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Garbage in, garbage out

A machine learning algorithm will do whatever the training data
tells it to do.

f the data Is bad or biased, the learned algorithm will be too.



Microsoft's Tay chatbot

Chatbot released on twitter.
L earned from interactions with users (?)

Started mimicking offensive language, was shut down.




what is the yellow thing?

Predicted top-5 answers with confidence:
frisbee

surfboard
7319%

banana

surfboards
|252%



how many trains are in the picture?

Predicted top-5 answers with confidence:



Of number questions (e.g. “how many...”), 26.04% of the time, the answer is 2

Of yes/no questions, 58.83% of the time, the answer is yes

[VQA, Agrawal, Lu, Antol et al., https://arxiv.org/pdf/1505.00468.pdf



[“Colorful image colorization”, Zhang et al., ECCV 2016]



[“Colorful image colorization”, Zhang et al., ECCV 2016]



[“Colorful image colorization”, Zhang et al., ECCV 2016]
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Training data Test data

What Google thinks are
student bedrooms

GO USIC student bedroom

Search About 66,700,000 results (0.15 seconds)

Everything
Images
Maps
Videos
News
Shopping

More

Any time
Past 24 hours
Past week




Training data Test data

Driving simulator (GTA) Driving in the real world




L et’s revisit the problem of generalization
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Training data
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This I1s a huge assumption!
Almost never true in practice!
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Training data Test data
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Our training data did cover the part of the distribution that was tested
(biased data)
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https://www.reddit.com/user/Rafael_P_S

testing domain

tralnlng aomain (Where we actual use our model)

\

Domain gap between Ptrain and Ptest will cause
us to fail to generalize.

Space of natural images

Training data

Test data




Algorithmic Bias

Gender
Classifier

B= Microsoft

FACE™
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http:”genaersﬁaaes.org’overwew.Htm|

Darker
Male

94.0%

99.3%

88.0%

Darker
Female

79.2%

65.5%

65.3%

99.2%

99.7%

Lighter
Female

98.3%

94.0%

92.9%

Largest
Gap

20.8%

33.8%

34.4%
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Abstract
Hecent aindies demanstrate that machine
learning algerithms can dizcriminate based
on clasaes like rare and gender. In this
wark, we present snoapprosch to evalusise
bias present in antomaterd facial analysis al-
porithms snd dalasels with respael o phe-
pobvoic subgroups, Using the dermatolo-
pist spproved Fitzpatrick Skin Tyne clas
sidcation systere, we characlerize the ger-
der and skin Lypa disiribelion of twa facial
analvsis benchinarks, IJB-A and Adience.
We find that these datasets are overwhelm
iwgly compesed ol Dgliter-skinned subjects
(79.6%: for 1B A ard 286.2%: for Adience)
and irsrodiice a new facial analysis dataset,
which is balanced by gender and skin type.
We evalnate 3 ecommercial gender cles-
sification systems using our dataser and
show that darker skinned fcmales are the
masl mi=elnssiliad gronp (with error rales
of up to 34.7%). L'oc maximum error rate
for lighter-skinved mules = DR%.  The
substaciial disparties o Lhe accuracy of
classifying darker females, lighter females,
darker males, and lighter males in gender
classification systems require nrgent atter-
tivz i copunercial companies are Lo bulld
genuinely fair, transparent and accountasle
faciul anelveiz slpori s,
Keywards: Compuier Vision, Algorich-
e Audil, Gender Classilicalion

1. Introduction

Artificial Intclligence [Al) is ropidly infiltrating
everv aspect of society. From helping determine

¥ Download our zender and sxin tvpe balanced PPLD
dzzaset at gendsrghades.org

D 2118 1. Buoalamasai & T, Gebdrn,

who is hived, fired, zranted a loan, or how long
an individual spends in prison, decisions that
nave traditionally heen performed by humans are
rapidly made by algorithous (O°Neil, 2017: Citron
and Pasquale, 2014), Even Al-based tecunolopies
that are not specifically trained o perform high-
stakes rasks (such as determining how lang some-
one spends i prison) can be used in a pipeline
el peciorios sucn tasks,  lor example, wiile
face recopnition software by itsclf should not he
trained to determine the fate of an individual in
Wie coimmipal justice system, it 1s very lkely that
sich software is nsed to identify suspects. Thus,
an error in the output of a face recognition algo-
rithin used as inpub for other tosks van have se-
rions consequenees. Tor exnmple, someone eonld
be wrangfully accused of a erime based on erro-
neous but confident misidensification of tue pear-
petrator from securily video lootage analysis.

Many Al systeins, eg. face recognivion tools,
rcly on machine learning algorithms that are
trained with labeled data. It has recently
veen shown that algorithons traived with Diased
data have resnlted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding spare, Word2Vee. encades soci-
eral gender hinses. The anthors nused Waord2Ver
W train an anslogy generstor that s in mise-
ing worde in anslogies. The snslogy man is
compurer programmer as woman is to “X7 was
completed with “hamemaker”, eanfarming to the
stereotype Lhal programniog is assoclaled with
men and lwmemaking witli women, The biases
mn Word2Vec are thus likely to be propagated
throughout any system that uses this embedding.

http://proceealngs.mlr.press’vgq ,Buolamwmlq gg’Buo'amwmn 8a.pdf




While this study focused on
gender classification, the machine
learning techniques used to
determine gender are also broadly
applied to many other areas of
facial analysis and automation.
Face recognition technology that
has not been publicly tested for
demographic accuracy is
increasingly used by

law enforcement and at airports.
Al fueled automation now helps
determine who is fired, hired,
promoted, granted a loan or
Insurance, and even how long

someone spends 1n prison.

For interested readers, authors
Cathy O'Neil and

Virginia Eubanks explore the real-
world impact of algorithmic bias.

http://gendershades.org/overview.html

“This book is downright scary—but. .. you will emerge smarter and
mere empowered te demand justice.” —NAOMI KLEIN

\ I

f‘i <* - WEAPONS OF

\-____ . /
~ MATH DESTRUCTION
AUTOMATING =~

INEQUALITY -  T%5  —

— )
HOW HIGH-TECH TOOLS PROFILE, .\}{/.
POLICE, AND PUNISH THE POOR - * &

HOW BIG DATA INCREASES INEOQUALITY

AND THMREATENS DEMOCRACY \

7 CATHY O'NEIL

/| \\\\




How can we collect good data”

/

+ Correctly labeled
+ Unbiased (good coverage of all relevant kinds of data)






1 he value of data

The Large Hadron Collider Amazon Mechanical Turk
$ 10 10 $102-104



But can humans collect good data”






Getting more humans in the annotation loop
Labeling to get a Ph.D.
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Labeling for money
(Sorokin, Forsyth, 2008)

amazonmechanical turk

Labeling because it Just for labeling
gives you added value

=

Visipedia

(Belongie, Perona, et al)



Beware of the human in your [oop

* What do you know about them?

* Will they do the work you pay for?

L et’s check a few simple experiments



People have biases...

Turkers were offered 1 cent to pick a number from 1 to 10.

300 ~850 turkers
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=xperiment by Greg Little
From http://groups.csail.mit.edu/uid/deneme/



Do humans have consistent biases”?

4 ™

Choose Item
Requester: SimpleSphere Reward: $0.01 per HIT HITs Available: 1 Duration: 60 minutes
Qualifications Required: None

Please choose one of the following:

— Results form 100 HITS:
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Experiment by Greg Little
From http://groups.csail.mit.edu/uid/deneme/



Do humans do what you ask for”

O .. : N
Flip a coin

Requester: ROBERT C MILLER Reward: $0.01 per HIT HITs Available: 3 Duration: 5 minutes
Qualifications Required: None

Please flip an actual coin and type either H or T below.

After 50 HITS; And 50 more;

31 heads, 19 talls 34 heads, 16 tails

=xperiment by Rob Miller
From http://groups.csail.mit.edu/uid/deneme/



Are humans reliable even in simple tasks”

" Choose the given item.

Requester: SimpleSphere Reward: $0.01 per HIT HITs Available: 1 Duration: 60 minutes
Qualifications Required: None

Please click button B:
B
Z
A
Results of 100 HITS:
A 2
B: 90
C: 2

=xperiment by Greg Little
From http://groups.csail.mit.edu/uid/deneme/



SO we can sometimes collect good training data.

But suppose we messed up. Our test setting doesn't
ook liIke the training data!

How can we bridge the domain gap?



testing domain

tralnlng aomain (Where we actual use our model)

\

Domain gap between Ptrain and Ptest will cause
us to fail to generalize.

Space of natural images

Training data

Test data




target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Piarget WiIll cause
us to fail to generalize.

Space of natural images

Source data

Target data




|[dea #1: transtorm the target domain to look like the source domain

Data space

source data target data

(Or vice versa) This is called domain adaptation



Domain adaptation

We have source domain pairs {xsource ysource}
Learn a mapping f: xsource —> ysource

We want to apply F to target domain data xtarget
FInd transformation [ xtarget — > xsource

Now apply F(T(xtarget)) to predict ytarget



psource

t's a just another distribution mapping problem!



(GANSs

(Gaussian Target distribution




CycleGAN

Horses /ebras




Domain adaptation

Pt arget

psource




target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Ptarget Will cause
us to fail to generalize.

Space of images

Source data

Target data




CyCADA: Cycle-Consistent Adversarial Domain Adaptation

Source domain Target domain

[Hoftman, Tzeng, Park, Zhu, Isola, Saenko, Darrell, Efros, arXiv 2017]



CycleGAN




CycleGAN




CycleGAN FCN




OpenAl Dactyl

FINGER PIVOTING SLIDING FINGER GAITING



target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Piarget WiIll cause
us to fail to generalize.

Space of images

Source data

arget data




l[dea #2: train on randomly perturbed data, so that test set just looks
Ike another random perturbation

Data space

Training data lest data

@ o © “ “
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This is called domain randomization or data augmentation




Training data

X Y
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Data augmentation

“Fish”

"Fish”

"Fish”
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Mirror

Crop

Crop

Darken



Domain randomization

Training data Test data

[Sadeghi & Levine 2016
Above example is from [Tobin et al. 2017




Table 1: Ranges of physics parameter randomizations.

Parameter Scaling factor range Additive term range
object dimensions uniform([0.95, 1.05])
object and robot link masses uniform([0.5, 1.5])
surface friction coefficients uniform([0.7,1.3])
robot joint damping coefficients  loguniform([0.3, 3.0])
actuator force gains (P term) loguniform([0.75, 1.5])
joint limits N(0,0.15) rad
gravity vector (each coordinate) N(0,0.4) m/s”
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What if we go waaaay outside of the training distribution®




Training data Test data
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Our training data did not cover the part of the distribution that was tested
(biased data)



Data space

Training data lest data

® Out here, model response
“ ‘ is highly unpredictable
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“‘Deep Neural Networks are Easily Fooled: High Confidence Predictions

for Unrecognizable Images”
[INguyen, Yosinski, and Clune, CVPR 2015]

robin “ cheetah || armadillo lesser panda

centipede jackfruit bubble




“‘Deep Neural Networks are Easily Fooled: High Confidence Predictions

for Unrecognizable Images”
[INguyen, Yosinski, and Clune, CVPR 2015]

- R N o

§ . ’ . ’

; . ’ . ’

’ 4 ¥ 4 ¥

" 3 ¥ 3 ¥

’ 3 ¥ 3 ¥

¥ . ¥ L #

¥ . ’ . g

’ e f 3

¥ L r 2

¥ A L 3

¥ 5 r 5 s

il 5 4 5 4

g k| 4 5 ’

g . ' 5 ’

g h / \ '

‘ . ’ X y

’ . 4 5 ¥

’ - b ’ L ’

King penguin starfish baseball
T
RO DO e
- - O o e
-0
- O - &
- O -
- O =
- C o
- O o
a0 0000 e
- e OO O & e
- - -
e
freight car remote control peacock African grey




Welrdness of high-dimensional space:

Data space

Training data

Usually, there are blind spots where the model has not
fit the distribution well, and behaves unpredictably




Adversarial noise

r

“*School bus” “Ostrich’

arg max p(y = ostrich|x +r) subject to ||r|| <e

r

“Intriguing properties of neural networks”, Szegedy et al. 2014



Anything to worry about”

“NO Need to Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles”, Lu et al. 2017

FastSign 1S Attack

(Early) 2017’s attacks fail on physical
objects, since they are optimized to
attack a single view!

0 Attack




Anything to worry about”

Later in 2017...

“Synthesizing Robust Adversarial Examples”, Athalye, Engstrom, llyas,
Kwok, 2017

3D-printed turtle model classitied as %ﬁ» = “ "
rifle from most viewpoints



Anything to worry about”

e (Current deep models have bad worst-case performance
e (Can be exploited by an adversary

e ew guarantees, can't fully trust what the model’s output



Anything else to worry about?

ML method perform beautifully on laboratory data, but often i &) B
generalize poorly to real-world data

Can have negative social conseqguences




