Learning for vision

Big questions:

- 1. How do you represent the input and output?
- 2. What is the objective?
- 3. What is the hypothesis space? (e.g., linear, polynomial, neural net?)
- 4. How do you optimize? (e.g., gradient descent, Newton's method?)
- 5. What data do you train on?

Image colorization

- 1. How do you represent the input and output?
- 2. What is the objective?
- 3. Assume hypothesis space is sufficienly expressive
- 4. Assume we optimize perfectly
- 5. What data do we train on?

Image colorization

[Zhang et al., ECCV 2016]

Grayscale image: \mathbf{L} channel $\mathbf{x} \in \mathbb{R}^{H \times W \times 1}$

Color information: **ab channels** $\mathbf{y} \in \mathbb{R}^{H \times W \times 2}$

Grayscale image: L channel

$$\mathbf{x} \in \mathbb{R}^{H \times W \times 1}$$

Color information: **ab channels** $\mathbf{y} \in \mathbb{R}^{H \times W \times 2}$

Choosing loss and representation

Input

Output

Ground truth

$$\mathcal{L}(f(\mathbf{x}), \mathbf{y}) = \|f(\mathbf{x}) - \mathbf{y}\|_2^2$$

Recall: least squares loss corresponds to the following modeling assumptions:

$$Y = f_{\theta}(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma)$

$$P_{\theta}(Y=y|X=x) \propto \exp\frac{-(y-f_{\theta}(x))^2}{2\sigma^2}$$

Prediction for a single pixel i,j

Best **Gaussian fit** to the **true data distribution** is to center the Gaussian on the mean of the data distribution.

$$\mathbf{y} \in \mathbb{R}^{H \times W \times 2}$$

$$\mathcal{L}(f(\mathbf{x}), \mathbf{y}) = \|f(\mathbf{x}) - \mathbf{y}\|_2^2$$

Prediction for a single pixel i,j

one-hot representation of K discrete classes

$$\mathbf{y} \in \mathbb{R}^{H imes W imes 2}$$

$$\mathbf{y} \in \mathbb{R}^{H \times W \times K}$$

Prediction for a single pixel i,j

$$\mathcal{L}(\mathbf{y}, f_{\theta}(\mathbf{x})) = H(\mathbf{y}, \text{softmax}(f_{\theta}(\mathbf{x})))$$

h

Input

Zhang et al. 2016

Ground truth

$$\mathcal{L}(\mathbf{x}, \mathbf{y}) = H(\mathbf{y}, \mathtt{softmax}(f_{\theta}(\mathbf{x})))$$

"Regression"

"Classification"

- Continuous-valued prediction
- (Usually) models unimodal distribution

- Discrete-valued prediction
- Models multimodal distribution

Instructive failure

Instructive failure

[from Reddit /u/SherySantucci]

[Recolorized by Reddit ColorizeBot]

Photo taken by Reddit /u/ Timteroo, Mural from street artist Eduardo Kobra

Recolorized by Reddit ColorizeBot

Data prediction aka "self-supervised learning"

Is the code informative about object class y?

Logistic regression:

$$y = \sigma(\mathbf{Wz} + \mathbf{b})$$

Color space matters! L—>ab much better than R —> GB

["Contrastive Multiview Coding", Tian, Krishnan, Isola, arXiv 2019]

Image colorization in a nutshell

Data

Learner

Objective

$$\mathcal{L}(\mathbf{y}, f_{\theta}(\mathbf{x})) = H(\mathbf{y}, \mathtt{softmax}(f_{\theta}(\mathbf{x})))$$

Hypothesis space

Convolutional neural net

Optimizer

Stochastic gradient descent

$$\rightarrow$$
 f