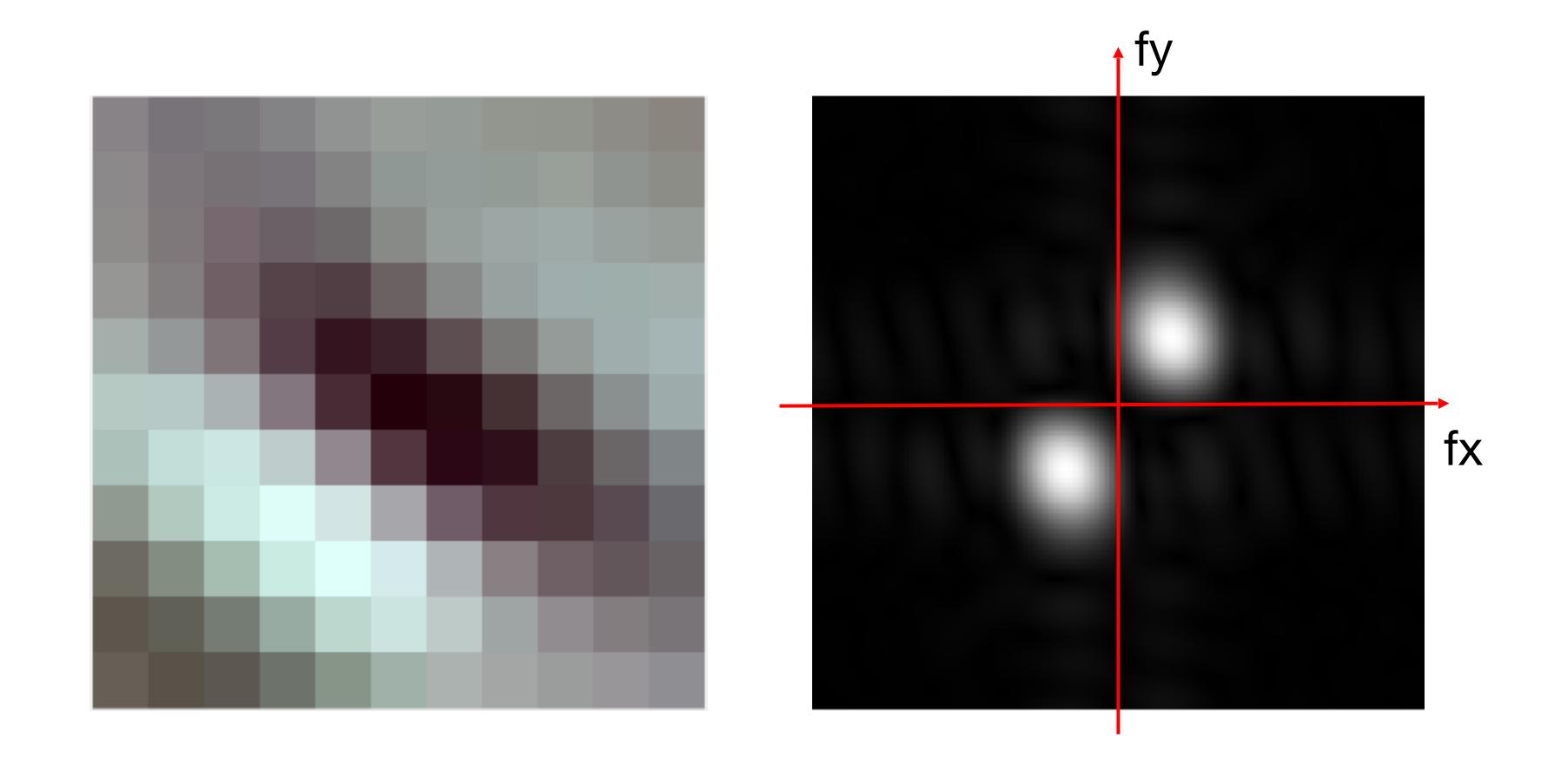


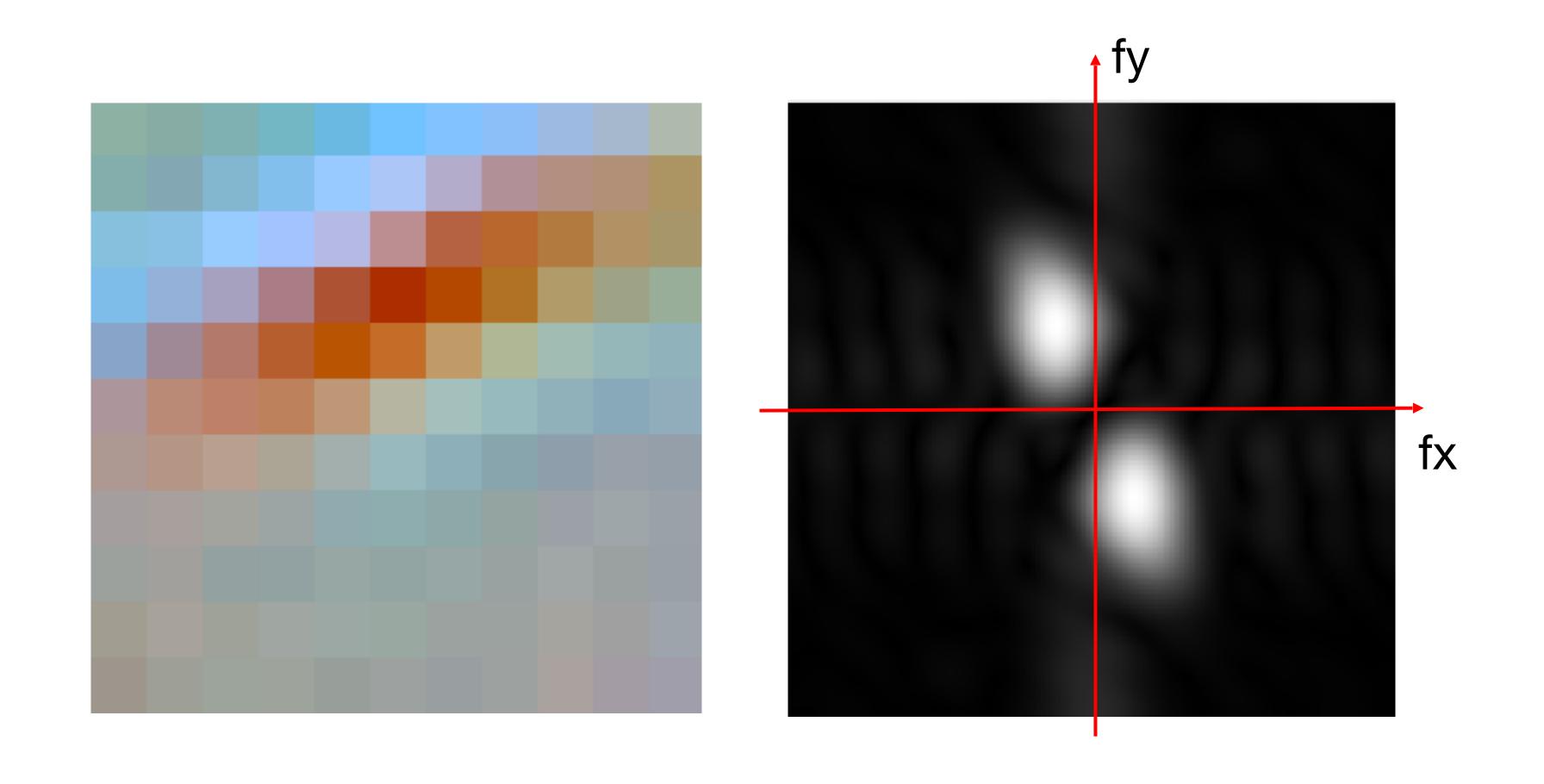


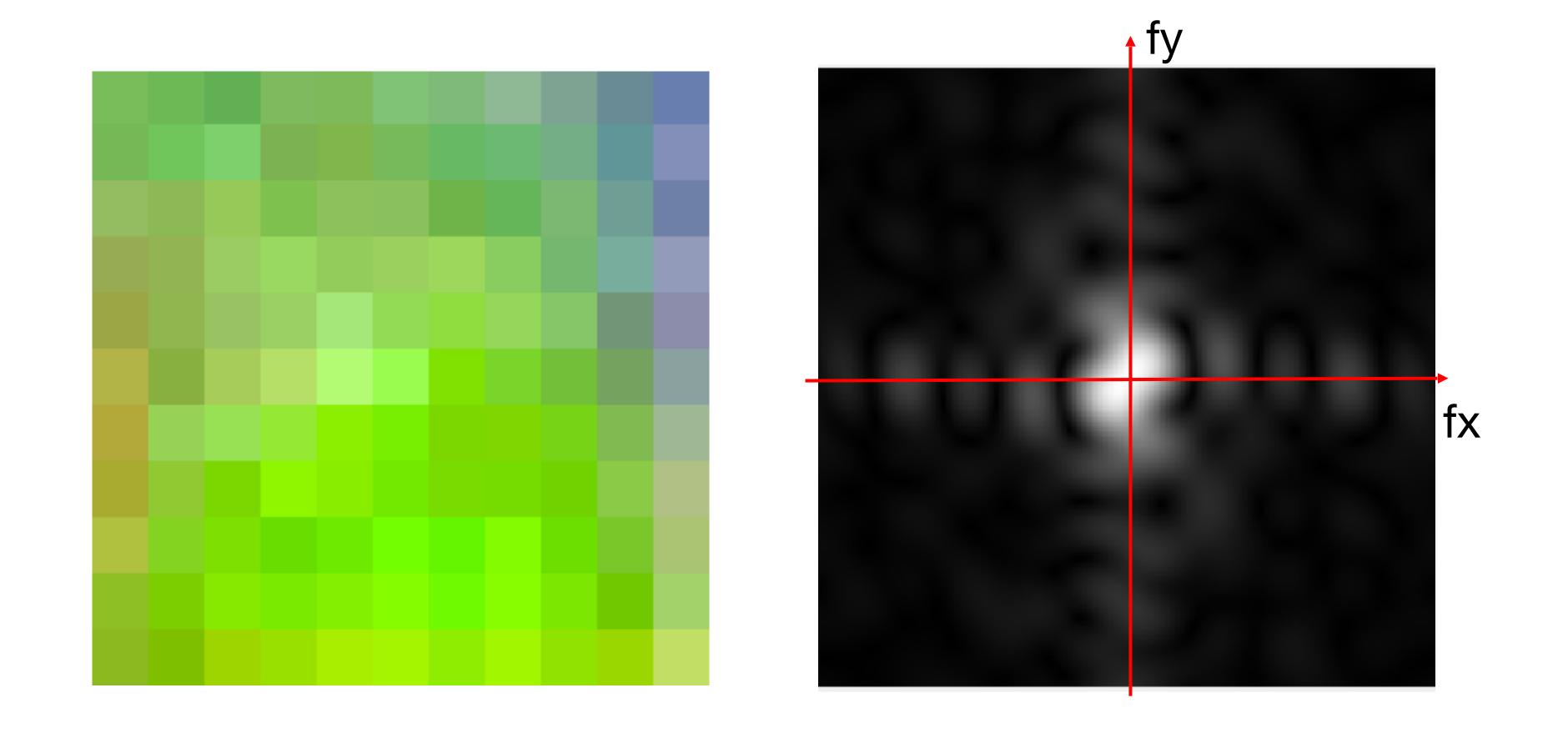
11x11 convolution kernel (3 color channels)



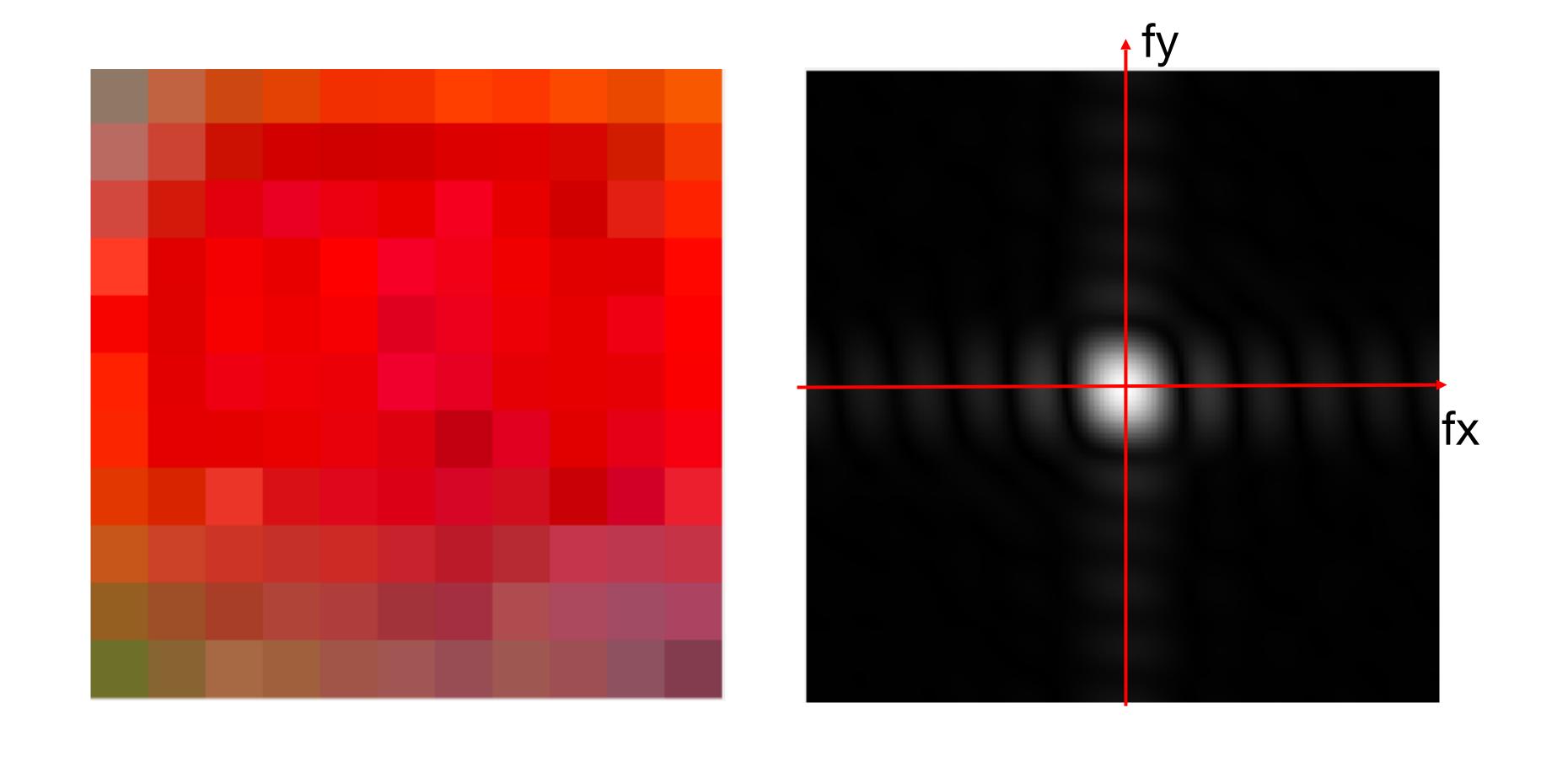




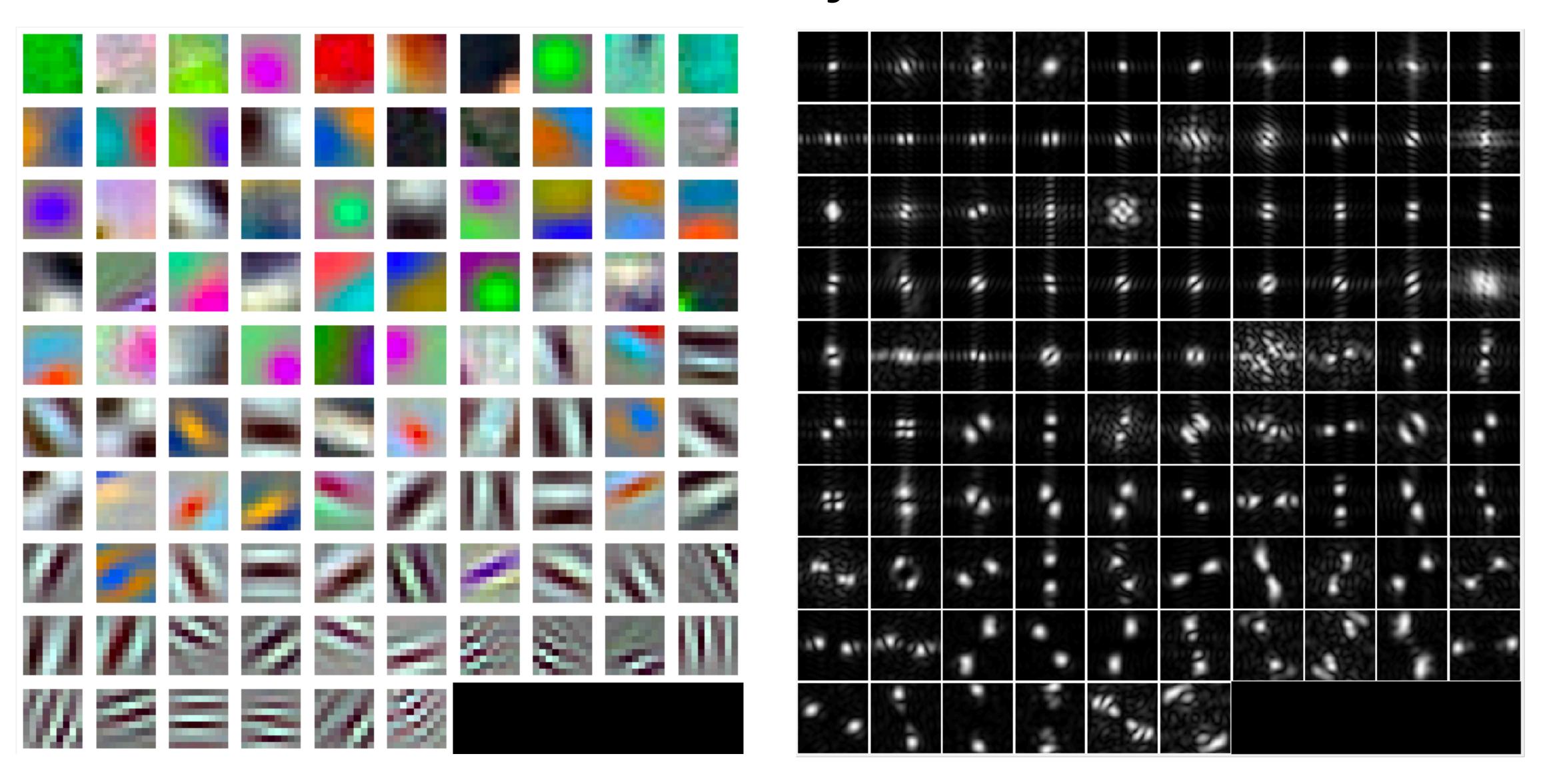




# Get to know your units

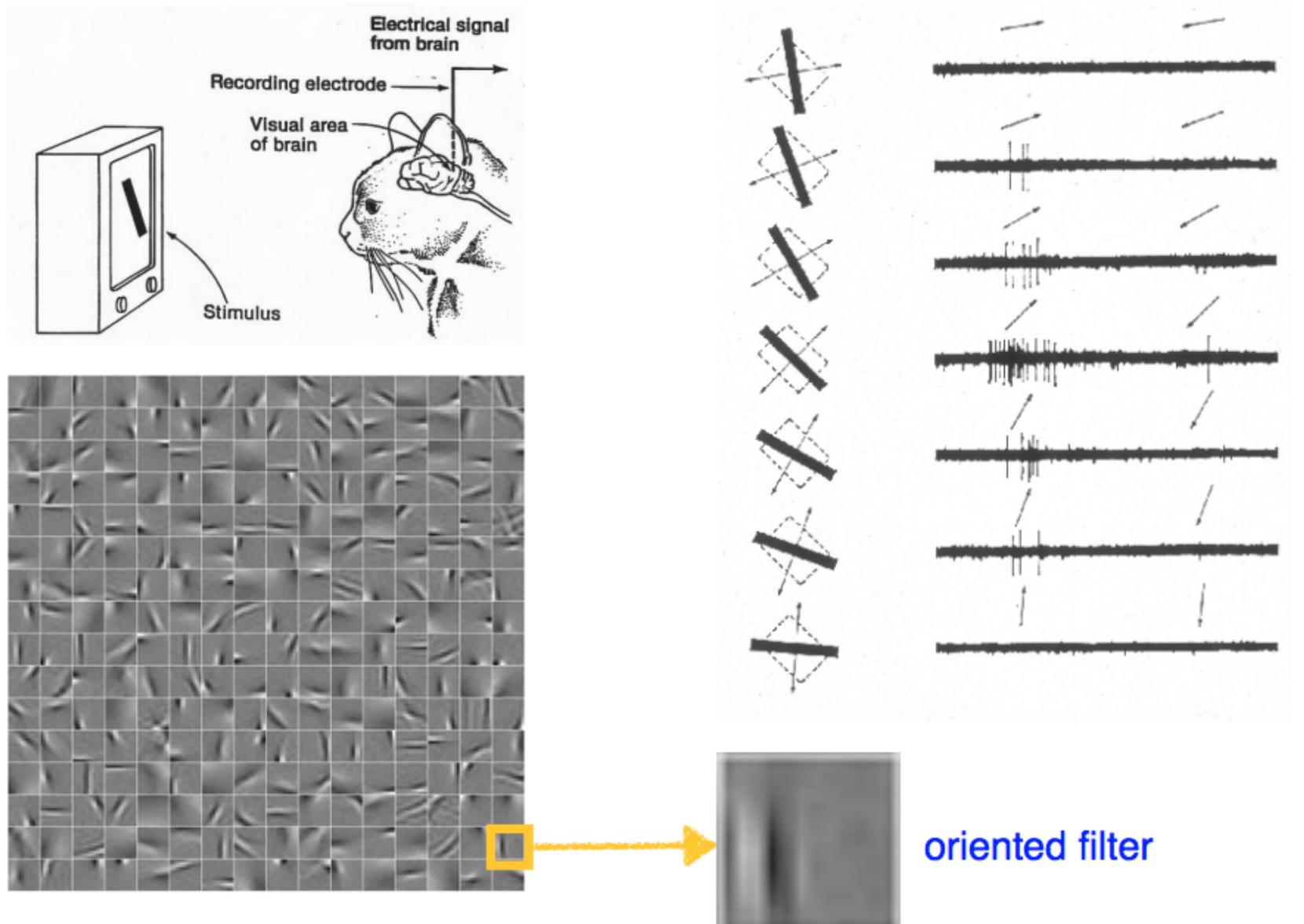


## Get to know your units



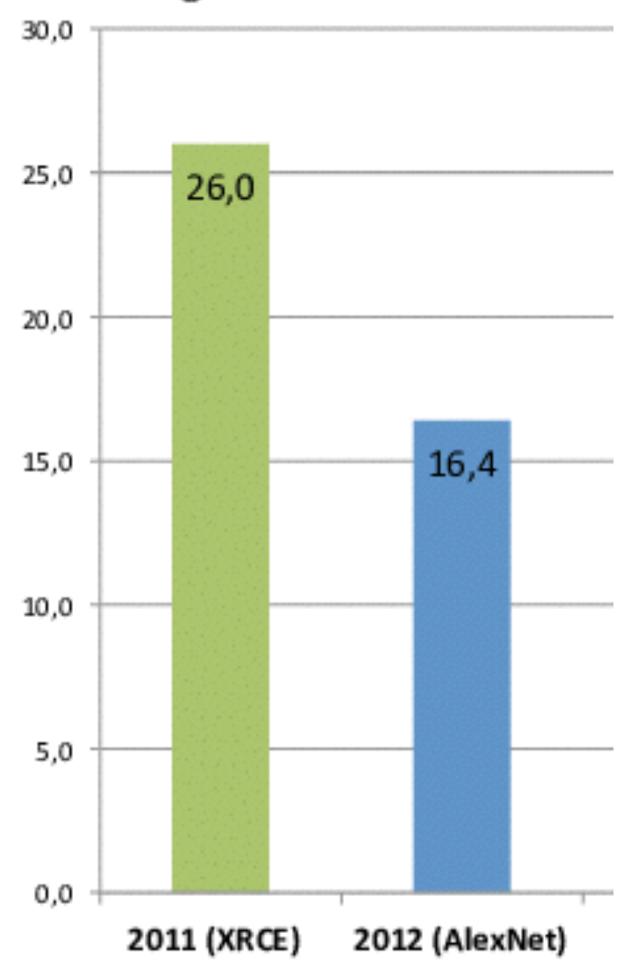
96 Units in conv1

#### [Hubel and Wiesel 59]

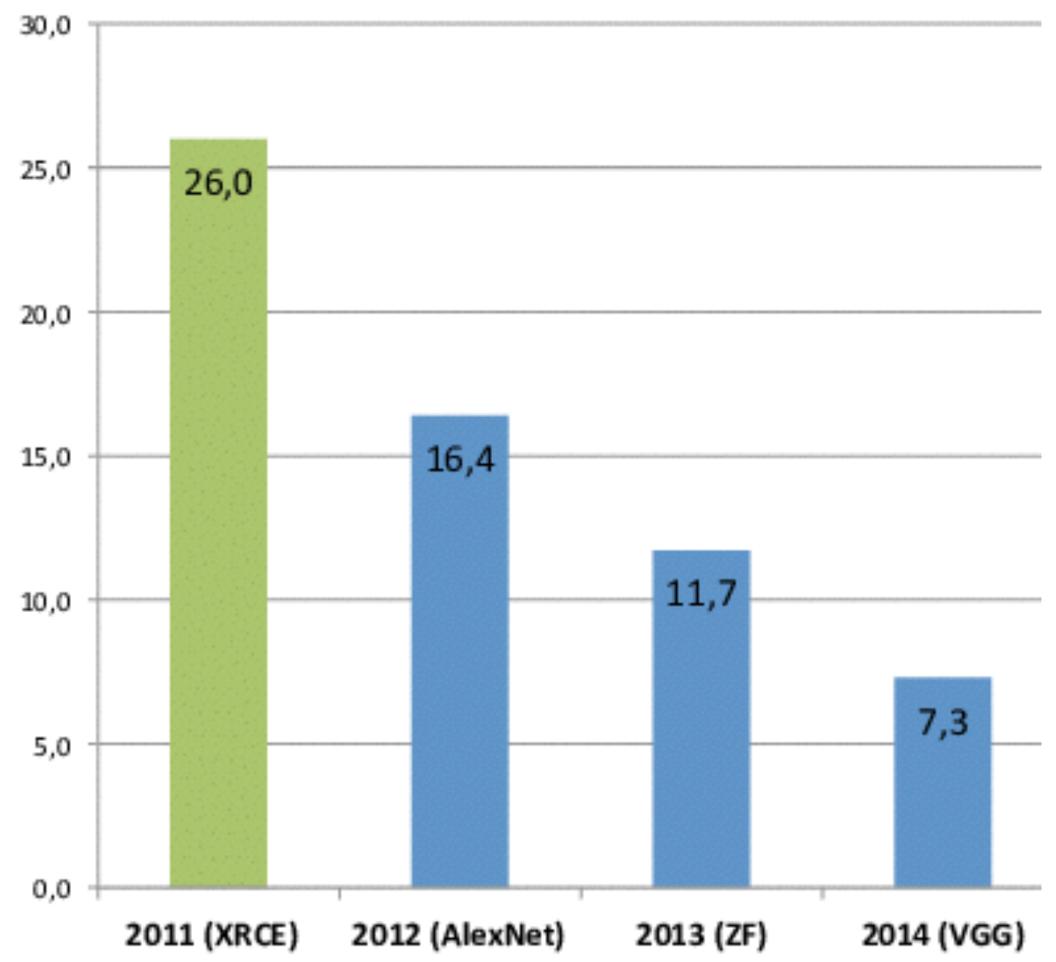


[Slide from Andrea Vedaldi]

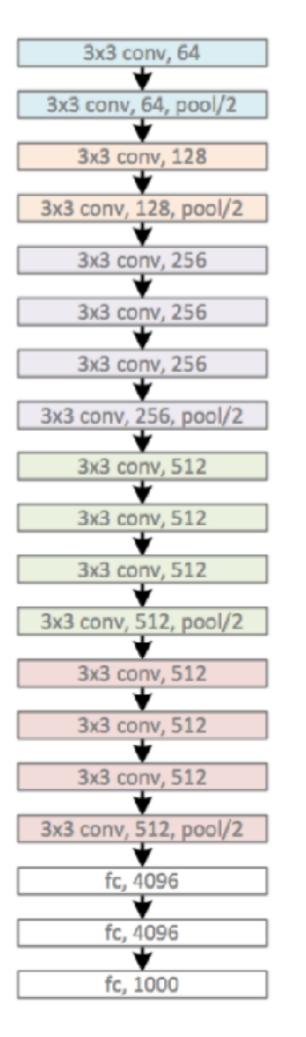
#### ImageNet Classification Error (Top 5)



ImageNet Classification Error (Top 5)



2014: VGG 16 conv. layers

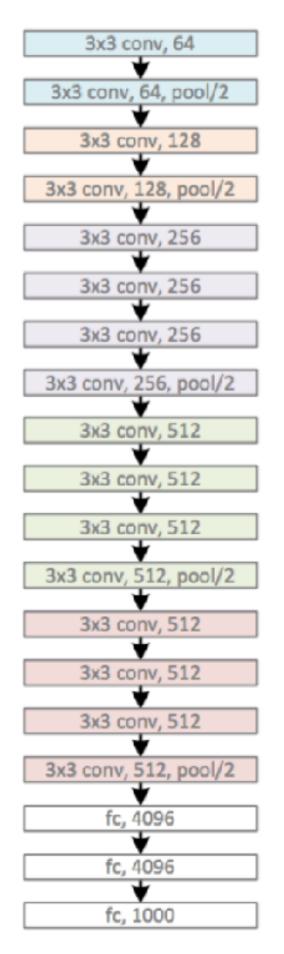


Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015]

## VGG-Net [Simonyan & Zisserman, 2015]

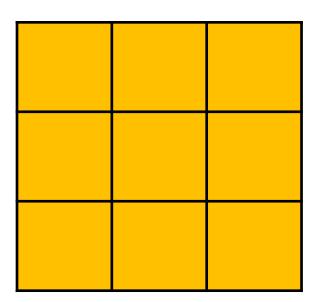
2014: VGG 16 conv. layers



Error: 7.3%

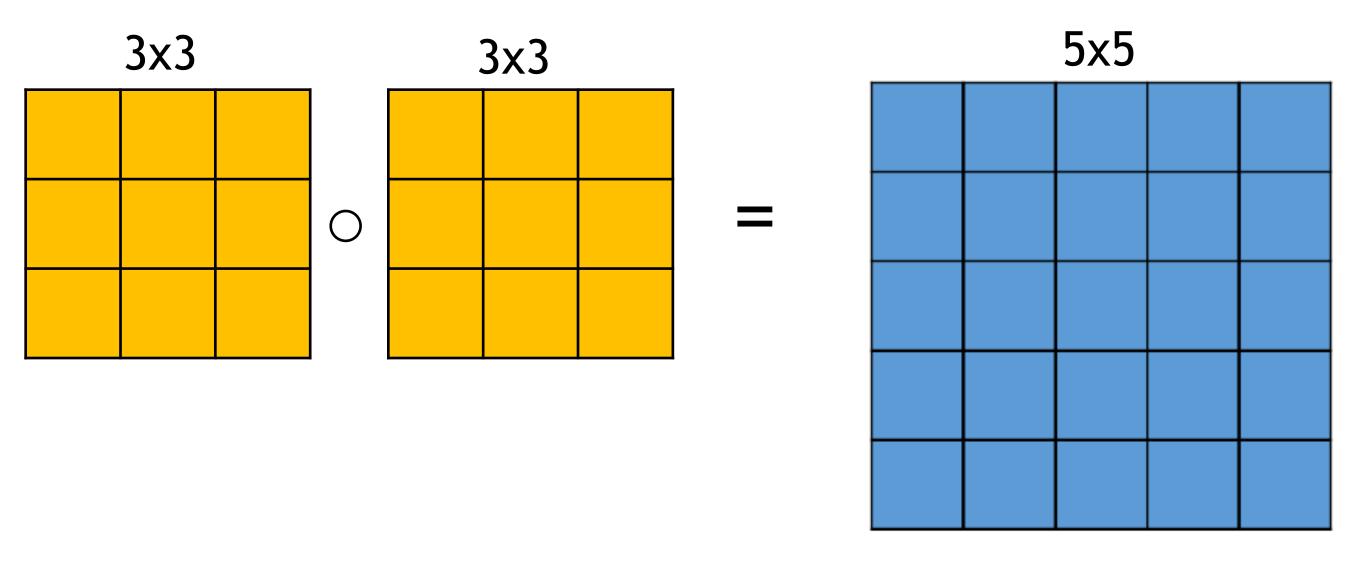
### Main developments

Small convolutional kernels: only 3x3

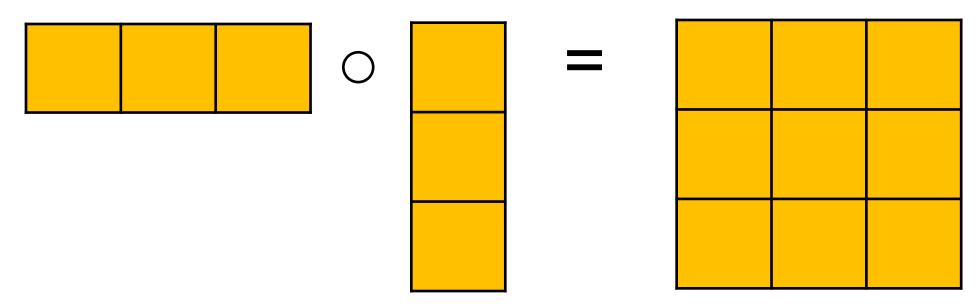


Increased depth (5 -> 16/19 layers)

## Chaining convolutions

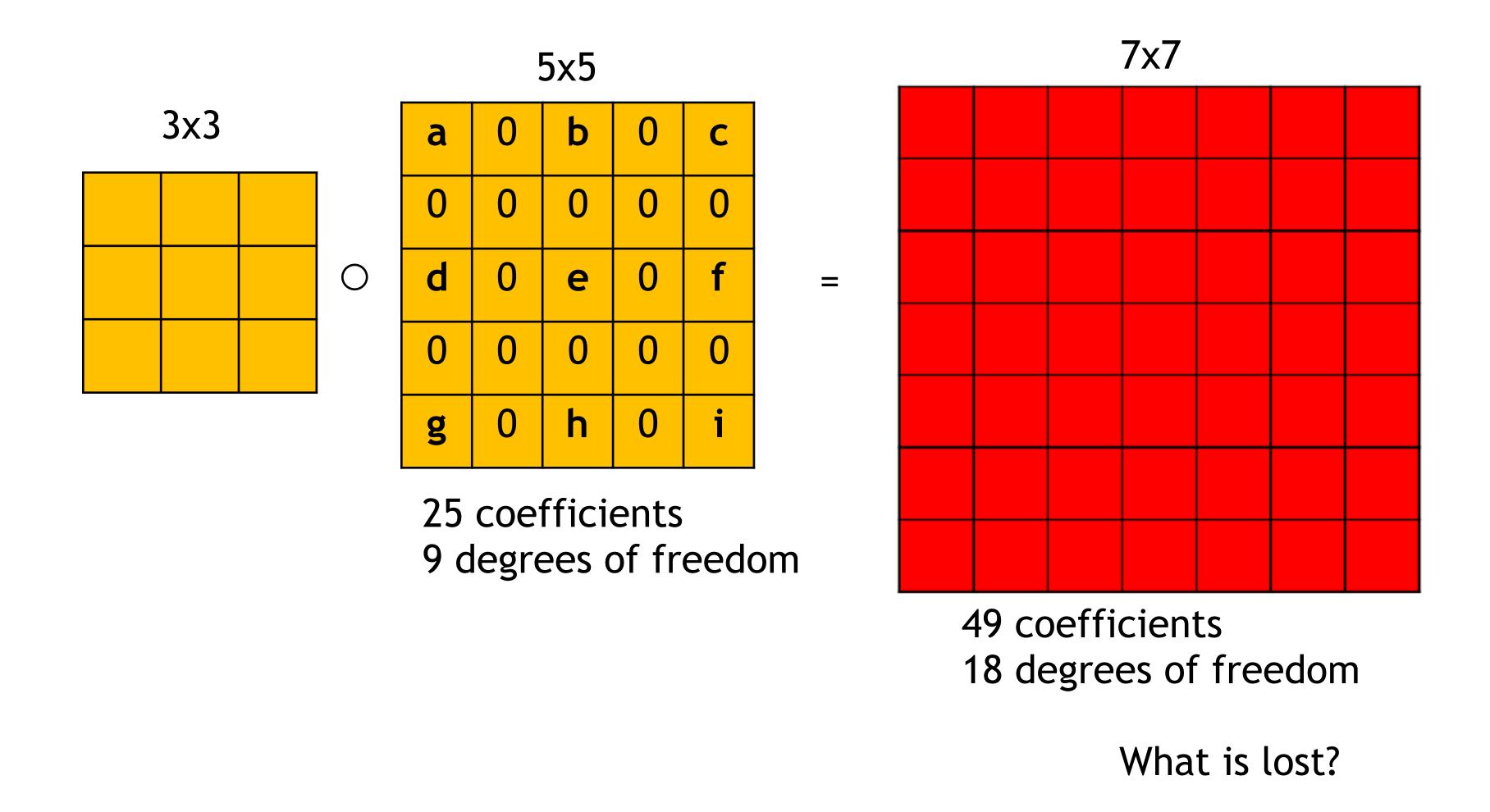


25 coefficients, but only18 degrees of freedom



9 coefficients, but only 6 degrees of freedom. Only separable filters... would this be enough?

#### Dilated convolutions



[https://arxiv.org/pdf/1511.07122.pdf]

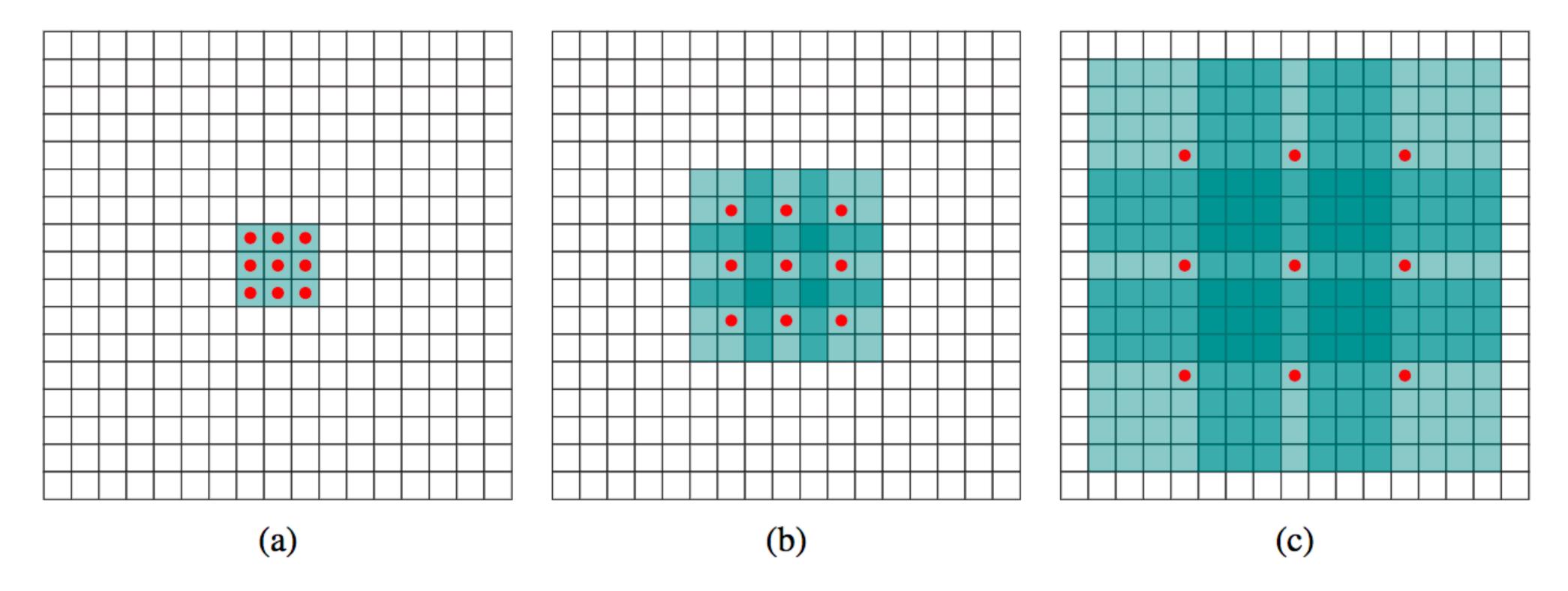
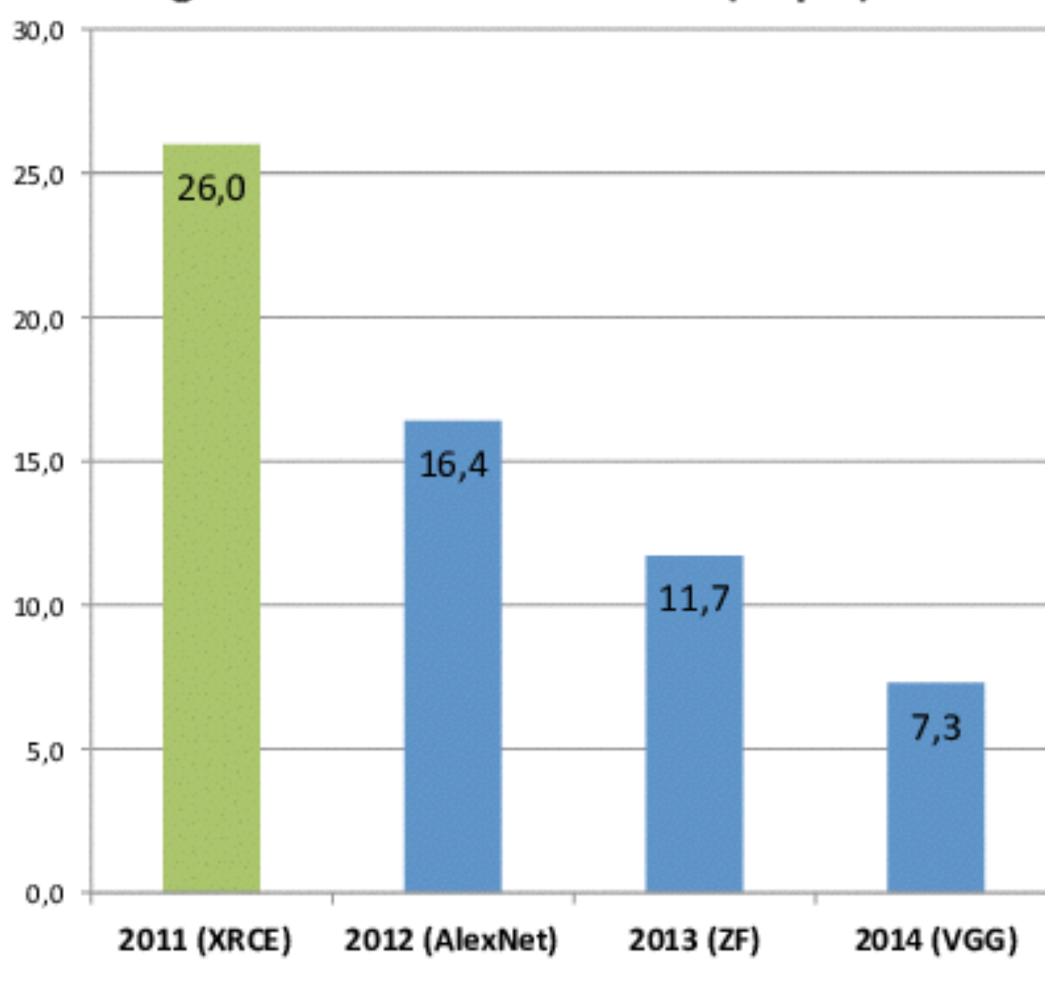
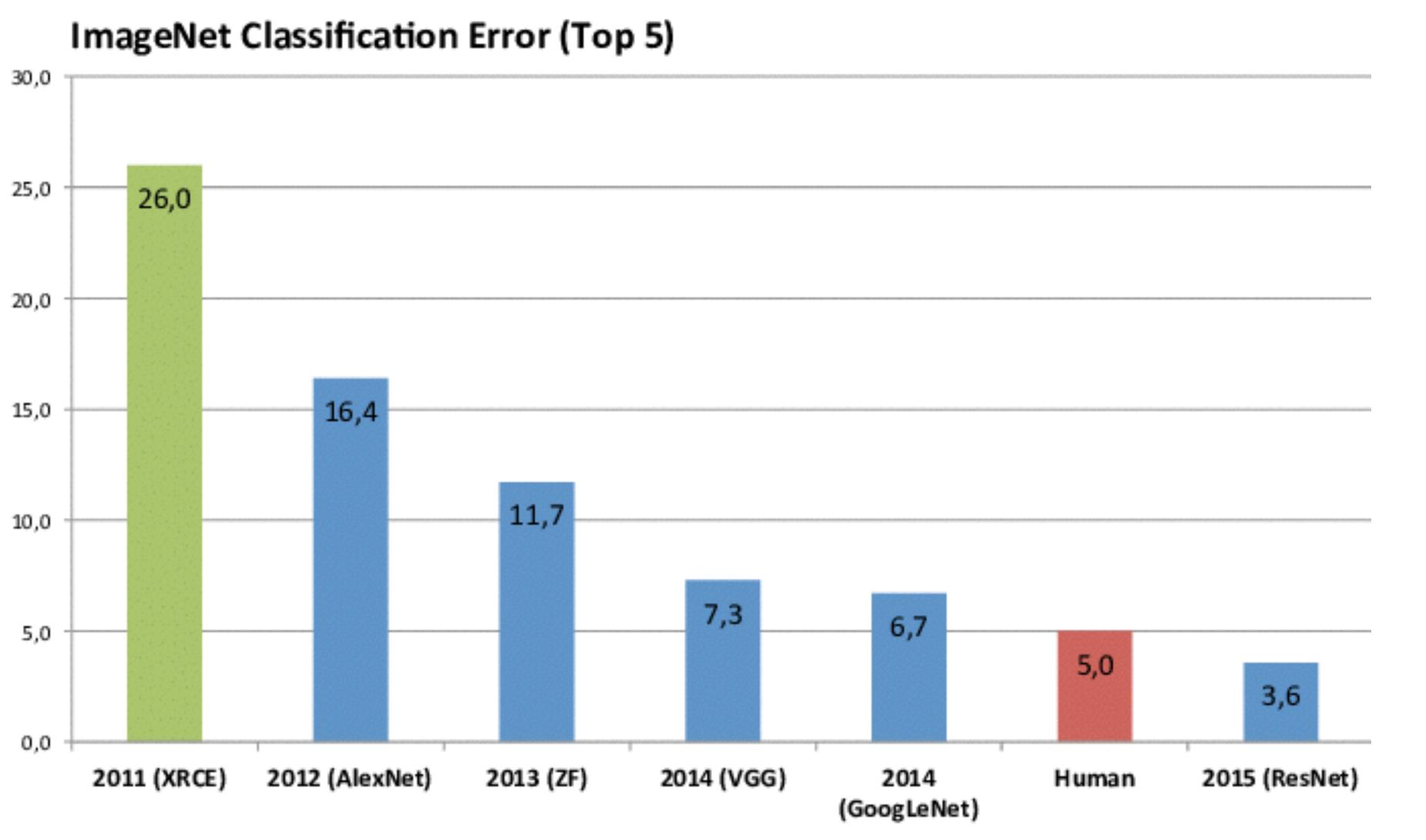


Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a)  $F_1$  is produced from  $F_0$  by a 1-dilated convolution; each element in  $F_1$  has a receptive field of  $3 \times 3$ . (b)  $F_2$  is produced from  $F_1$  by a 2-dilated convolution; each element in  $F_2$  has a receptive field of  $7 \times 7$ . (c)  $F_3$  is produced from  $F_2$  by a 4-dilated convolution; each element in  $F_2$  has a receptive field of  $15 \times 15$ . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

#### ImageNet Classification Error (Top 5)





2016: ResNet >100 conv. layers

**Error: 3.6**%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]

2016: ResNet > 100 conv. layers

## ResNet [He et al, 2016]



7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

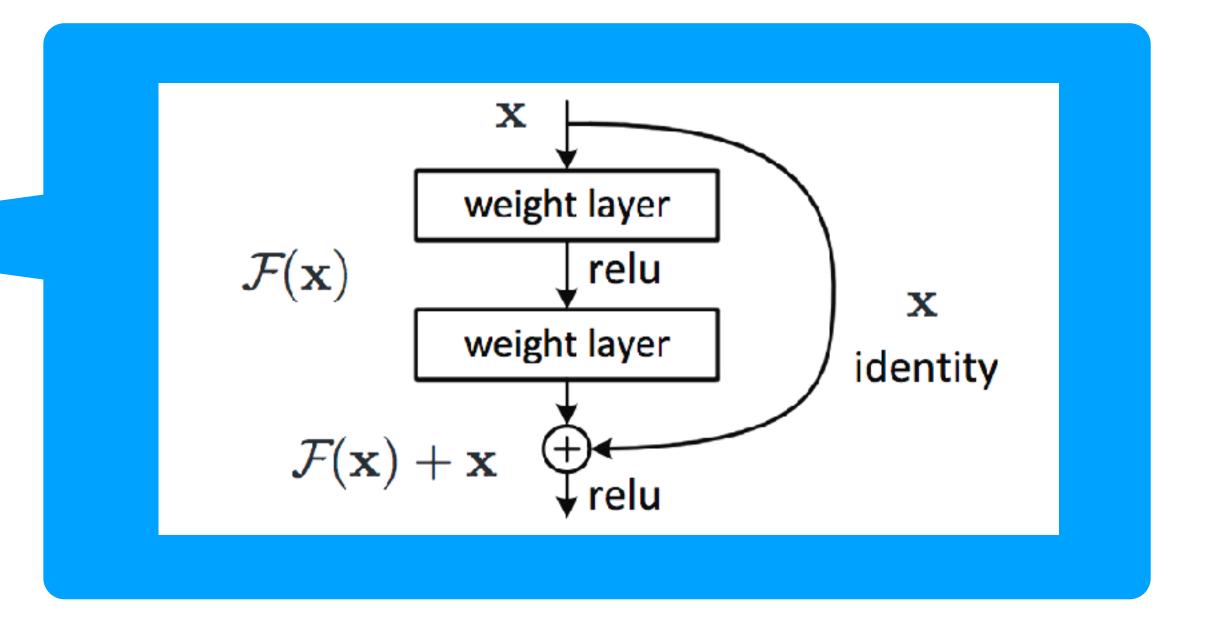
3x3 conv, 512 3x3 conv, 512

avg pool

fc 1000

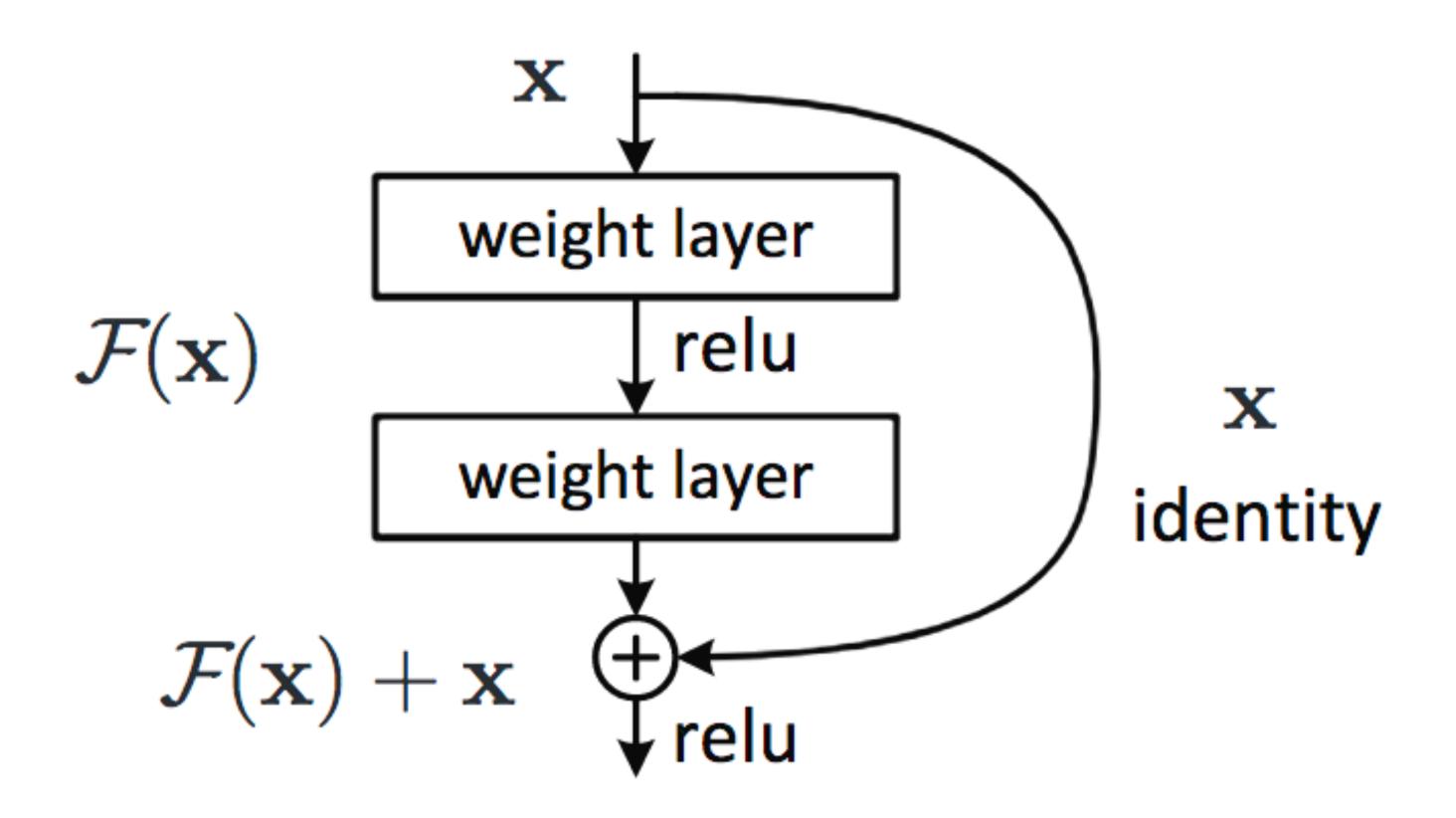
## Main developments

 Increased depth possible through residual blocks

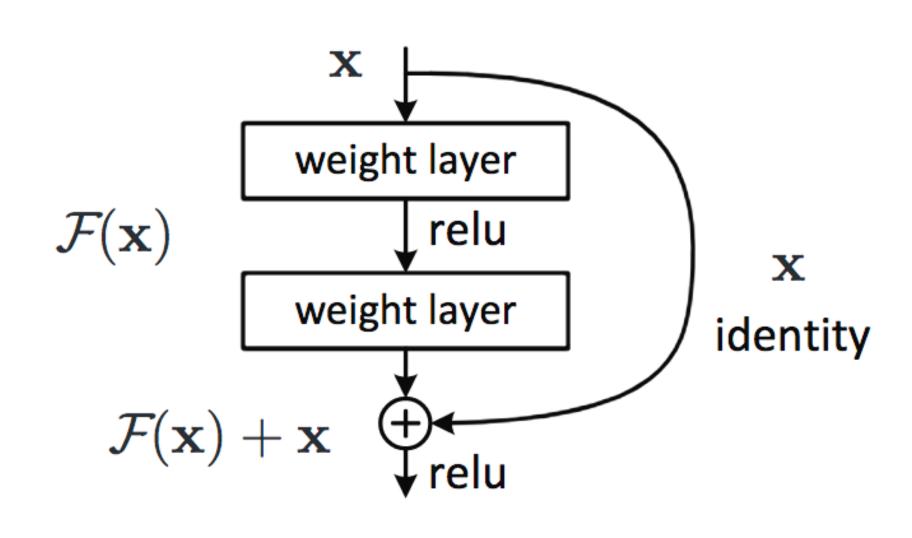


Error: 3.6%

## Residual Blocks



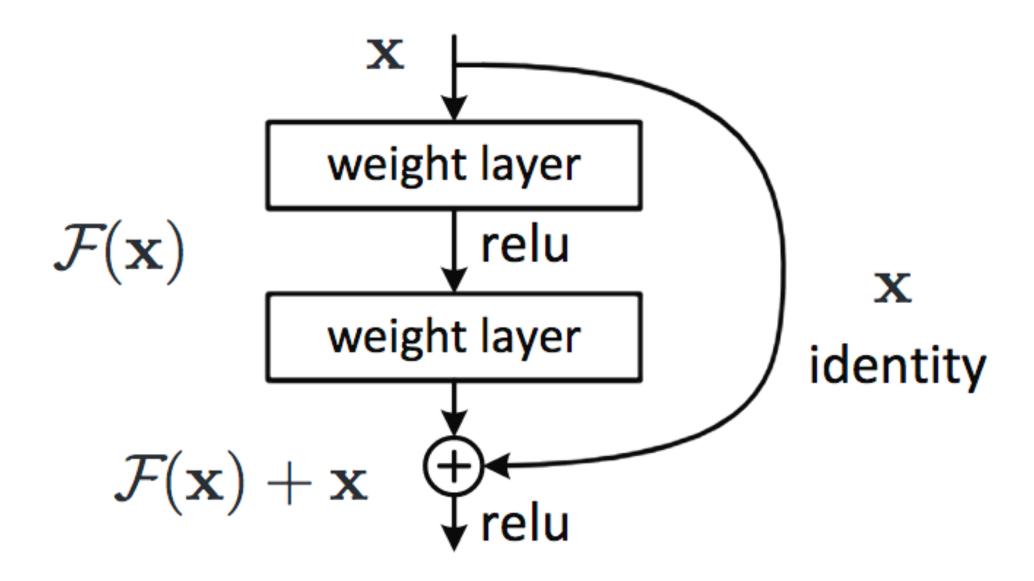
## Residual Blocks



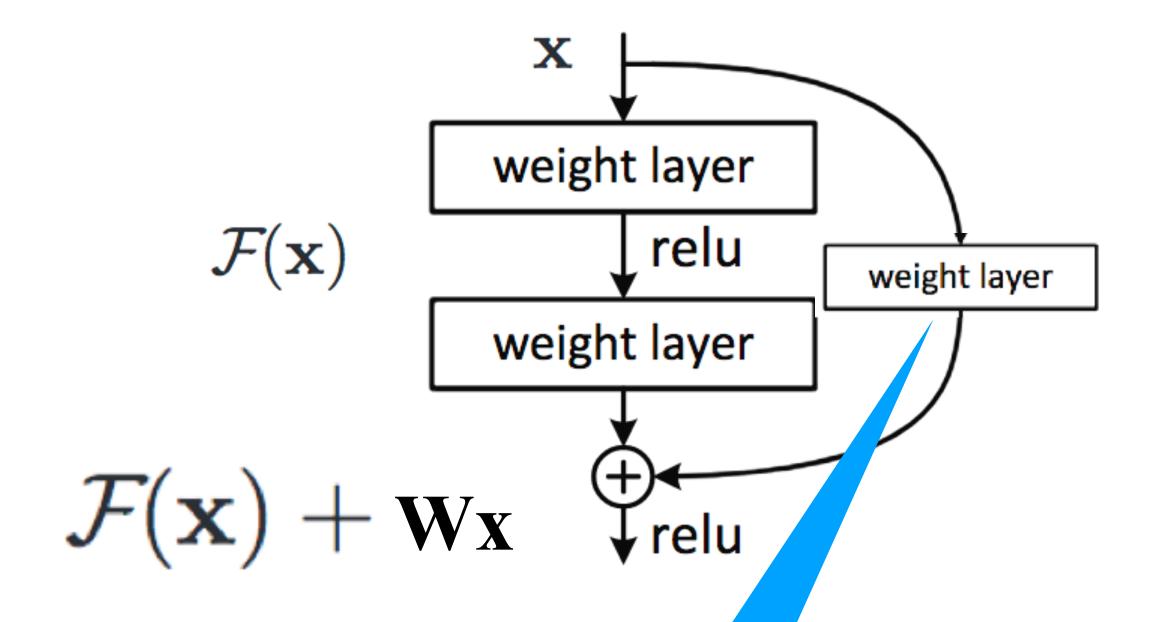
### Why do they work?

- Gradients can propagate faster (via the identity mapping)
- Within each block, only small residuals have to be learned

If output has same size as input:



If output has a different size:

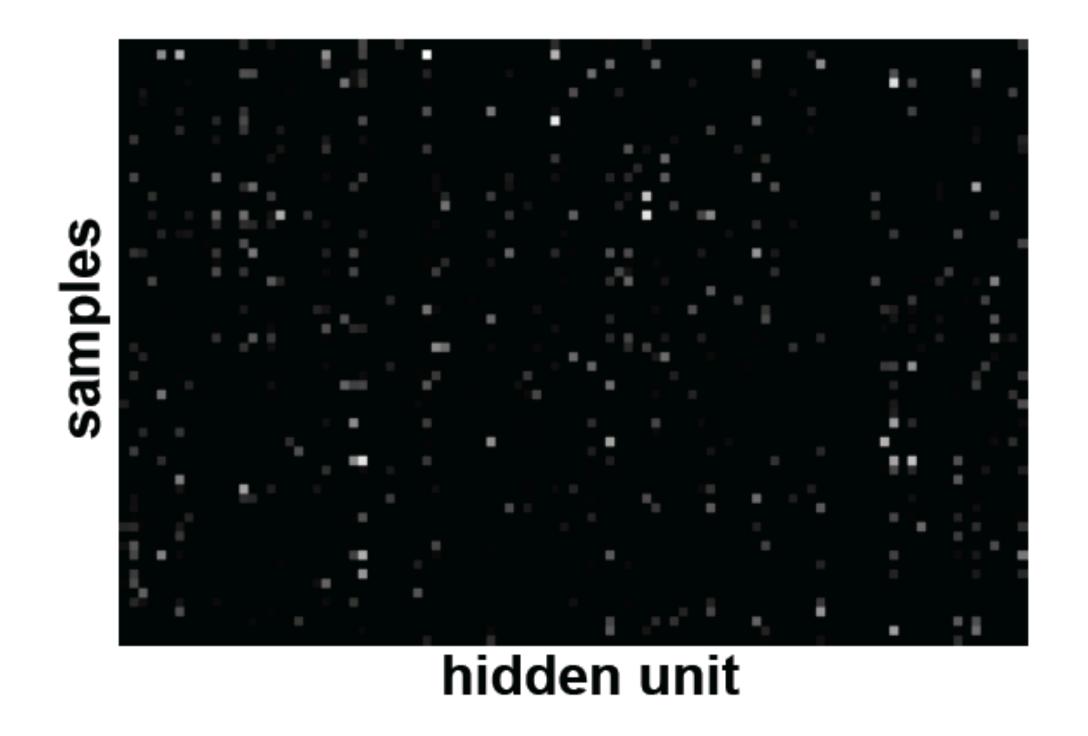


Projects into the right dimensionality: dim(F(x)) = dim(Wx)

# Some debugging advice

## Other good things to know

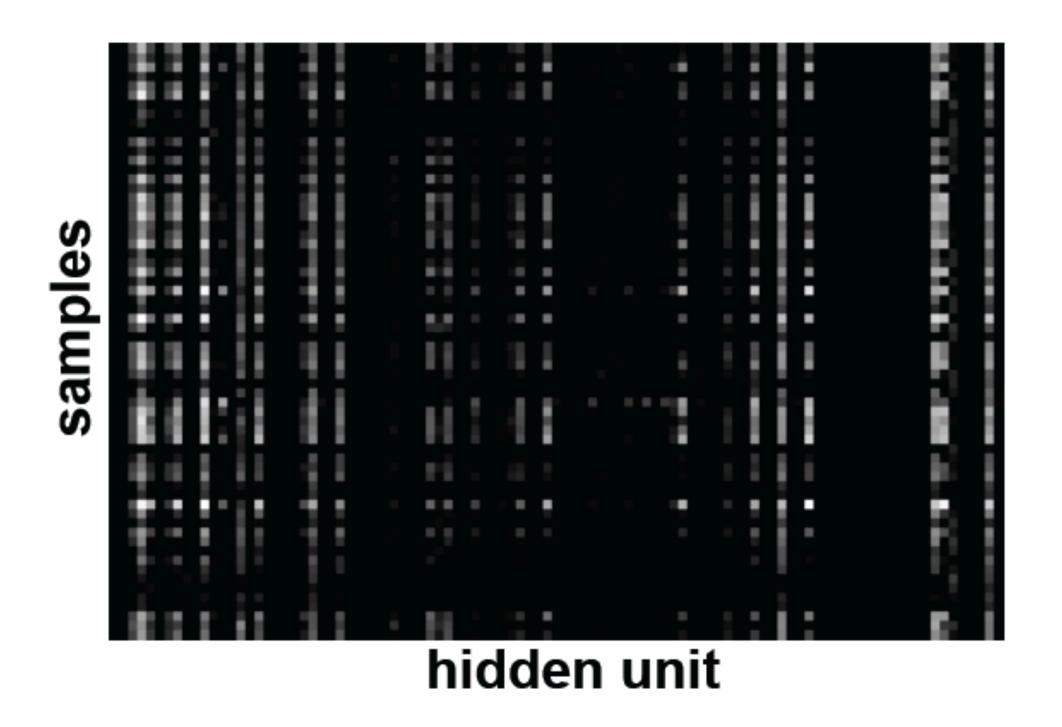
- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance



Good training: hidden units are sparse across samples and across features.

## Other good things to know

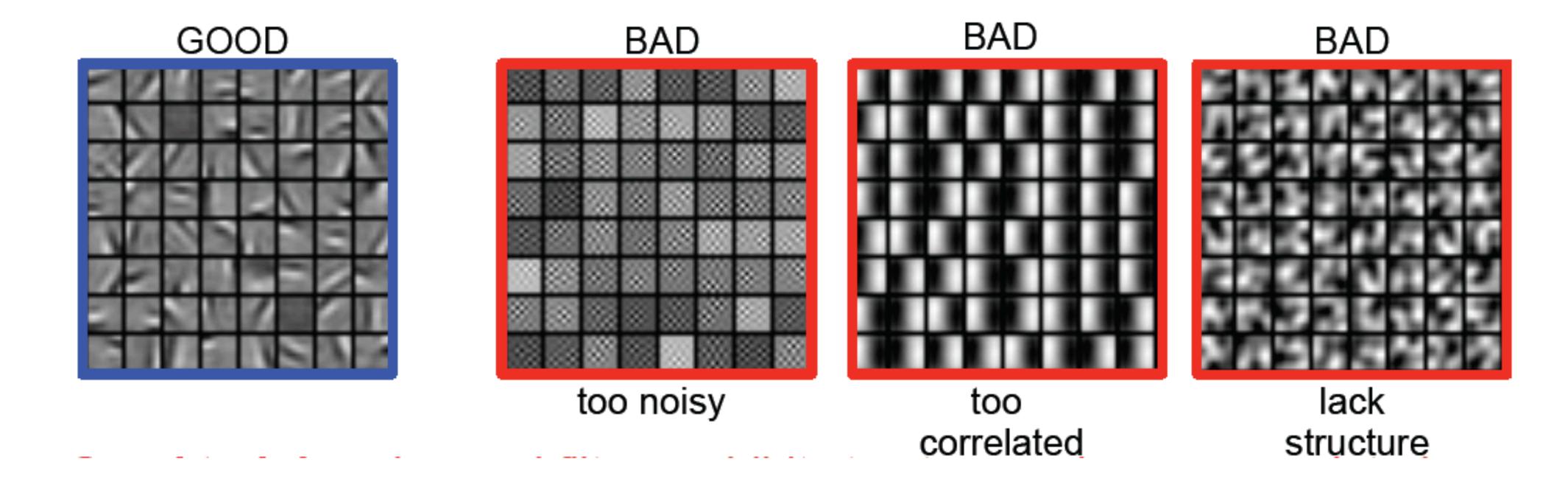
- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance



Bad training: many hidden units ignore the input and/or exhibit strong correlations.

## Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance
- Visualize filters



Good training: learned filters exhibit structure and are uncorrelated.

## Next week:

# Practical advice on training and debugging networks