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Processing
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http://www.deeplearningbook.org/

By lan Goodfellow, Yoshua Bengio and Aaron Courville

- A '/;‘ . ”‘,.," 5‘.“ ¥ 1
- /lan Goodfelloy ‘?ls
l

Garan PR November 2016

o

.

- ‘. , o
” L . -
b . -
. - B
- ’-’_ NV .
' P -
.

2 ’
--*"1""-;‘%' .l
s . :7 k)’
N 2 h
y! ") ;‘.‘

s

Today: parts of chapter 9

Review lectures 5 through 8 for background on signal
processing, convolution, and multiscale image

processing — this is the technology that underlies
convnets!




loday

How to use networks for images

Why “C”-NNs

Standard building blocks of CNNs
Some important networks & their tricks

Some debugging tools



Image classification
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Image X label y
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Problem:

What happens to objects that are bigger?

What if an object crosses multiple cells?



“Cell”-based approach is limited.

What can we do instead?






What'’s the object class of the center pixel?

) =
) E=
) B
) B




B | What's the object class of the center pixel?

) [l

Training data

X Y

5 4k )

0
TN “Bird”

2

o N ) B

)




(Colors represent one-hot codes)

This problem is called semantic segmentation



What'’s the object class of the center pixel?

) E=
) E=
) B
) B

Translation invariance: process
each patch in the same way.

An equivariant mapping:
f(translate(x)) = translate(f(z))



W computes a weighted sum of all pixels in the patch

(}
O—|w —0
O

W is a convolutional kernel applied to the full image!




Convolution




Fully-connected network

Fully-connected (fc) layer




Locally connected network

00000000

N
Q

56855068

N

Often, we assume output is a
local function of input.

If we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.



Convolutional neural network

0000000

Conv layer
W sO—O:: Often, we assume output is a
e—O local function of input.
@O
O—0O
Q—O:: If we use the same weights
O—0O (weight sharing) to compute

y 9(y) each local function, we get a
convolutional neural network.



Weight sharing

Conv layer
& xaz [ BO—O:: Often, we assume output Is a
O—"1— —0O—0 local function of input.
O—% =(0—0
— =00
& ‘VI:; — sO—O:: If we use the same weights
O O—0O (weight sharing) to compute

y 9(y) each local function, we get a
convolutional neural network.



Toeplitz matrix

<~ QY &
> Q = & &
- Q O &
S OO &, D

Q ~ 2 O O

L (+1) (1)

e.d., pixel image

e Constrained linear layer
* Fewer parameters —> easier to learn, less overfitting



Conv layers can be applied to arbitrarily-sized inputs



(D



(I+1)




Five views on convolutional layers

. Equivariant with translation (stationarity) f(translate(z)) = translate(f(z))

. Patch processing (Markov assumption) /, VOIf’
v
/ /

. Image filter

O

. Parameter sharing %
O=—w
O
O‘W

O

. A way to process variable-sized tensors




What if we have color?

(aka multiple input channels?)



Multiple channels

Conv layer
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Multiple channels

Conv layer

N\
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Multiple channels

Conv layer
T
-~ : 8 %NX C(l)
W a4 O O
@O
OO
(1+1)
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Multiple channels: Example

(1) < (41)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many parameters does each filter have?
(a) 9 (b) 27 (c)96 (d) 864



Multiple channels: Example

(1) < (41)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many filters are in the bank?
(a) 3 (b) 27 (c)96 (d) can’t say



Filter sizes

When mapping from

x(D € REXWXCY _ ¢(+1) o pHXxWxC!D

using an filter of spatial extent M X N

Number of parameters per filter: M X N X CV

Number of filters: CU+1D)



2-dimensional

|npUt features A bank of 2 filters Output features
)
J
)
'—‘O
Y,
y
HxWxCU+b

[Figure from Andrea Vedaldi]



Image classification

oELIN - ——

Image X label y



Image classification

Image X label y



Multiscale representations are great!

W W V - - .
128 -

.

512 256

Gaussian Pyr Laplacian Pyr

How can we use multi-scale modeling in Convnets?



Filter
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Pooling

Pool

Imax

5685506

N
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Max pooling
2z, = max g(y,)
JEN ()T



Filter

00000000

Pooling

Pool

5685506

N
Q
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Max pooling

<l — 1IllaX '
jeN(j)g(yJ)

Mean pooling

1
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Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

Imax




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response
regardless of exact
position of edge




Pooling — Why?

Pooling across spatial locations achieves
stability w.r.t. small translations:




CNNs are stable w.r.t. diffeomorphisms

[“Unreasonable effectiveness of Deep Features as a Perceptual Metric”, Zhang et al. 2018]



Pooling — Why?

Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:

large
response for
any edge,
regardless of
Its orientation

[Derived from slide by Andrea Vedaldi]



Computation in a neural net

N A X3
X AN O %
& od

\A 1 . J)
— “clown fish

f(x)=fo(... f2(f1(x)))



Filter

00000000

Downsampling

Pool and downsample

5685506

N
Q
N\
@
N—"

2 00000000



Filter

00000000

R HO x W 5o

Downsampling

Downsample

O O
O
O O
O—0O

O
O—0
O—0O O
O
y 9(y) z

%

H(l_l_l) X W(l+1> X C’(l_|_1)

R




Strided operations

Conv layer

o o0
W

O Stride 2 Strided operations combine a
@ @O given operation (convolution or
O pooling) and downsampling into
8 O—C a single operation.
O

y 9(y)



Computation in a neural net

- \ T ' .z
— — “clown fish

f(x) = fo(... f2(f1(x)))



Receptive fields




Receptive fields

Pool and . Pool and
O downsample by 2 3x1 Filter downsample by 2
O
O
O
O O O
O O O
(& O O O
o —@— — —@- _®
@ -4 O
@ O
O O

RF = RF*2 RF = RF +floor(3/2)2  RF = RF*2

K kernel size K

O
O

scale factor



Effective Receptive Field
Contributing input units to a convolutional filter. @jimmfleming // fomoro.com

Input Features

7 // 2 Convolution
Each filter sees 7 input units

Convolutional Features

2 // 2 Max Pool

Each filter sees 9 input units

Max Pool Features

3 // 1 Convolution
Each filter sees 17 input units

Features .
Conv1D Filter [

Padding or Stride

Convolutional Features Receptive Field I_

[http://fomoro.com/tools/receptive-fields/index.html]



Gradient / Backprop equations

... to be derived in the PSet (for Conv and Pool operations)



Local vs. global processing

Across all images, which is higher:

(1) correlation between points with
distance AA

(2) correlation between points with
distance AB

(3) can’t say



Local vs. global processing

Across all images, which is higher:

(1) correlation between points with
distance AA

(2) correlation between points with
distance AB

(3) can’t say



Local vs. global processing

0.95

0.9

Normalized correlation

0.85
0 100 200 300

A x (pixels)

[Simoncelli: Statistical Modelling of Photographic Images, 2005]



CNNs — Why?

Statistical dependences between pixels decay as a power law of distance
between the pixels.

It is therefore often sufficient to model local dependences only. —> Convolution

More generally, we should allocate parameters that model dependencies In

proportion to the strength of those dependences. —> Multiscale, hierarchical
representations

[For more discussion, see “Why does Deep and Cheap Learning Work So Well?”, Lin et al. 2017]



Some networks

... and what makes them work



30,0

25,0

20,0

15,0

10,0

5,0

0,0

ImageNet Classification Error (Top 5)

2011 (XRCE)



2012: AlexNet

ImageNet Classification Error (Top 5) 5 conv. layers

30,0
250 | 11x11 conv, 96, /4, pool/2 |
| 5x5 conv, 256, pool/2 |
20,0
| 3x3 conv, 384 |
15,0 3x3 conv, 384
| 3x3 conv, 256, pool/2 \
10,0
| fc, 4*096 |
5,0 | fc, $)96 |
| fc, 1000 |
0,0 ' I 1
2011 (XRCE) 2012 (AlexNet) Error: 16.4Y%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]



Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT

11x11 conv, 96, /4, pool/2

\

5x5 conv, 256, pool/2

\

3x3 conv, 384

\ 4

3X3 conv, 384

\ /

3x3 conv, 256, pool/2

\ 4

fc, 4096

\

fc, 4096

\ 4

fc, 1000

27X27x256
13x13x256

13x13x256

Jyayyas

55x55%x96] CONV1: 96 11x11 filters at stride 4, pad O
27x27x96] MAX POQOL1: 3x3 filters at stride 2
27x27x96] NORM1: Normalization layer

CONV2: 256 5x5 filters at stride 1, pad 2
MAX POOQOLZ2: 3x3 filters at stride 2
NORMZ2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)



11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2
3x3 conv, 384
3x3 conv, 384
3x3 conv, 256, pool/2
fc, 4096

fc, 4096

fc, 1000

What filters are learned?



What filters are learned?




Get to know your units

i
I
! +
x

11x11 convolution kernel
(3 color channels)




Get to know your units




Get to know your units

Afy




Get to know your units




Get to know your units

Afy

H




Get to know your units

Afy




Get to know your units

Afy




Get to know your units

L
Ll bl II . R o i Bl s Rl e 18
o e . 11, SR S

- o e 8|
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d P ENFIl=T - el 3
Eﬂli—fﬂ-ﬂaﬁﬁ‘ e ﬂ
HllsEes=2381 -

i EEE R

96 Units in conv1

”



\

[Hubel and Wiesel 59]

Electrical signal

from brain R
Recording electrode — s W
Visual area
of brain

oriented filter

[Slide from Andrea Vedaldi]



30,0

25,0

20,0

15,0

10,0

5,0

0,0

ImageNet Classification Error (Top 5)

|

2011 (XRCE) 2012 (AlexNet)



2014: VGG
16 conv. layers

3x3 conv, 64

\ 4
3x3 conv, 64, pool/2

ImageNet Classification Error (Top 5)

3x3 conv, 128

3x3 conv, 128, pool/2

v

3x3 conv, 256

\ 4

3x3 conv, 256

\ 4

3x3 conv, 256

\ 4

3x3 conv, 256, pool/2

\ 4
3x3 conv, 512

\ 4
3x3 conv, 512
v
3x3 conv, 512
\ 4
3x3 conv, 512, pool/2
v
3x3 conv, 512
\ 4
3x3 conv, 512
\ 4
3x3 conv, 512
\ 4
3x3 conv, 512, pool/2
\ 4
fc, 4096
4
fc, 4096
|| 1  §

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) fc, 1000

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks
for Large-Scale Image Recognition, ICLR 2015]




VGG-Net [Simonyan & Zisserman, 2015}

2014: VGG
16 conv. layers

Main developments

e Small convolutional kernels: only 3x3

e Increased depth (5 -> 16/19 layers)

o e et ¢ ¢ € €€ €€ <- <-_

Error: 7.3%



Chaining convolutions
3x3 3x3

OI=

5x5

25 coefficients, but only
18 degrees of freedom

9 coefficients, but only
6 degrees of freedom.
Only separable filters... would this be enough?



Dilated convolutions

55 /X1
3x3 a|0|b|0]C
0/0(0|0|O0
O|ld|0|e|O0|f =
0/ 0]0(0]O0
g | O|h|O] i

25 coefficients
9 degrees of freedom

49 coefficients
18 degrees of freedom

What is lost?

[https://arxiv.org/pdf/1511.07122.pdf]



(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F7 1s produced from Fy by a 1-dilated convolution; each element in F7
has a receptive field of 3 x 3. (b) F3 1s produced from F7 by a 2-dilated convolution; each element
in F5 has a receptive field of 7x 7. (¢) F3 1s produced from F5 by a 4-dilated convolution; each
element 1n Lo has a recentive field o ‘ e number of narameters associated with each lave

1s 1dentical} The receptive field grows exponentially while the number of parameters grows linearly.

[https://arxiv.org/pdf/1511.07122.pdf]



30,0

25,0 -

20,0 -

15,0 -

10,0 -

50 -

0,0

ImageNet Classification Error (Top 5)

|

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG)



ImageNet Classification Error (Top 5)

w 0 R R RO R R R R O R R R R R R R R R R R R R R R R O R R R R R R R R R R R R R R R R R R R R R R R R O R R R R R O R R R R R R R R R R R R R R R O R R R R R RIS~

| 1 | ' | | J =

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet)
(GoogleNet)

2016: ResNet
>100 conv. layers

25,0 -

20,0 -

15,0 -

10,0 -

0,0 -

SULLUBLLU LS YL BU S UBSUEUS LSS UEU LY

Error: 3.6%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]



2016: ResNet

>100 cony layers | ReSNet [He et al, 201 6]

Main developments

* Increased depth possible
through residual blocks

weight layer

X
identity

SULUBBUUELU LS UUEULUULEEBUSLLVBEEELLEYY

SyLLYY

Errof: 3.6%



Residual Blocks

weight layer

X
identity



Residual Blocks

. Why do they work?
!
F(x) _1—Iwelght Iraeys\ e Gradients can propagate faster
welght layer / dentity (via the identity mapping)
F(x) + x

relu

e \Within each block, only small
residuals have to be learned



If output has same size as input: If output has a different size:

X
weight layer weight layer

.F(X) « F(X) relu weight layer
ight |
dentity
+
F(x) + x F(X) +Wx  Trel

Projects into the right

dimensionality:
dim(F(x)) = dim(Wx)




Some debugging advice



Other good things to know

e Check gradients numerically by finite differences
e \Visualize hidden activations — should be uncorrelated and high variance

samples

hidden unit

Good training: hidden units are sparse across samples and across features.

[Derived from slide by Marc’Aurelio Ranzato]



Other good things to know

e Check gradients numerically by finite differences
e \Visualize hidden activations — should be uncorrelated and high variance

z
-
L
r

q

hidden unit

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

[Derived from slide by Marc’Aurelio Ranzato]



Other good things to know

e Check gradients numerically by finite differences
* \Visualize hidden activations — should be uncorrelated and high variance
e Visualize filters

BAD
s AN EEIEE
ARl
AR A
AN B30
AN
PRI AR
BlANR AN
P 43380 2 10
too noisy too lack

correlated structure
Good training: learned filters exhibit structure and are uncorrelated.

[Derived from slide by Marc’Aurelio Ranzato]



Next week:

Practical advice on training
and debugging networks



