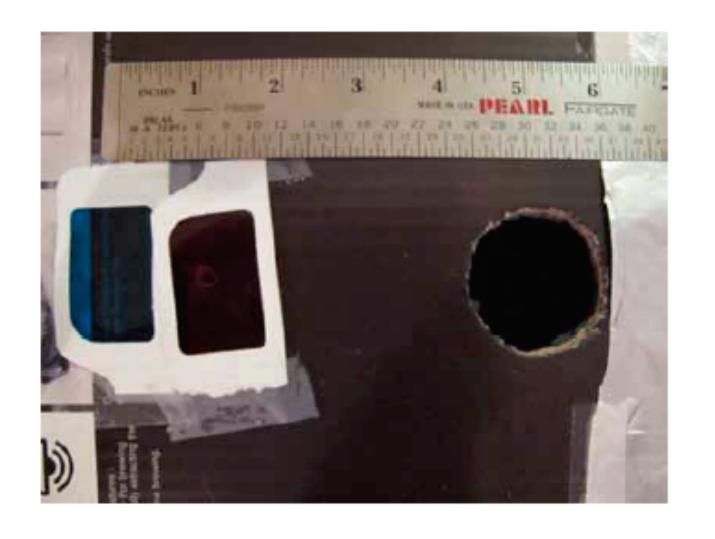


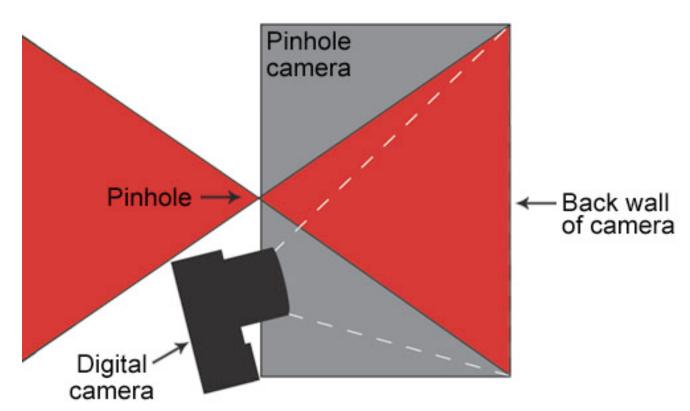
6.869/6.819 Advances in Computer Vision

Bill Freeman, Antonio Torralba, Phillip Isola

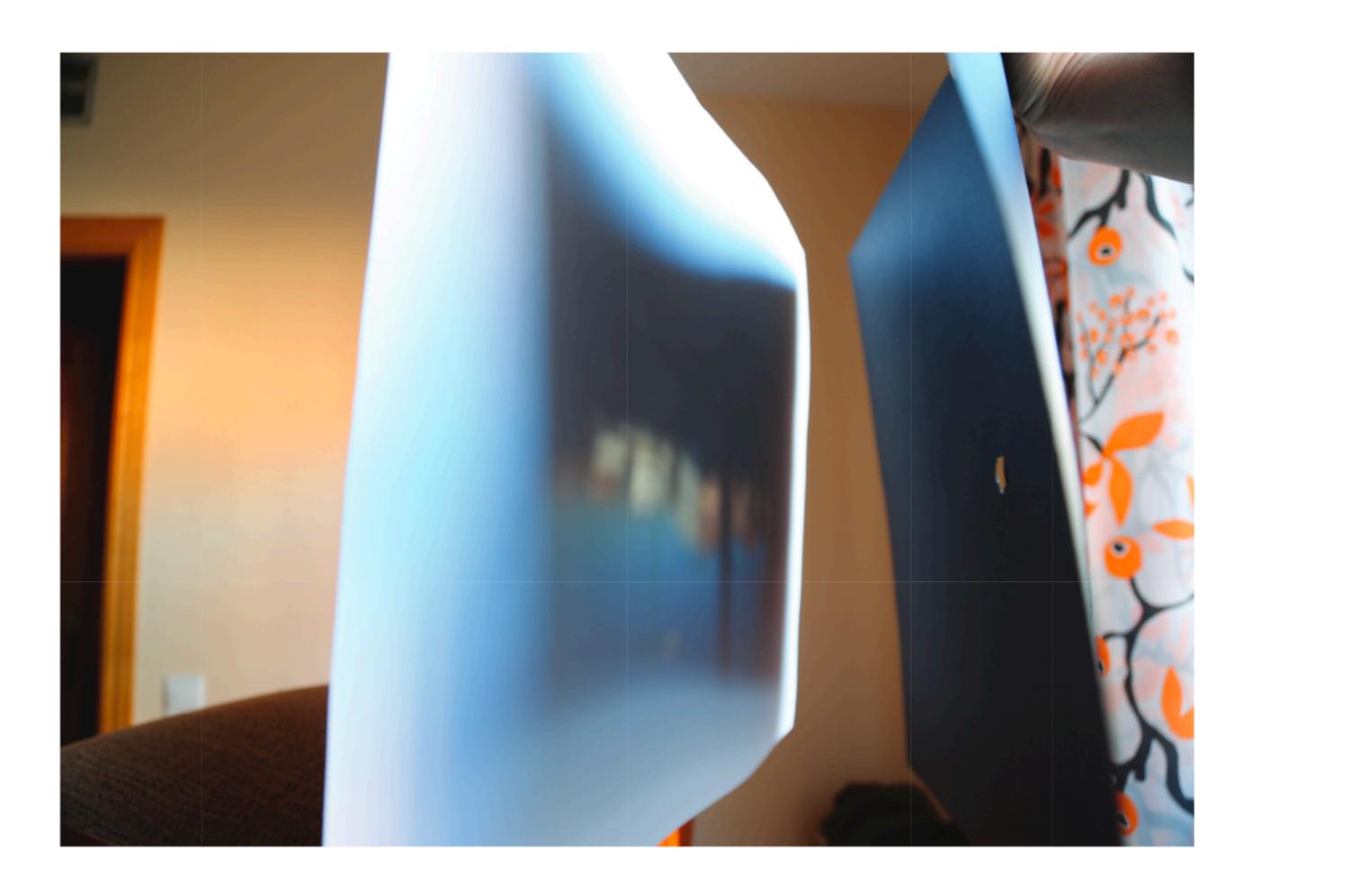
Pset 2



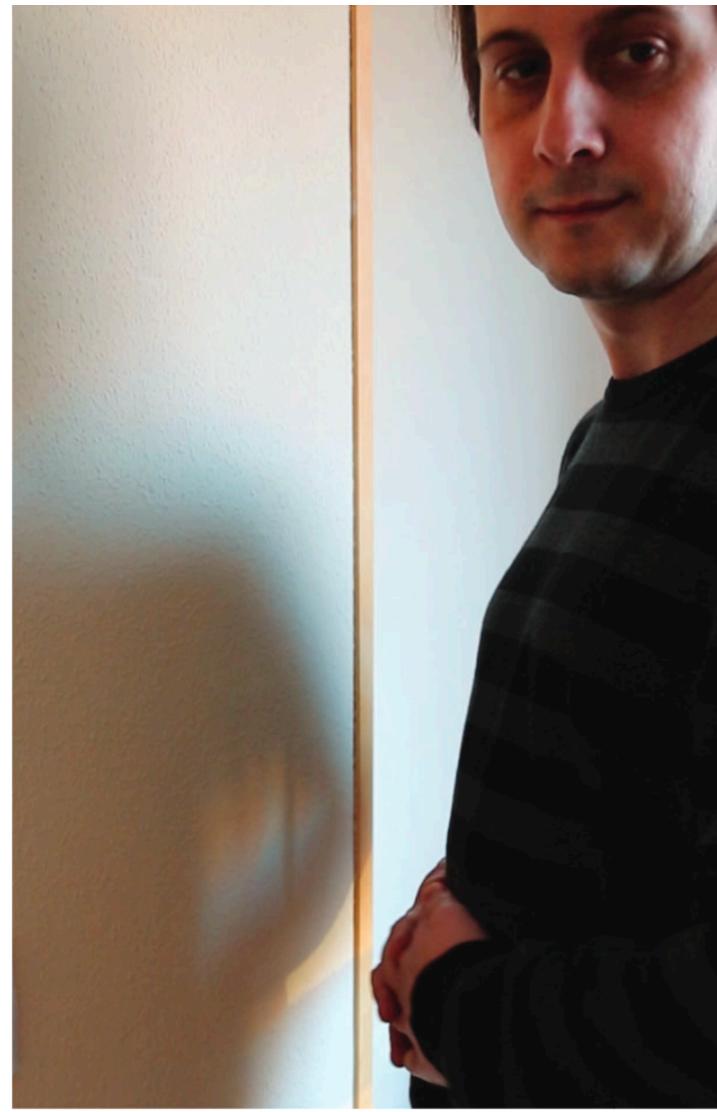
http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html



You need to work before it gets dark... **Outdoors in better than indoors.**



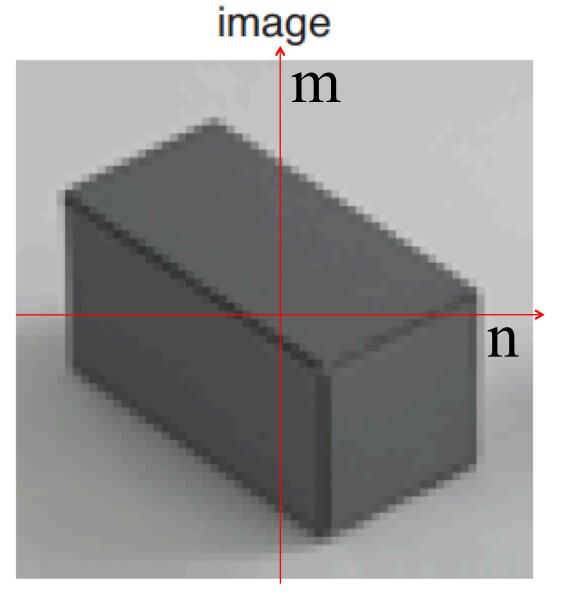
Pset 2





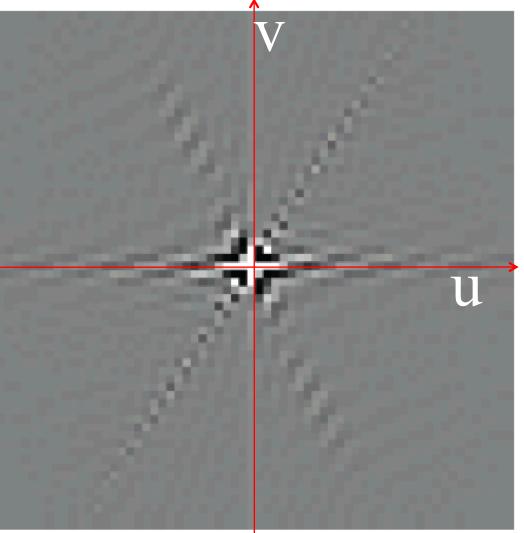
Visualizing the image Fourier transform

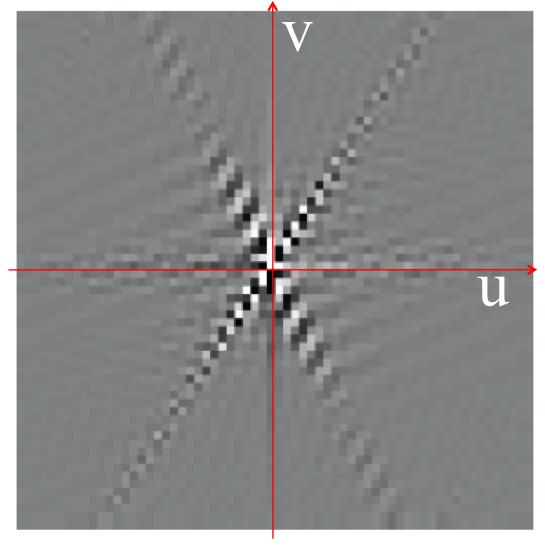
F[u, v]



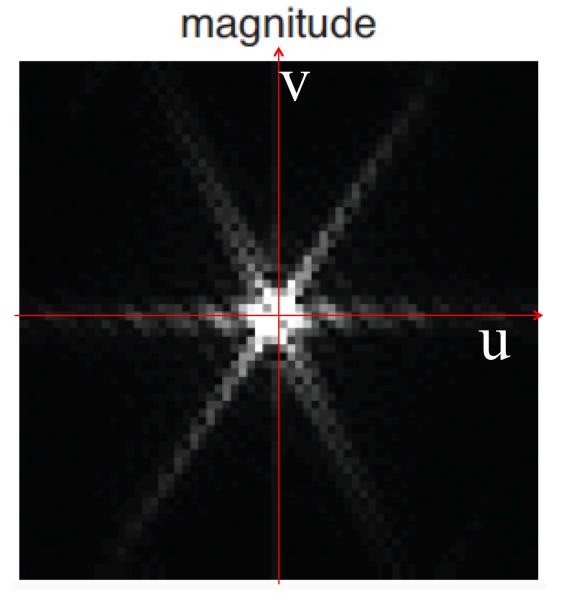
real

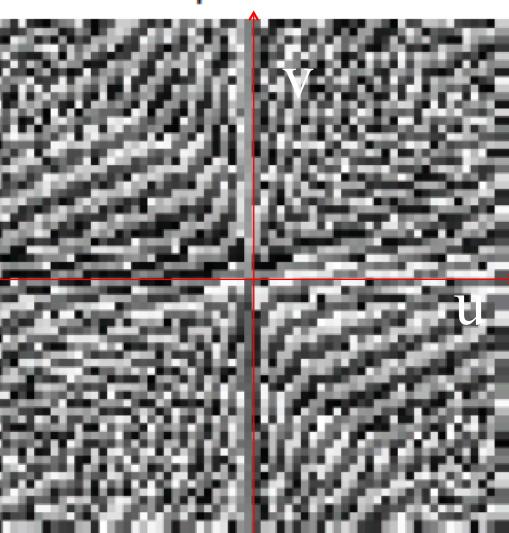
imaginary



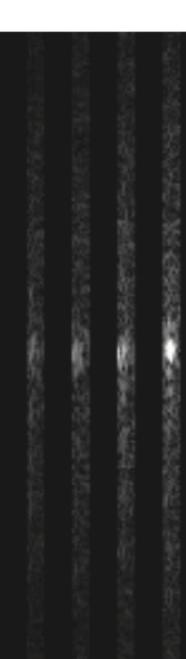


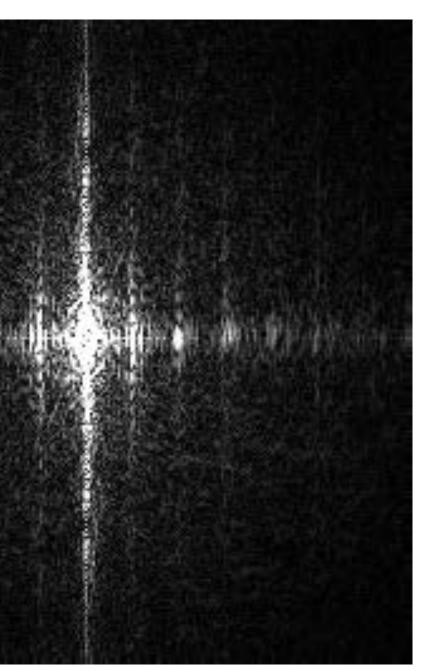
phase

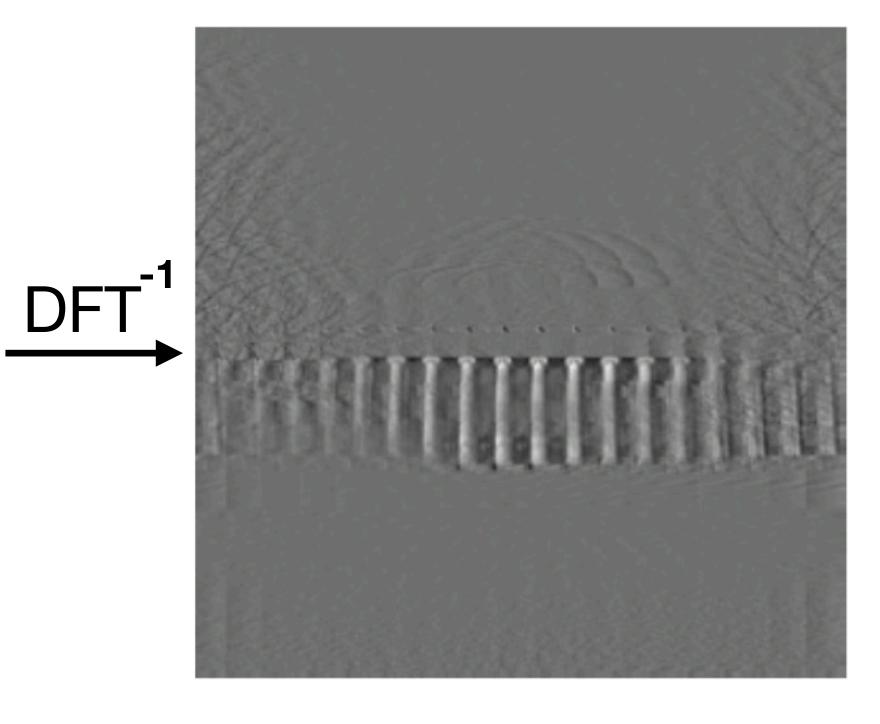




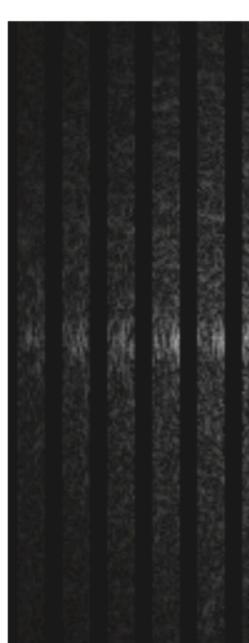
DFT

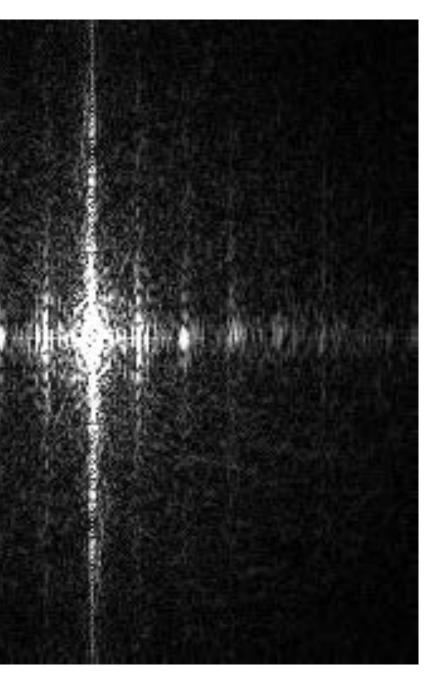


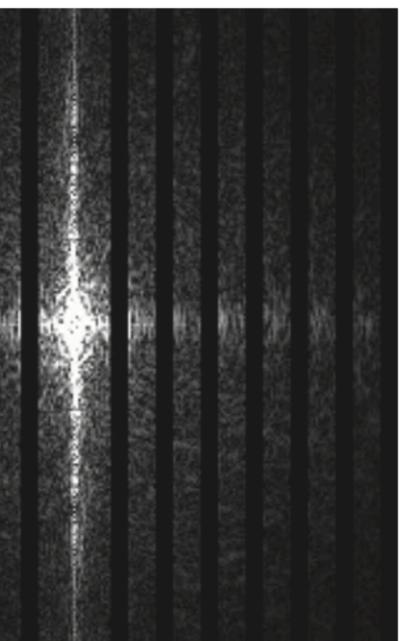




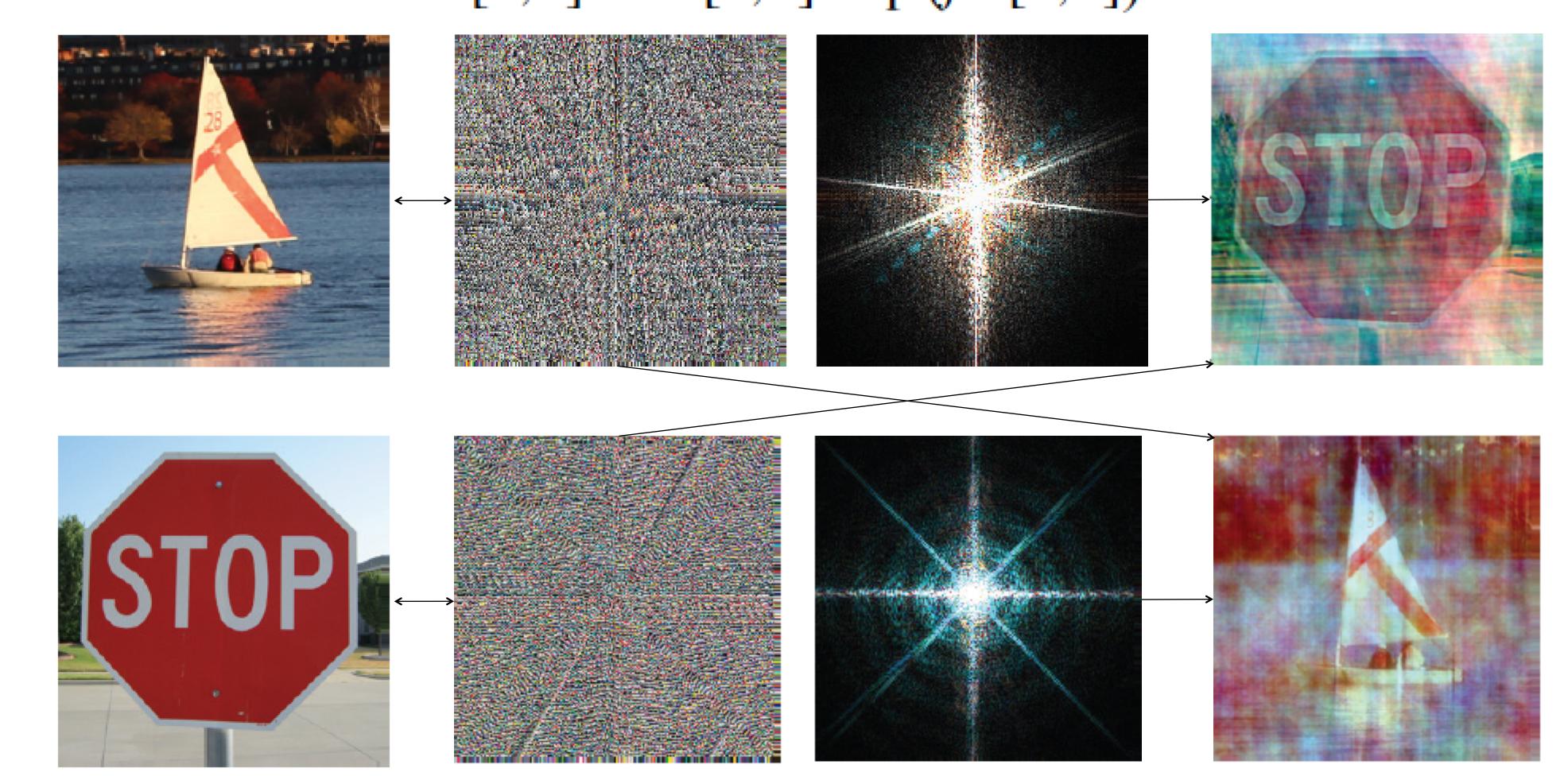
DFT







Phase and Magnitude $F[u,v] = A[u,v] \exp(j\theta [u,v])$



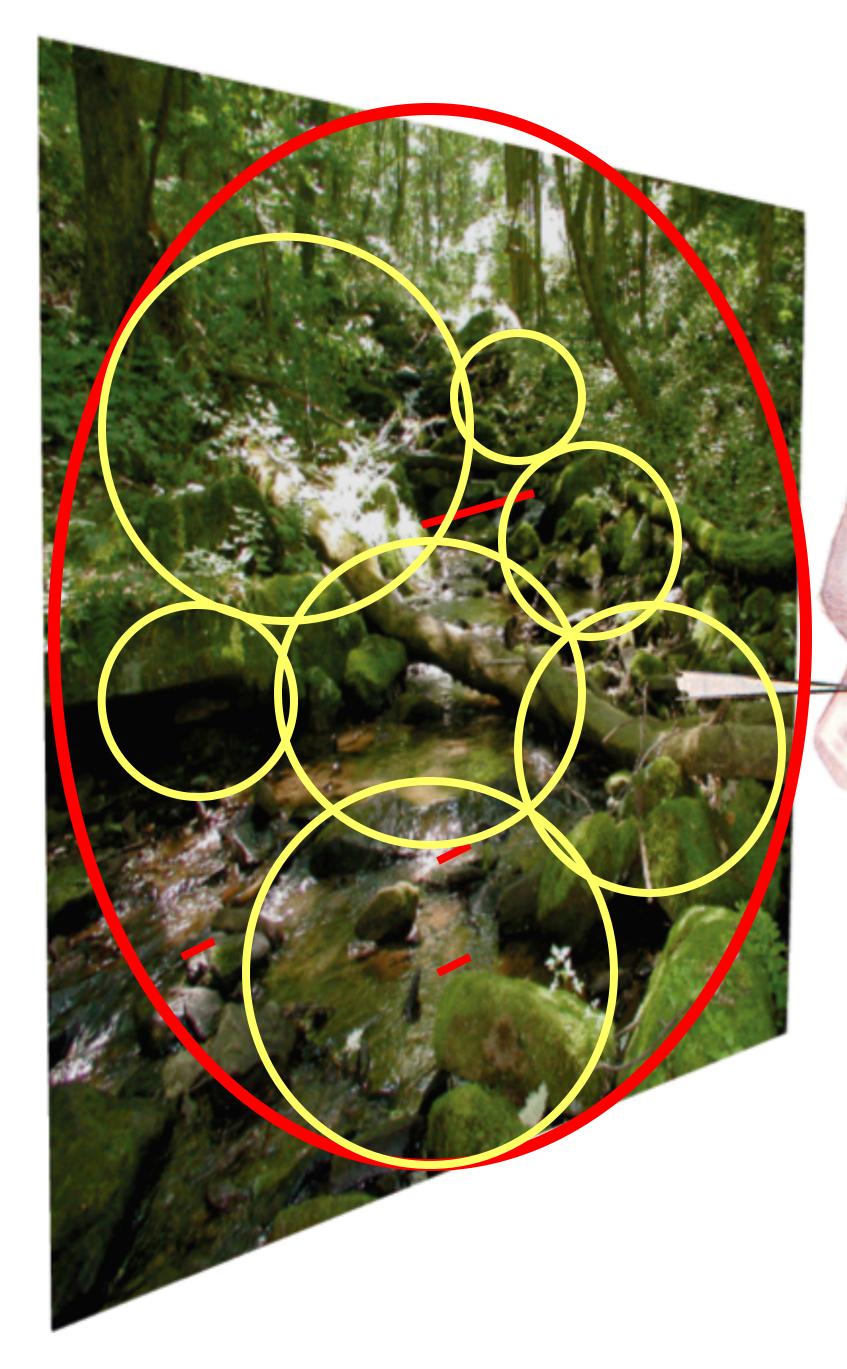
Each color channel is processed in the same way.

Phase and Magnitude

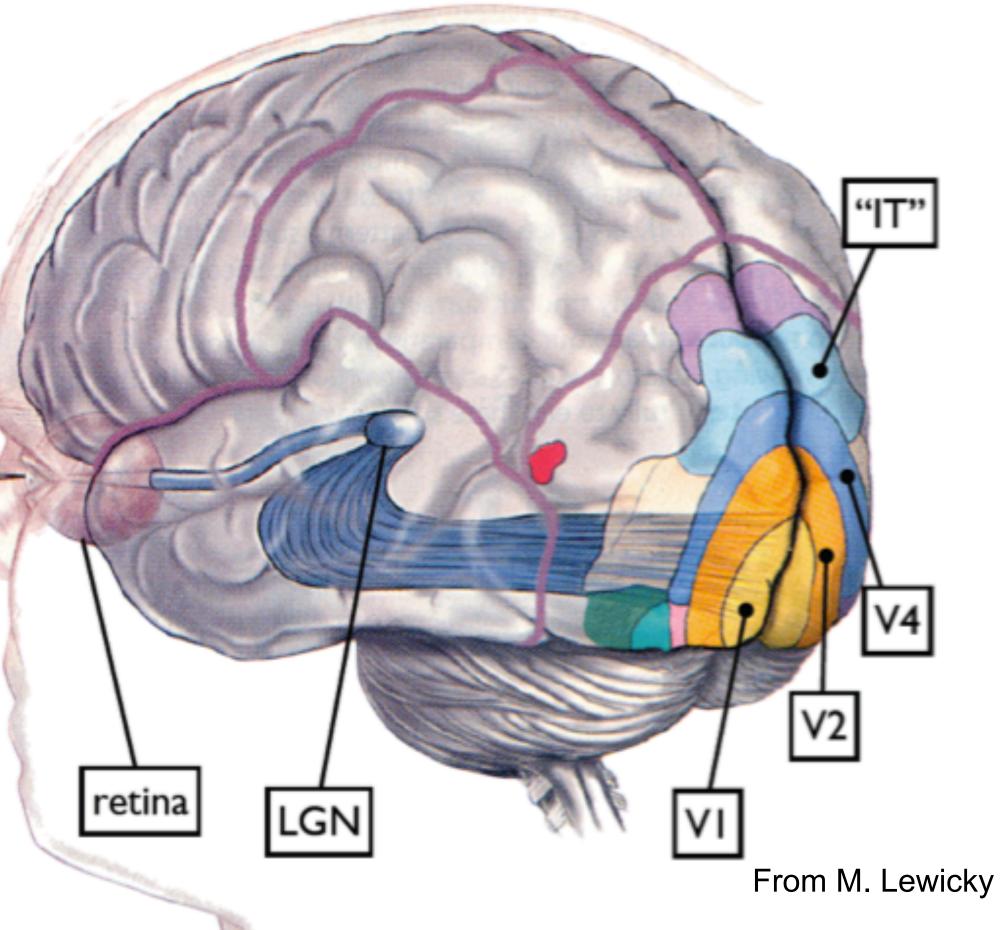
- Curious fact
 - transform
 - doesn't

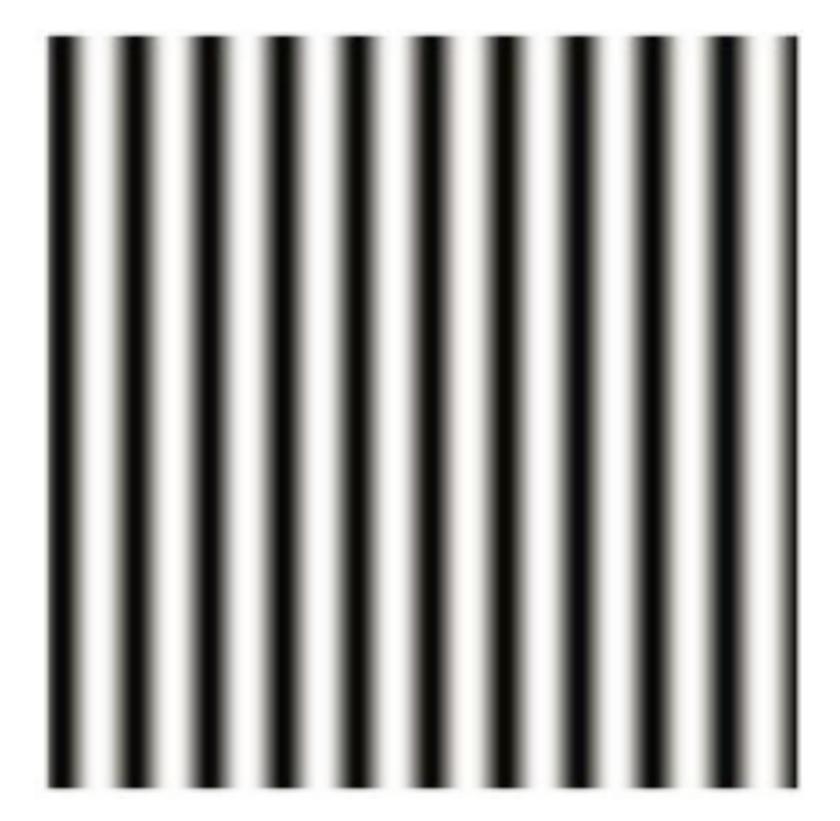
-all natural images have about the same magnitude

-hence, phase seems to matter, but magnitude largely



Some visual areas...





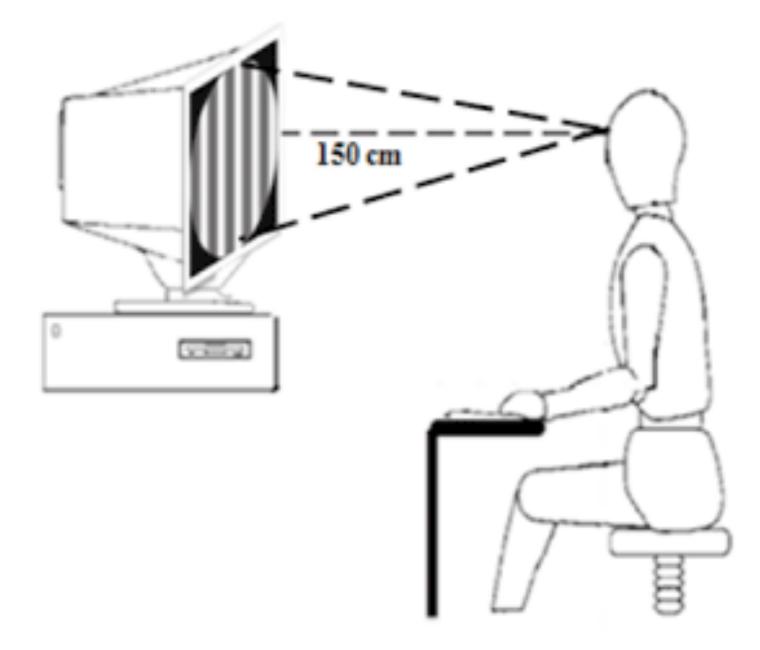
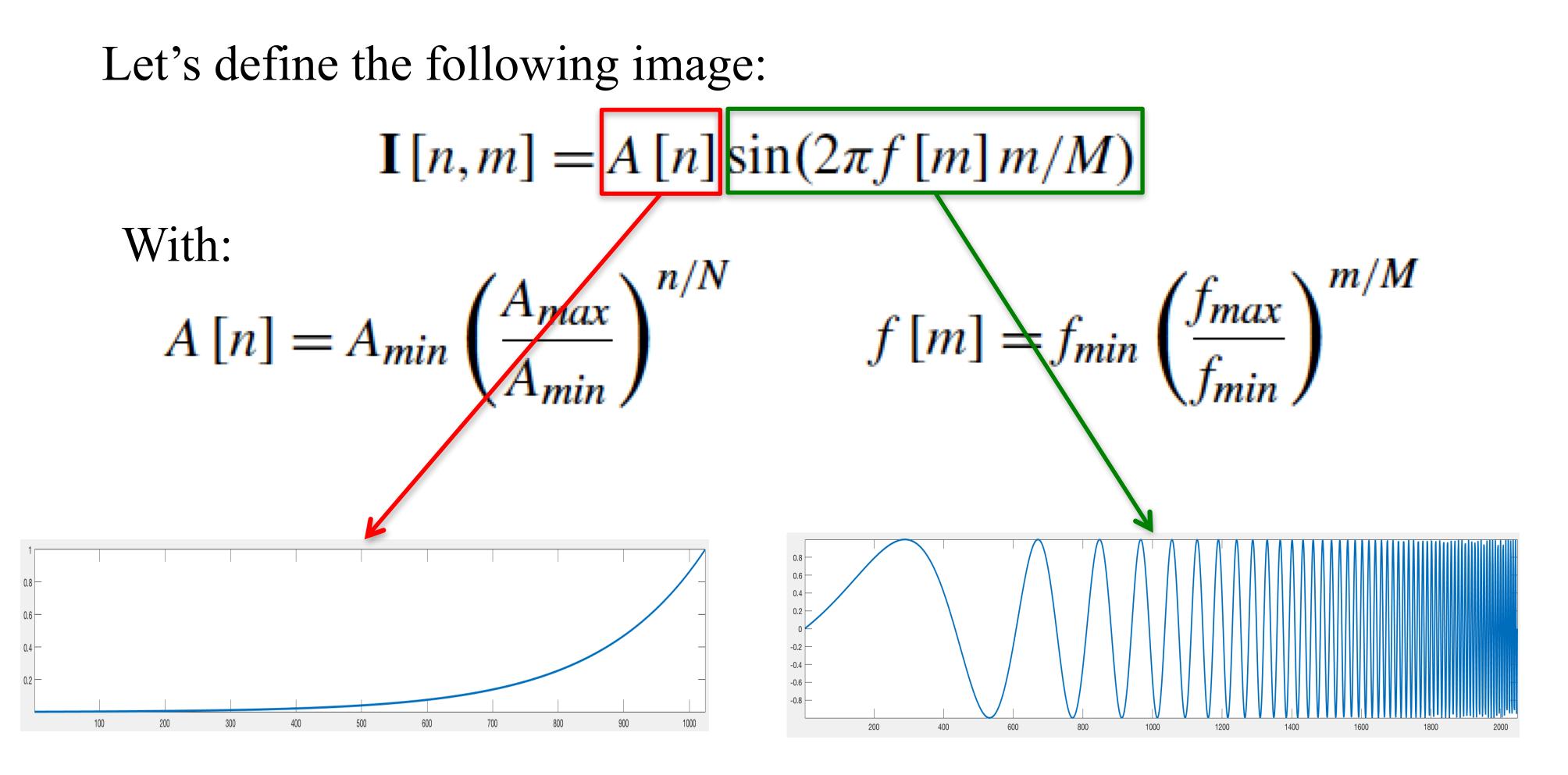


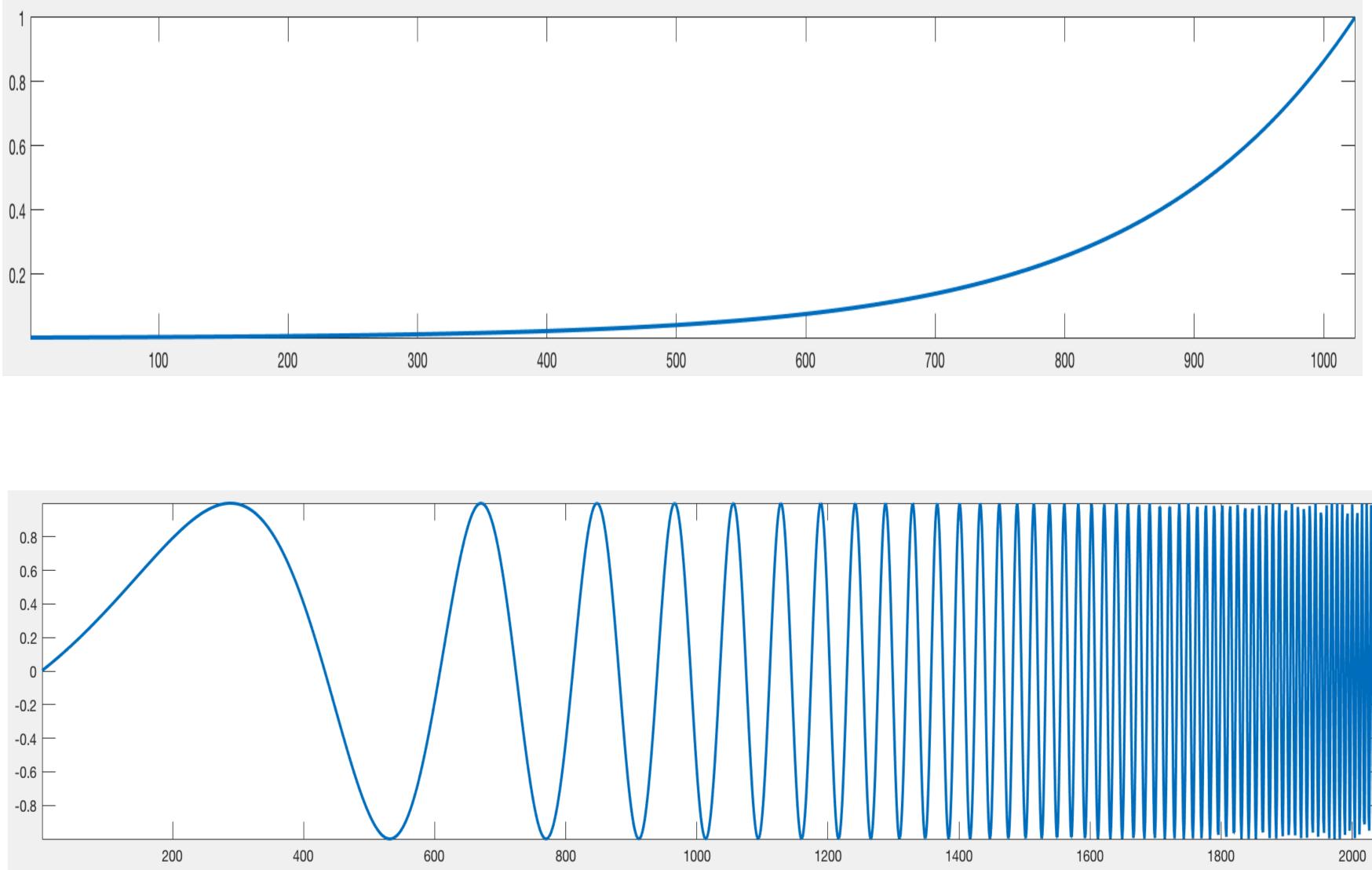
Figure 1. Stimulus presentation scheme. The stimuli were originally calibrated to be seen at a distance of 150 cm in a 19" display.

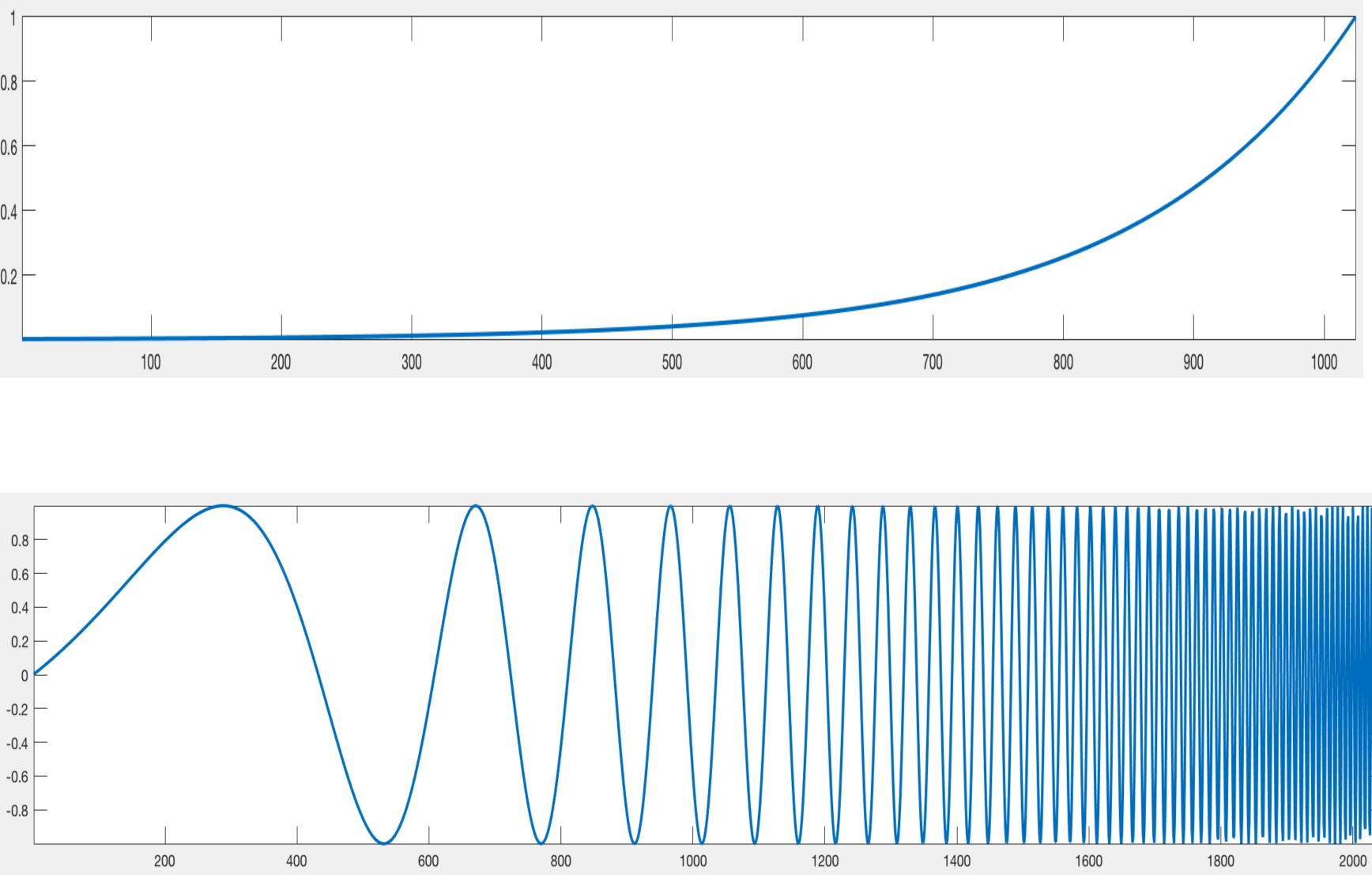
Campbell & Robson chart



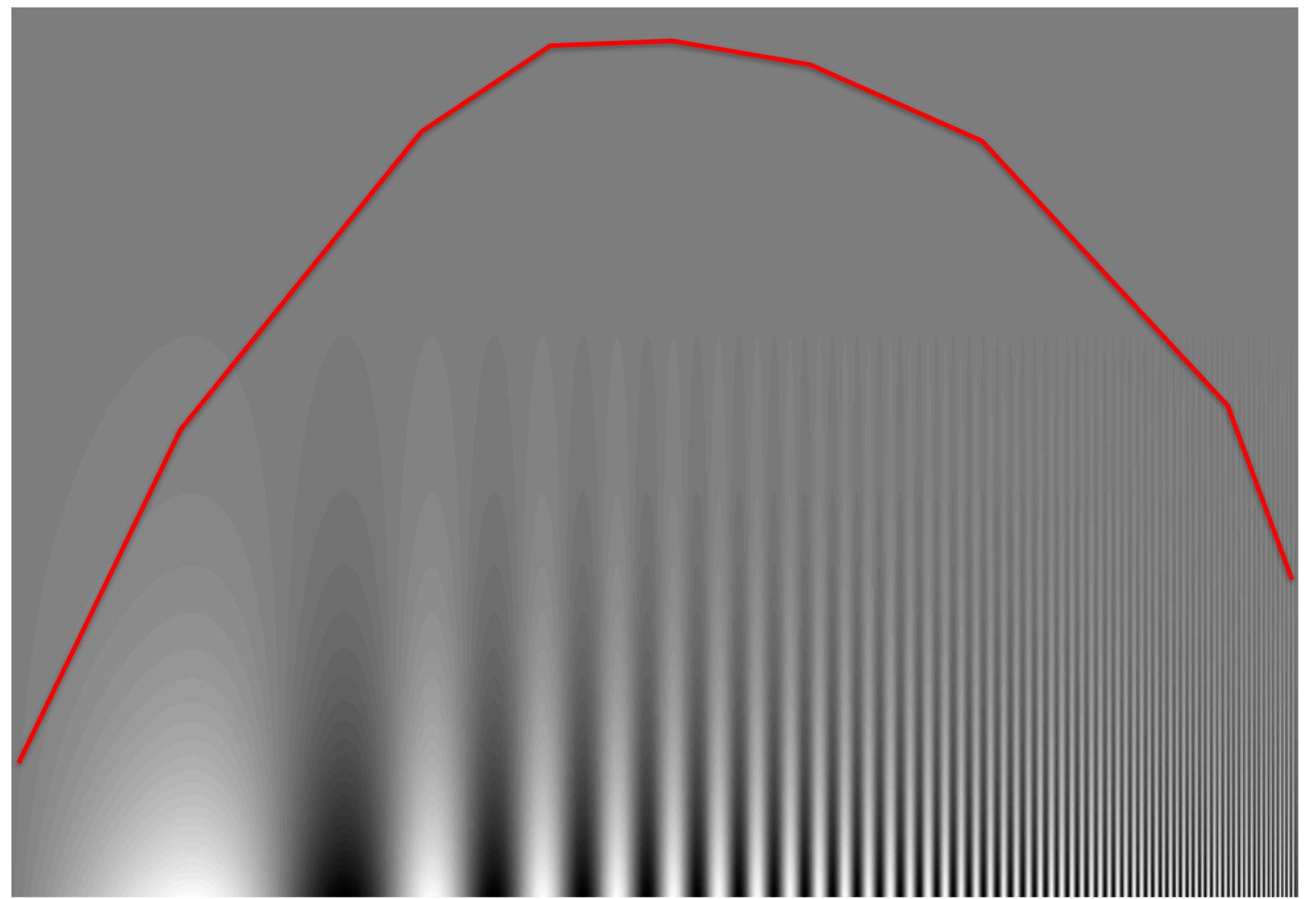
What do you think you should see when looking at this image?

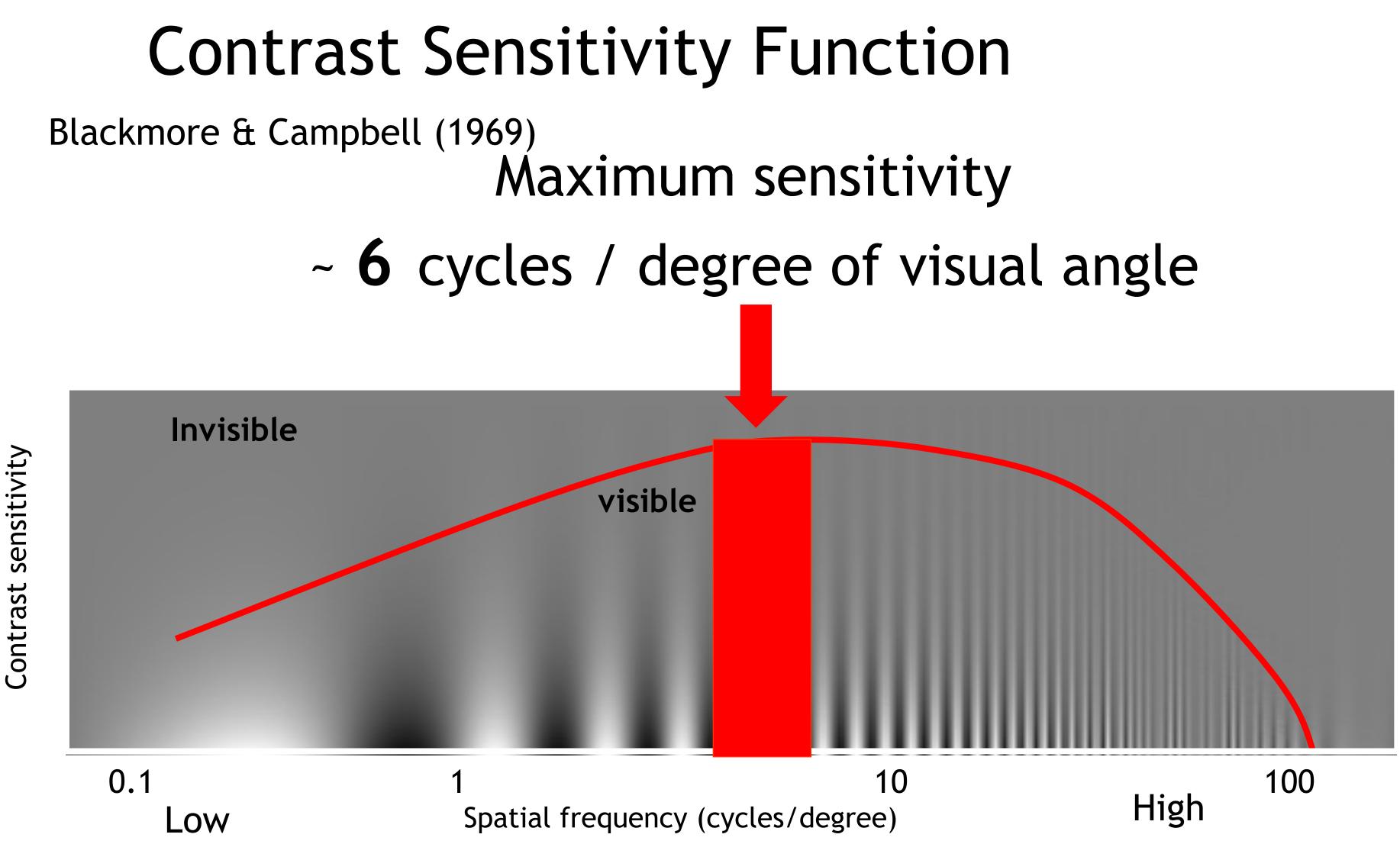
$\mathbf{I}[n,m] = A[n]\sin(2\pi f[m]m/M)$



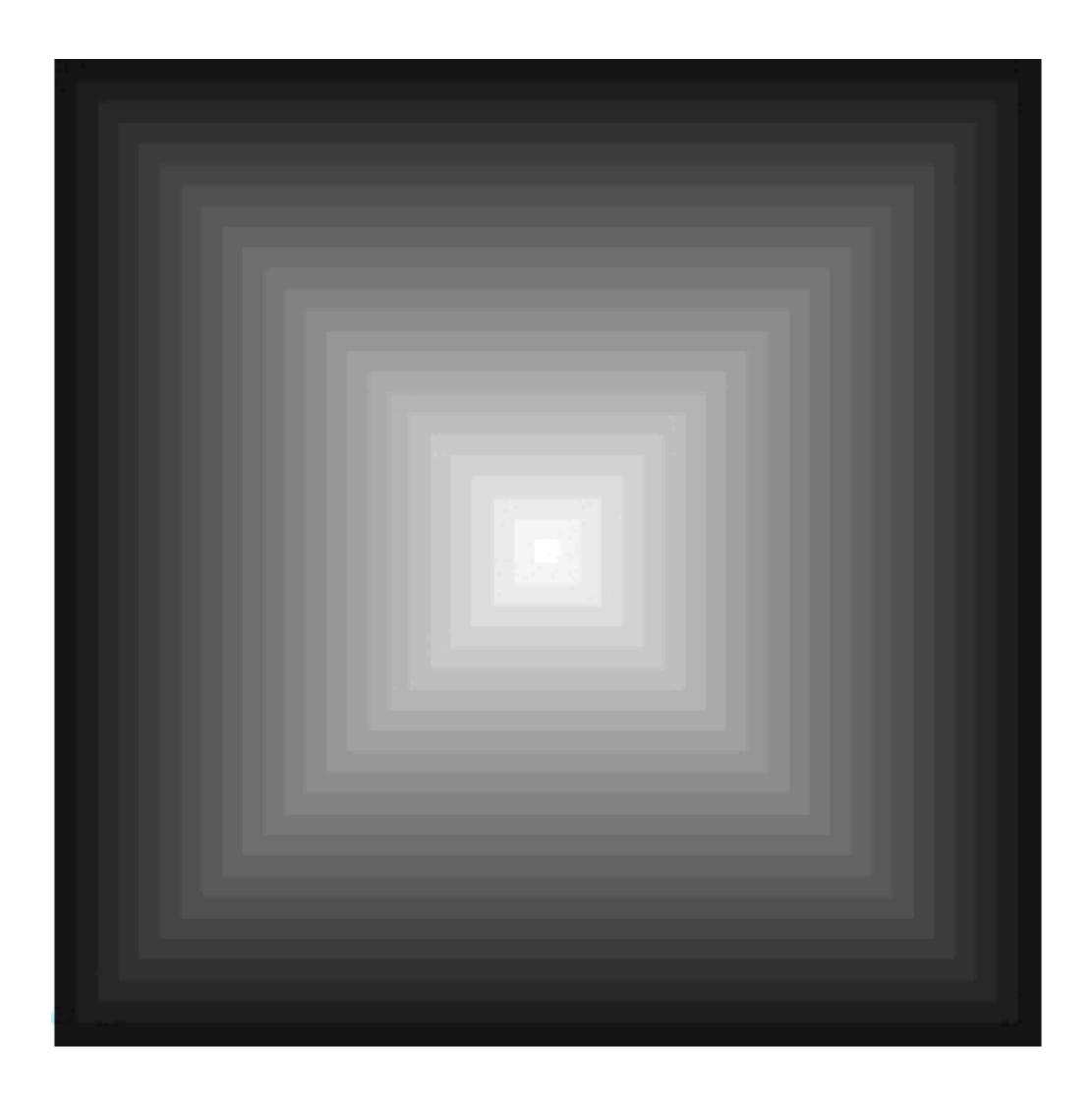


$\mathbf{I}[n,m] = A[n]\sin(2\pi f[m]m/M)$



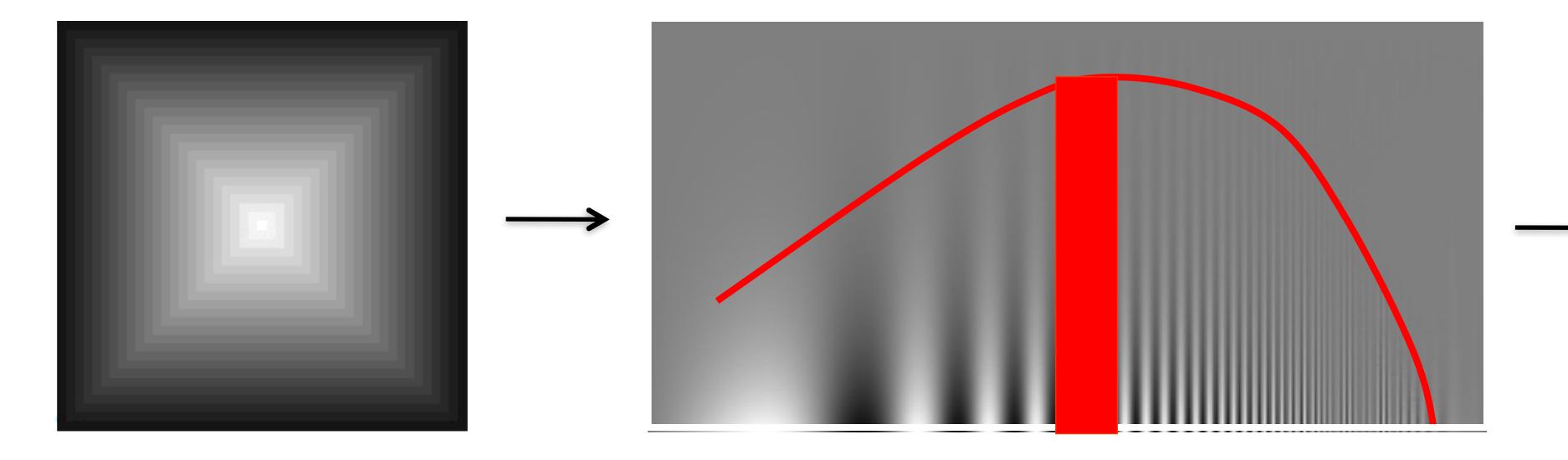


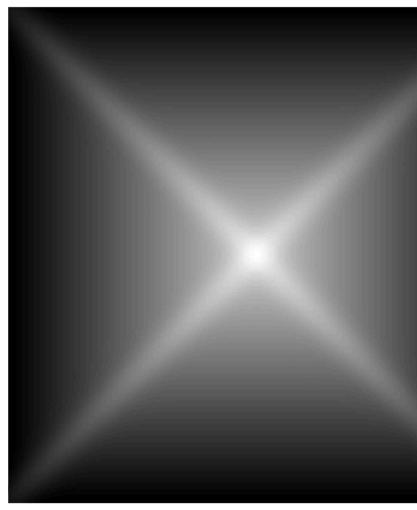
Things that are very close and/or large are hard to see Things far away are hard to see



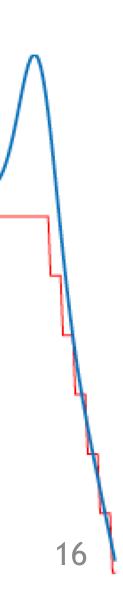
Vasarely visual illusion

15

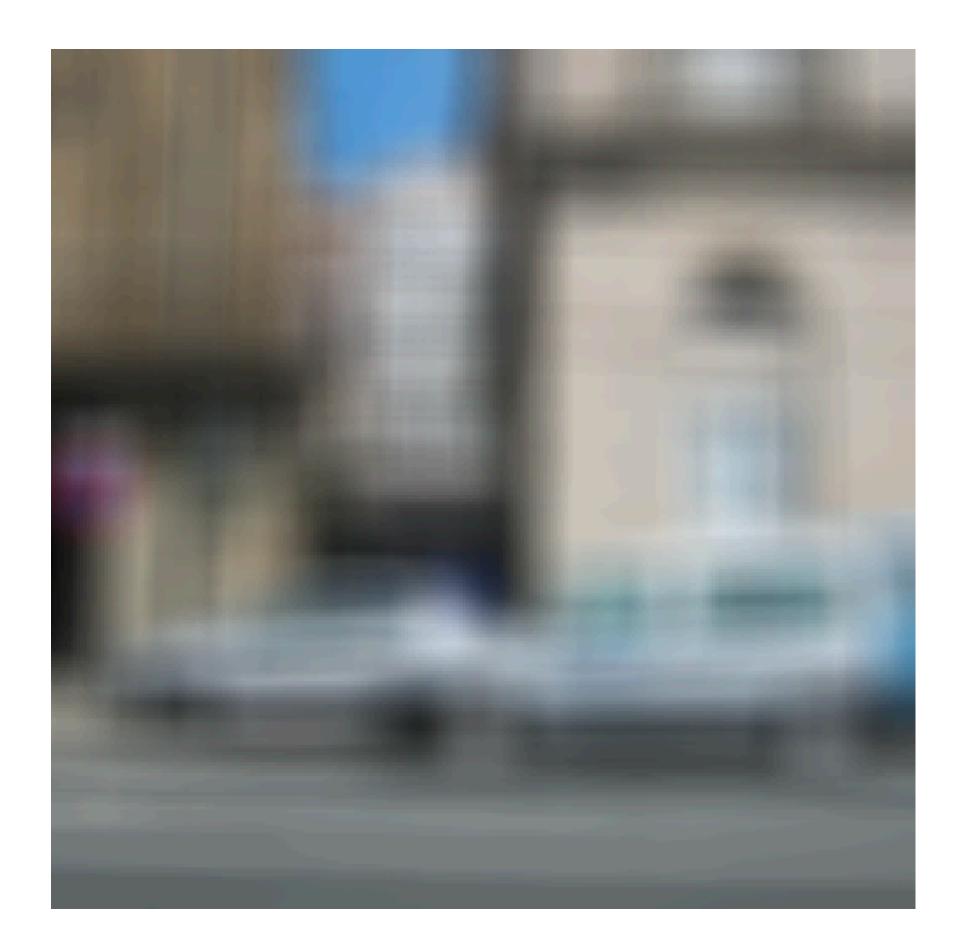




Horizontal section



Today: A collection of useful filters

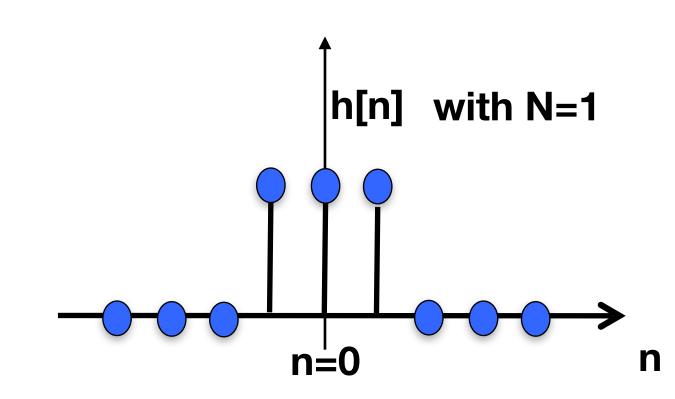


Low-pass filters

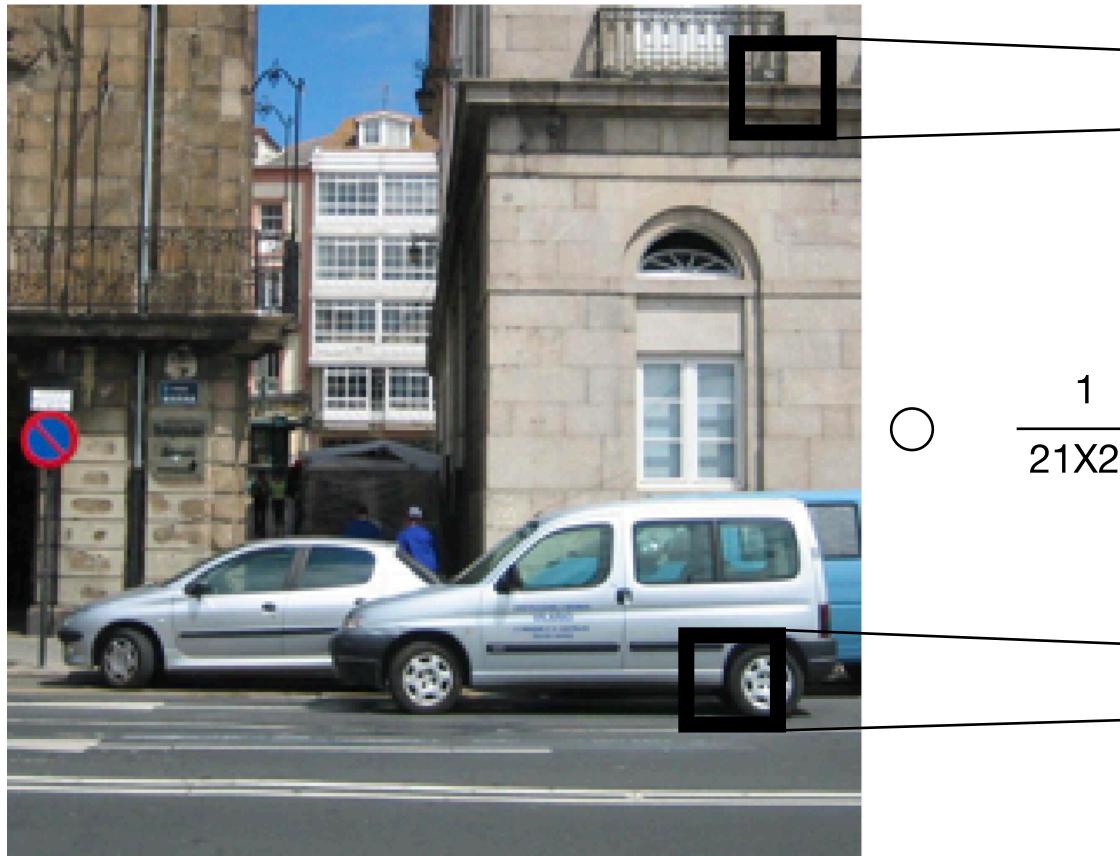
High-pass filters

Low pass-filters

 $h_{N,M}[n,m] = \begin{cases} 1 & \text{if } -N \le n \le N \text{ and } -M \le m \le M \\ 0 & \text{otherwise} \end{cases}$



1 1 1	• • •	1 1 1	2M+1
1	1	1	



256X256

What does it do?

- Achieve smoothing effect (remove sharp features)

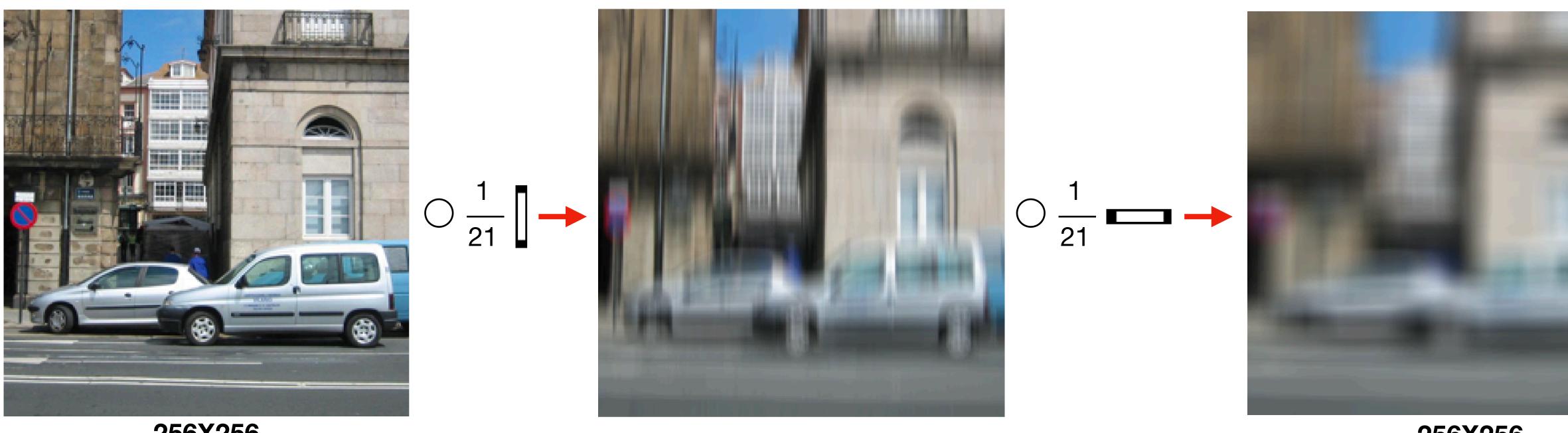
mean	
21 =	
mean	

256X256

• Replaces each pixel with an average of its neighborhood

The box filter is separable as it can be written as the convolution of two 1D kernels

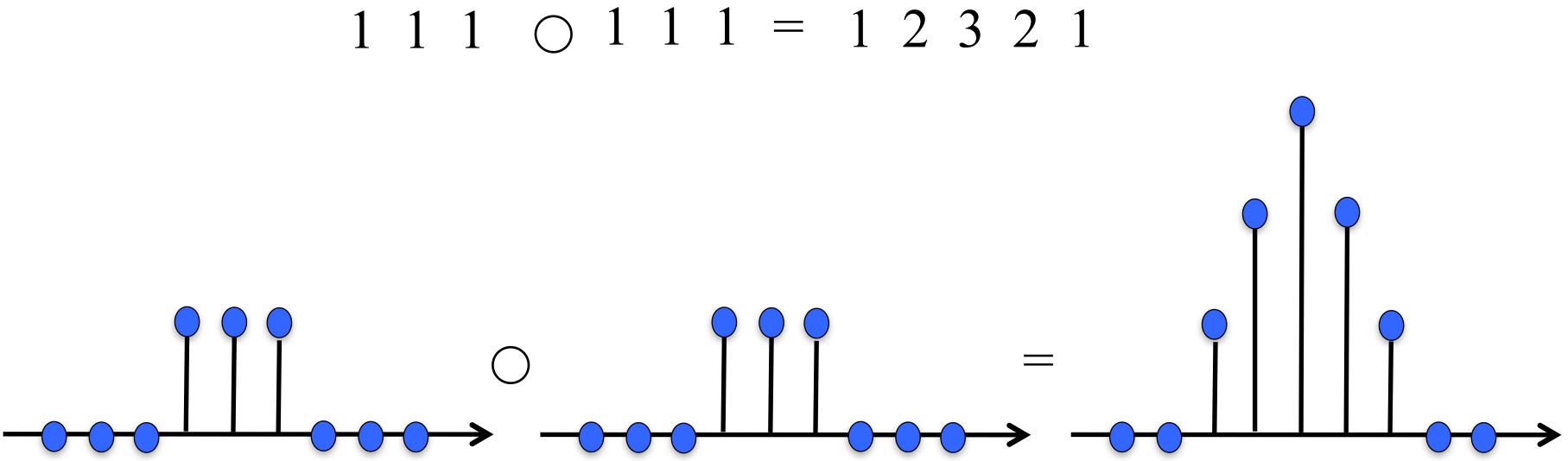
 $h_{N,M}[n,m] = h_{N,0} \circ h_{0,M}$



256X256

Requires N+N sums, instead of N*N

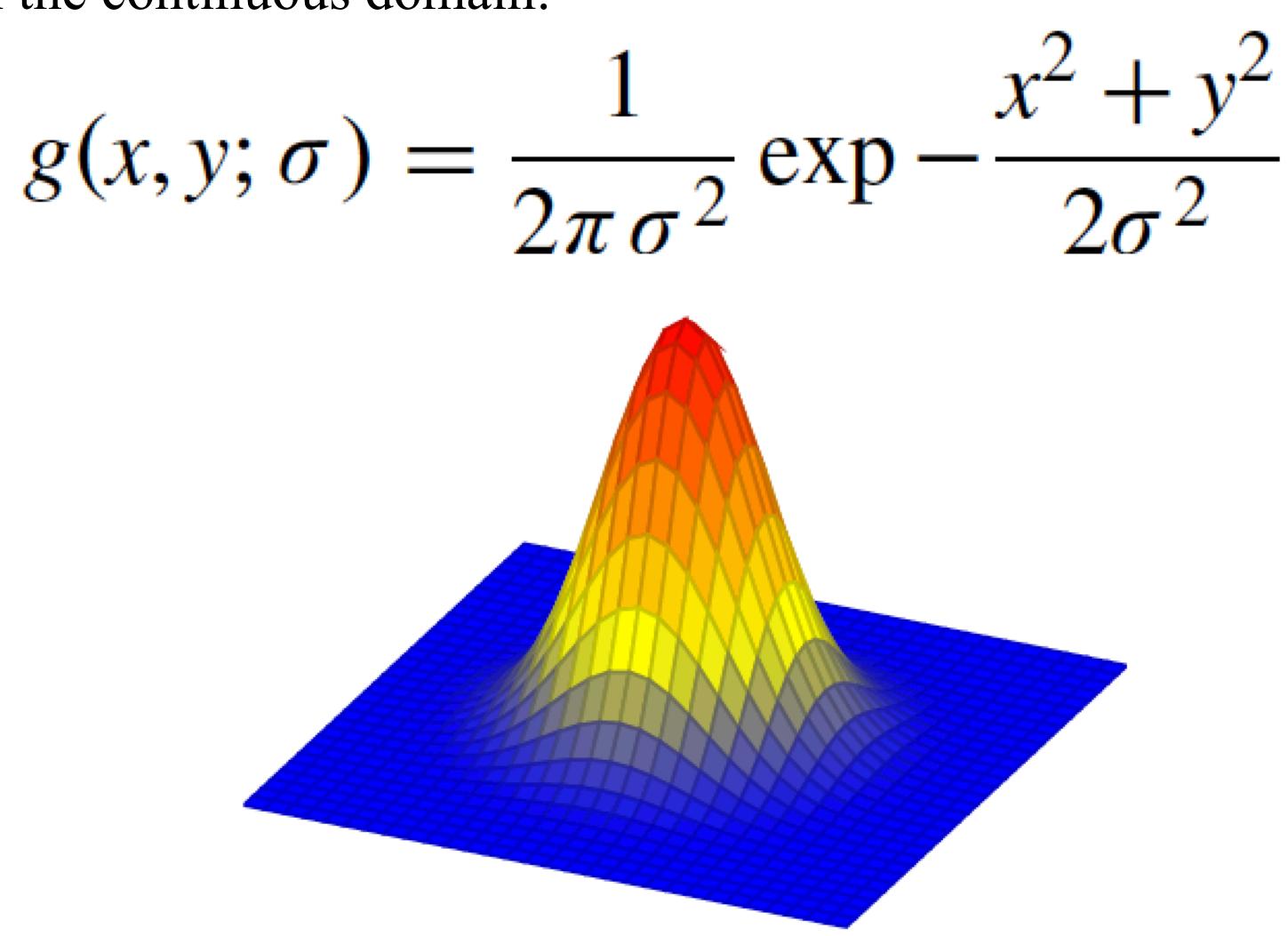
If you convolve two boxes:



The convolution of two box filters is not another box filter. It is a triangular filter.

Gaussian filter

In the continuous domain:



Gaussian filter

 $g(x, y; \sigma) =$

Discretization of the Gaussian: At 3σ the amplitude of the Gau

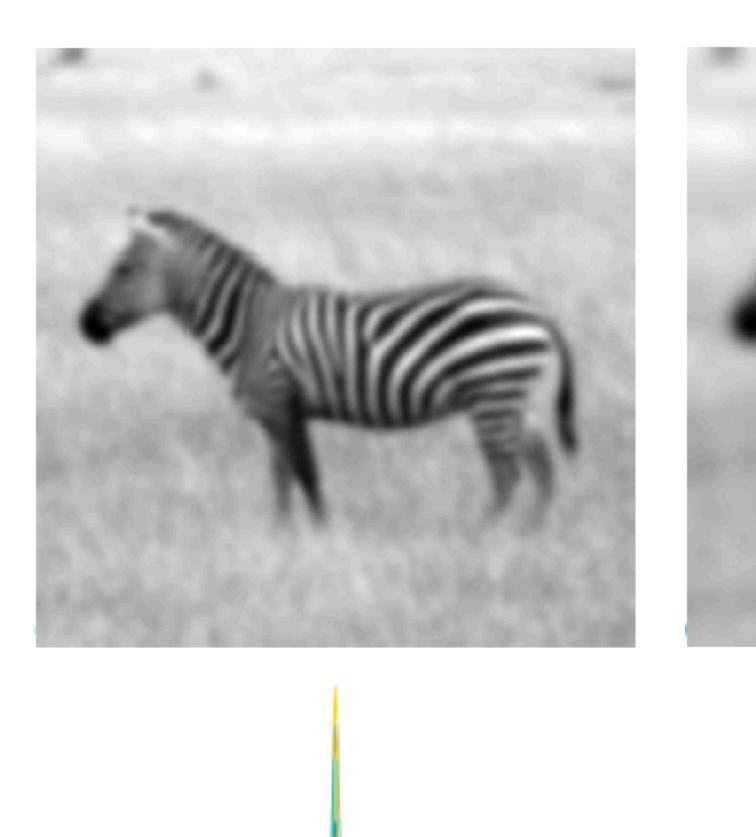
$g[m,n;\sigma] =$

$$\frac{1}{2\pi\sigma^2}\exp{-\frac{x^2+y^2}{2\sigma^2}}$$

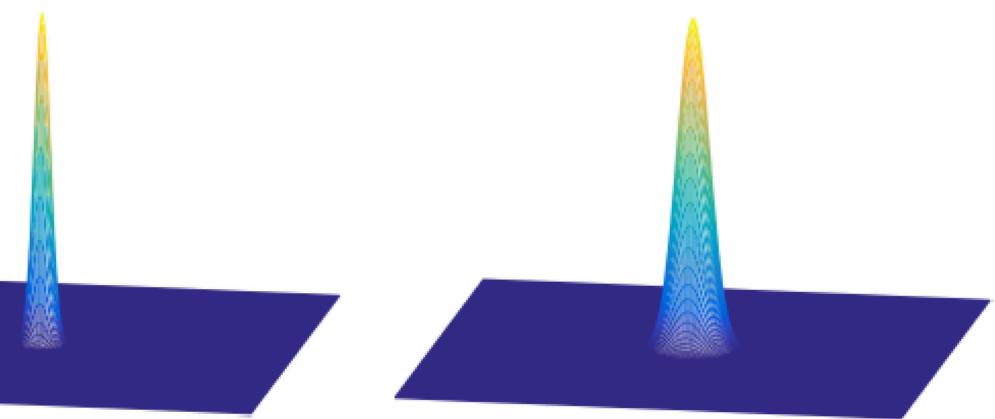
At 3σ the amplitude of the Gaussian is around 1% of its central value

$$\exp -\frac{m^2 + n^2}{2\sigma^2}$$

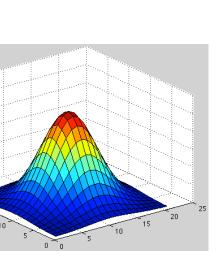
 $g[m,n;\sigma] = \exp{-\frac{m^2 + n^2}{2\sigma^2}}$

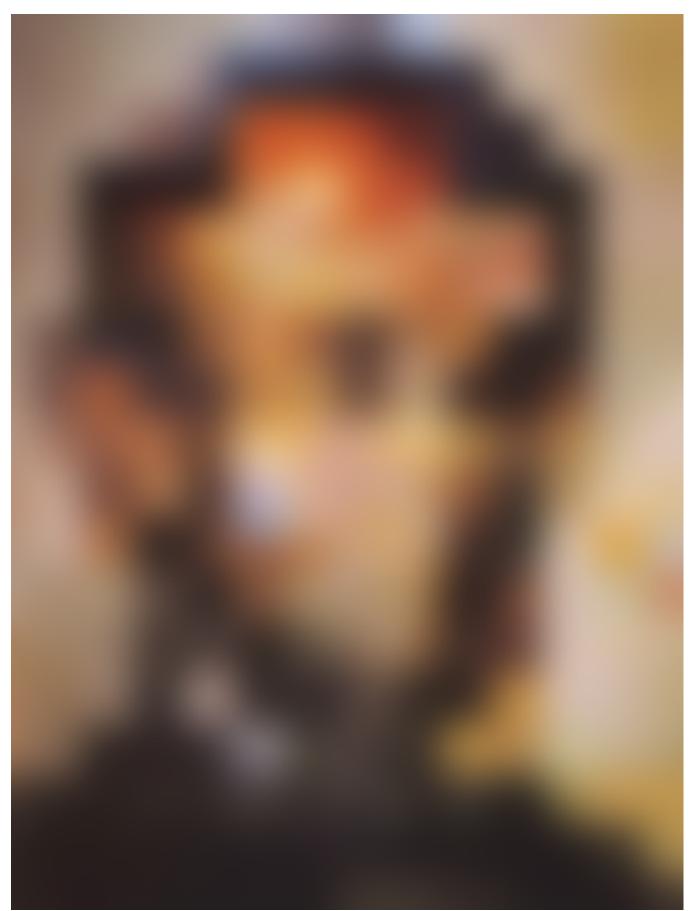


Scale



Gaussian filter





Properties of the Gaussian filter

 $g(x, y; \sigma) = \frac{1}{2\sigma}$

- The n-dimensional Gaussian is the only completely circularly symmetric operator that is separable.
- The (continuous) Fourier transform of a Gaussian is another gaussian

$$\frac{1}{\pi\sigma^2}\exp-\frac{x^2+y^2}{2\sigma^2}$$

 $G(u,v;\sigma) = \exp(-2\pi^2(u^2 + v^2)\sigma^2)$

Properties of the Gaussian filter

 $g(x, y; \sigma) = \frac{1}{2\sigma}$

The convolution of two n-dimensional gaussians is an n-dimensional gaussian.

 $g(x, y; \sigma_1) \circ g(x, y)$

where the variance of the result is the sum

$$\sigma_3^2 = \sigma_1^2 +$$

(it is easy to prove this using the FT of the gaussian)

$$\frac{1}{\pi\sigma^2}\exp-\frac{x^2+y^2}{2\sigma^2}$$

$$\sigma_2$$
; σ_2) = $g(x, y; \sigma_3)$

$$\sigma_2^2$$

Properties of the Gaussian filter

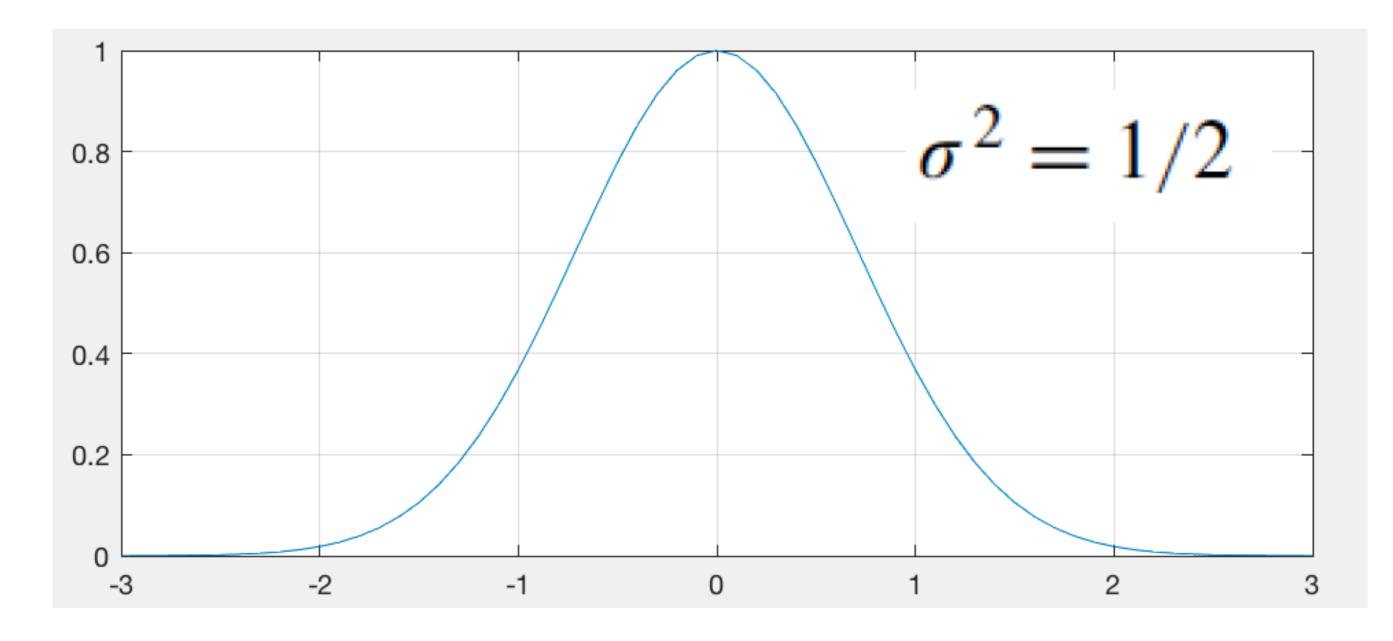
- $g(x, y; \sigma) = \frac{1}{2\pi}$

$$\frac{1}{\pi\sigma^2}\exp-\frac{x^2+y^2}{2\sigma^2}$$

Repeated convolutions of any function concentrated in the origin result in a gaussian (central limit theorem).

Discretization of the Gaussian

when working with discretized gaussians.



There are very efficient approximations to the Gaussian filter for certain values of σ with nicer properties than

 $g_5[n] = [0.0183, 0.3679, 1.0000, 0.3679, 0.0183]$

Binomial filter

the gaussian coefficients using only integers.

The simplest blur filter (low pass) is

Binomial filters in the family of filters obtained as successive convolutions of [1 1]

- Binomial coefficients provide a compact approximation of

 - |1|

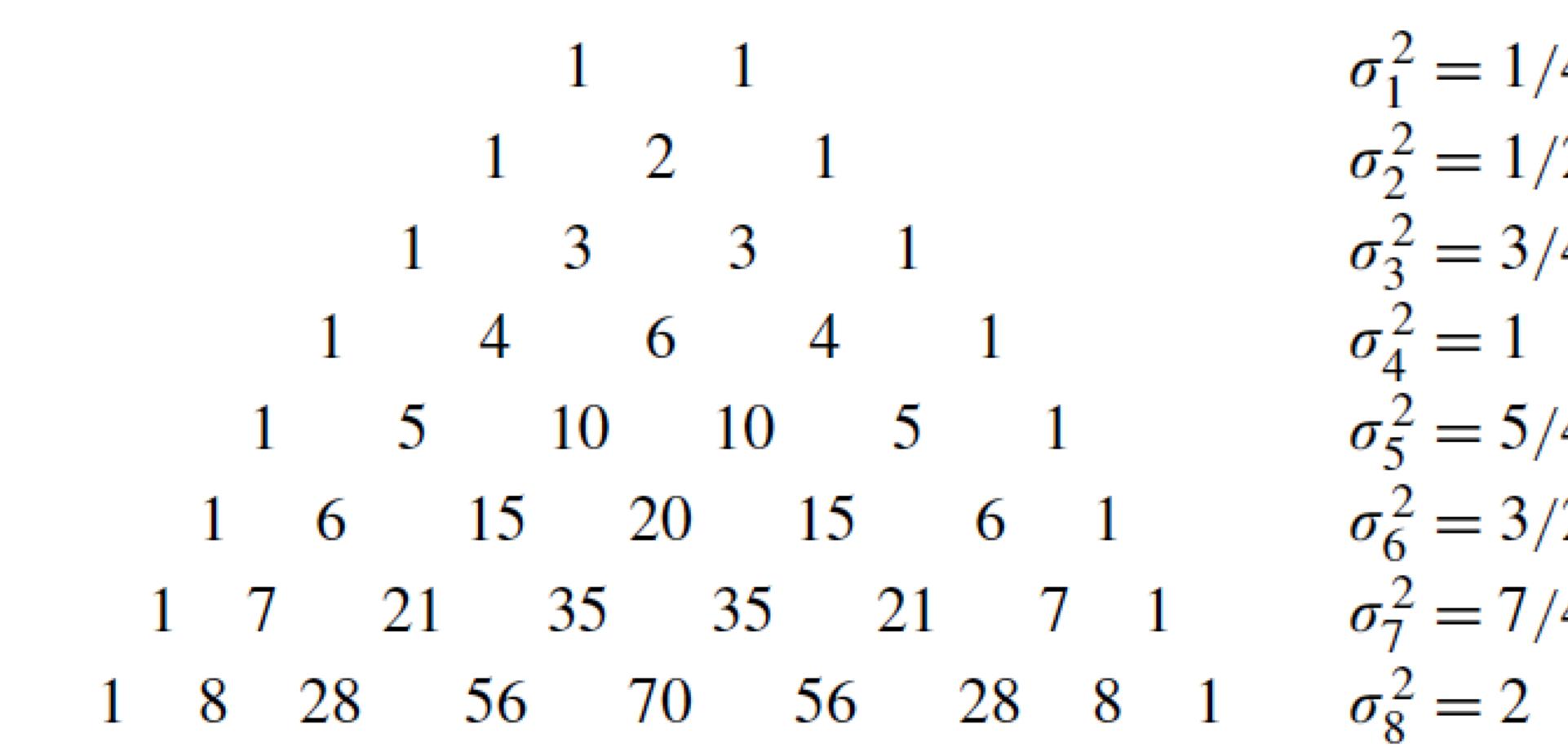
Binomial filter

$b_2 = [1 \ 1] \circ [1 \ 1] = [1 \ 2 \ 1]$ $b_3 = [1 1] \circ [1 1] \circ [1 1] = [1 3 3 1]$

 $b_1 = [1 \ 1]$

Binomial filter

 b_1 b_2 1 2 1 3 b_3 6 4 b_4 b_5 1 15 20 b_6 1 6 21 b_7 b_8



 $\sigma_1^2 = 1/4$ $\sigma_2^2 = 1/2$ $\sigma_{3}^{2} = 3/4$ $\sigma_{4}^{2} = 1$ $\sigma_{5}^{2} = 5/4$ $\sigma_{6}^{2} = 3/2$ $\sigma_{7}^{2} = 7/4$

- Sum of the values is 2ⁿ
- The variance of b_n is $\sigma^2 = n/4$
- The convolution of two binomial filters is also a binomial filter

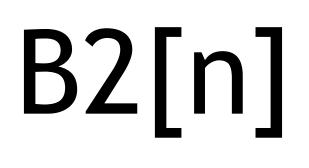
With a variance:

 $\sigma_n^2 + \sigma_m^2 = \sigma_{n+m}^2$

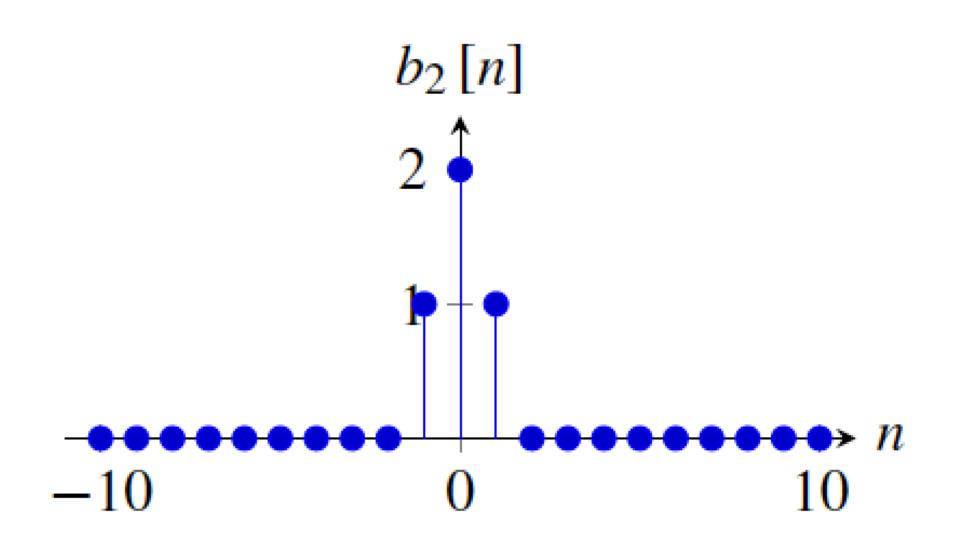
gaussian)

Properties of binomial filters

- $b_n \circ b_m = b_{n+m}$
- These properties are analogous to the gaussian property in the continuous domain (but the binomial filter is different than a discretization of a



$b_2 = [1, 2, 1]$



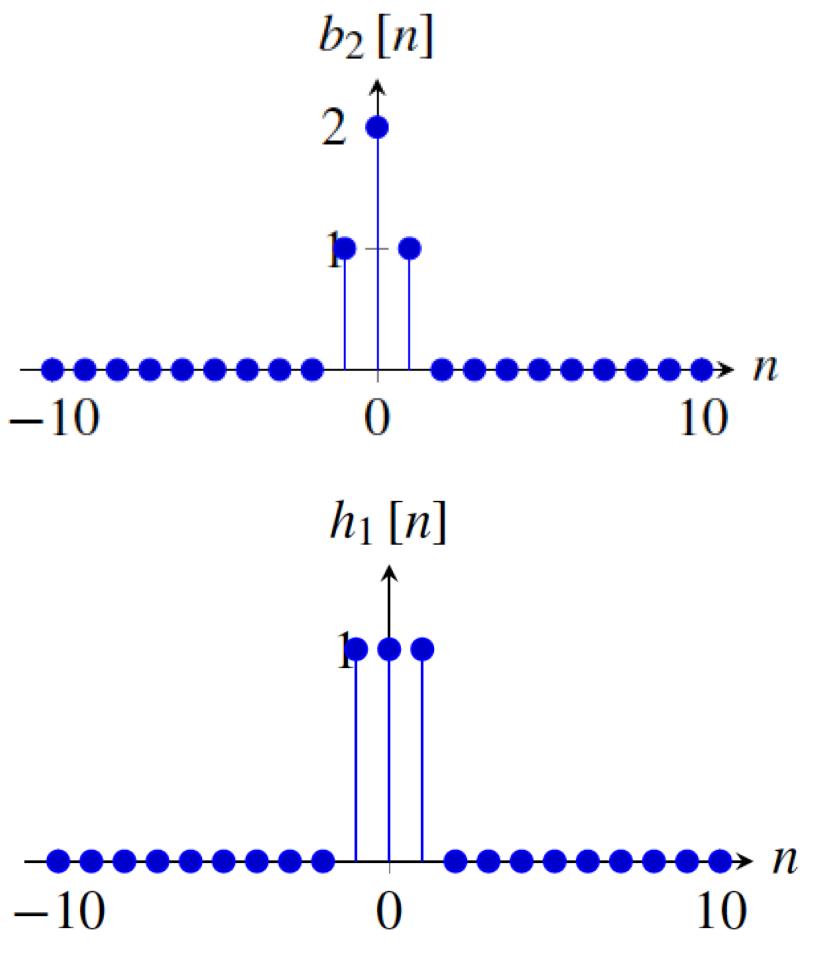
The simplest approximation to the Gaussian filter is the 3-tap kernel:

B2[n] versus the 3-tap box filter

 $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

-10

[1 1 1]



Which one is better?

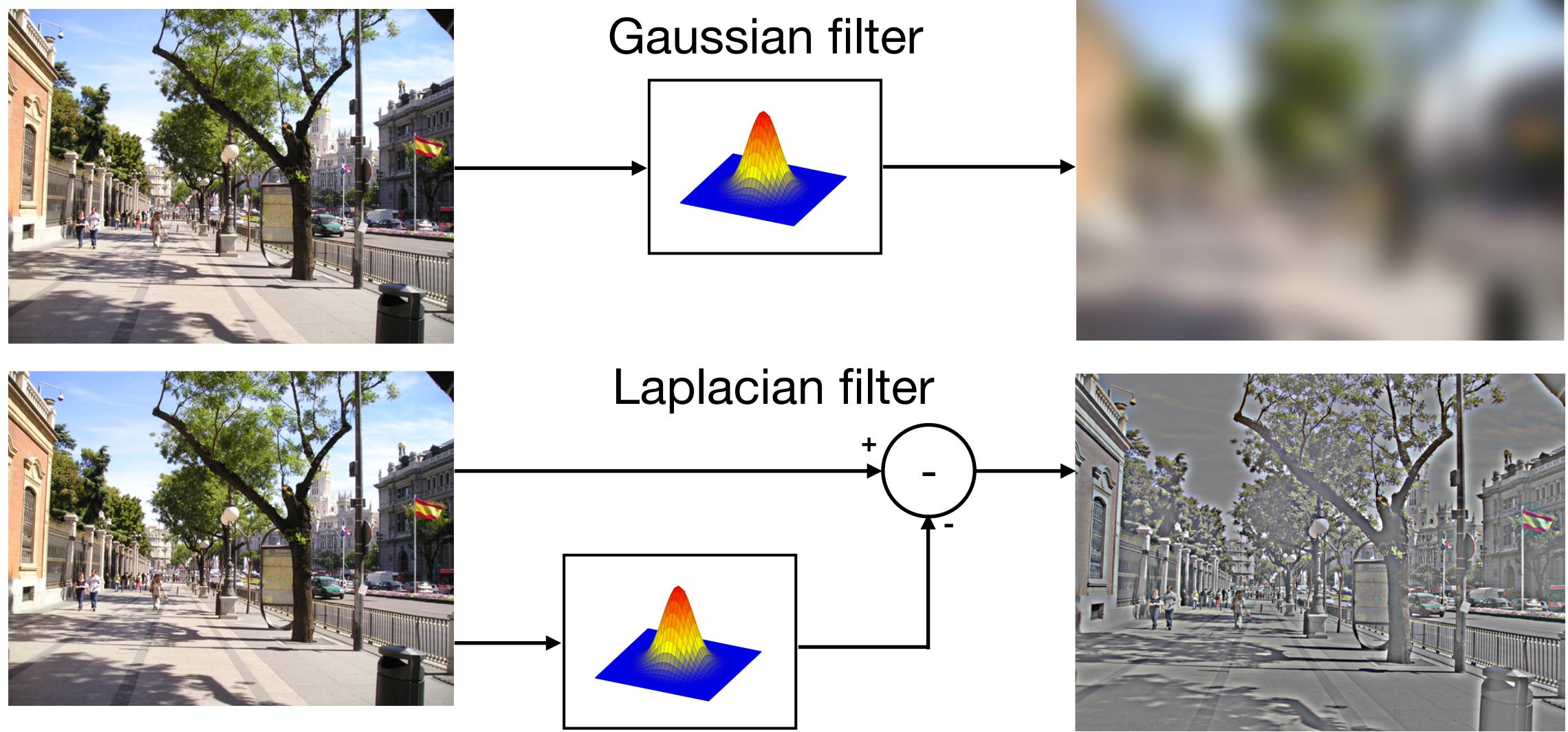
 $[1, 1, 1] \cap [..., 1, -1, 1, -1, 1, -1, ...] = [..., -1, 1, -1, 1, -1, 1, ...]$ $[1, 2, 1] \cap [..., 1, -1, 1, -1, 1, -1, ...] = [..., 0, 0, 0, 0, 0, 0, ...]$

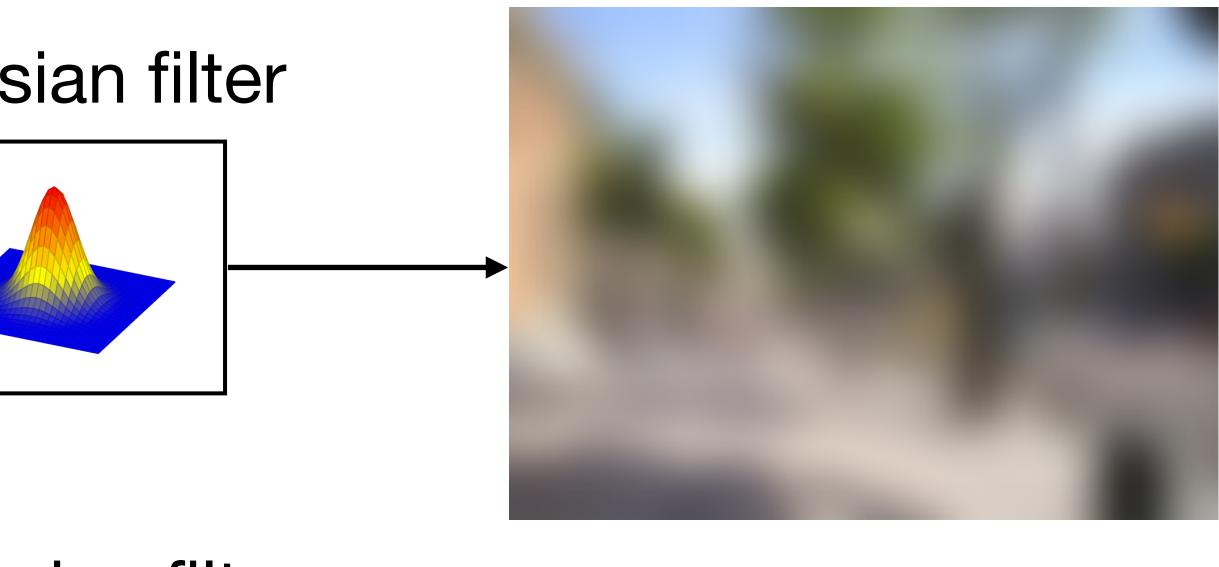
B2[n]

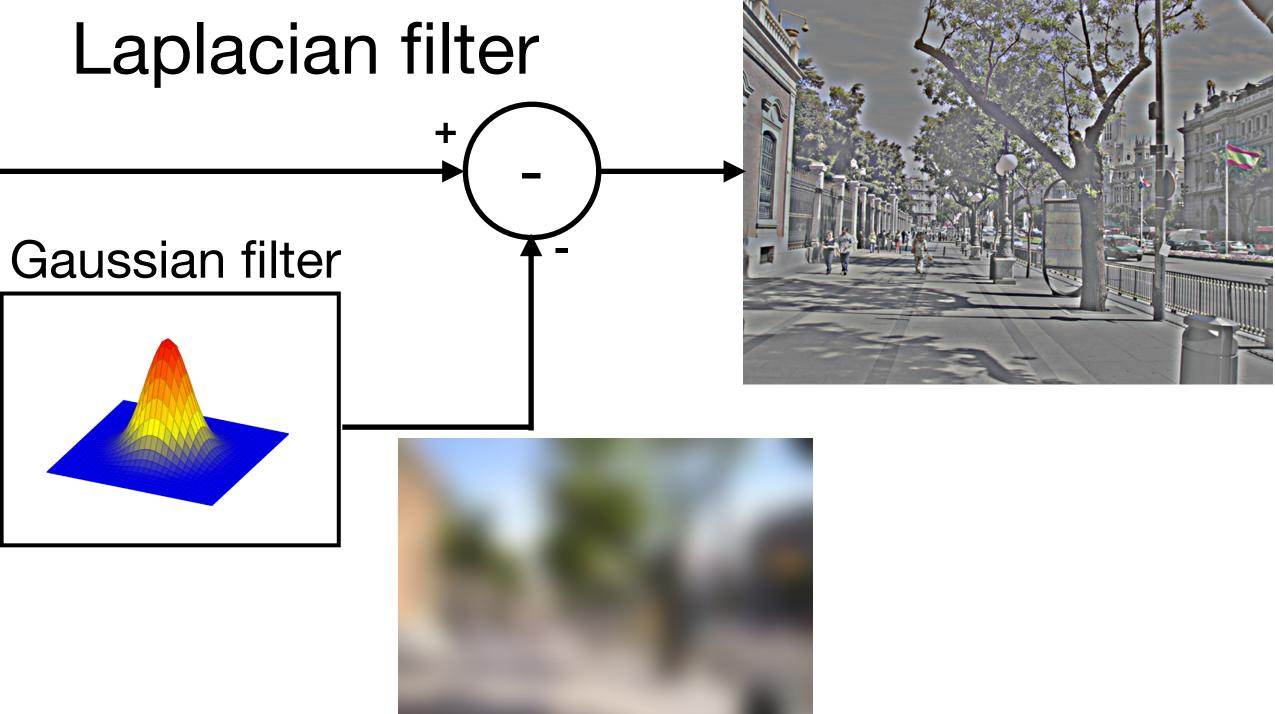
B2[n]

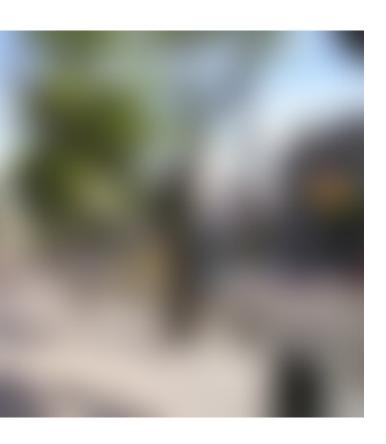
$b_{2,2} = b_{2,0} \circ b_{0,2} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

What about the opposite of blurring?





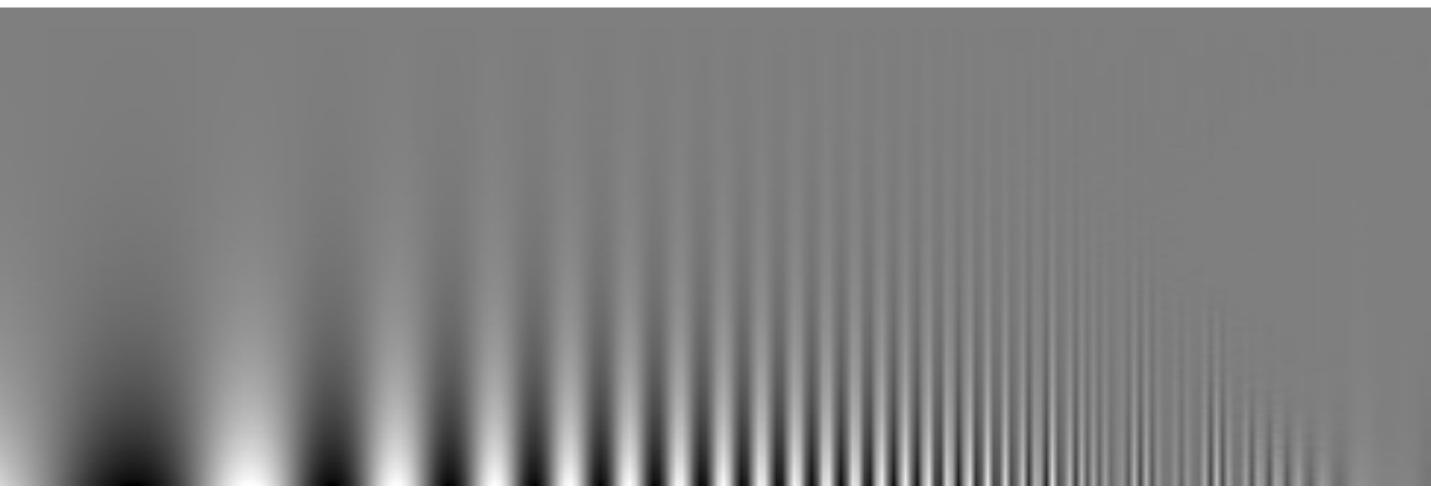




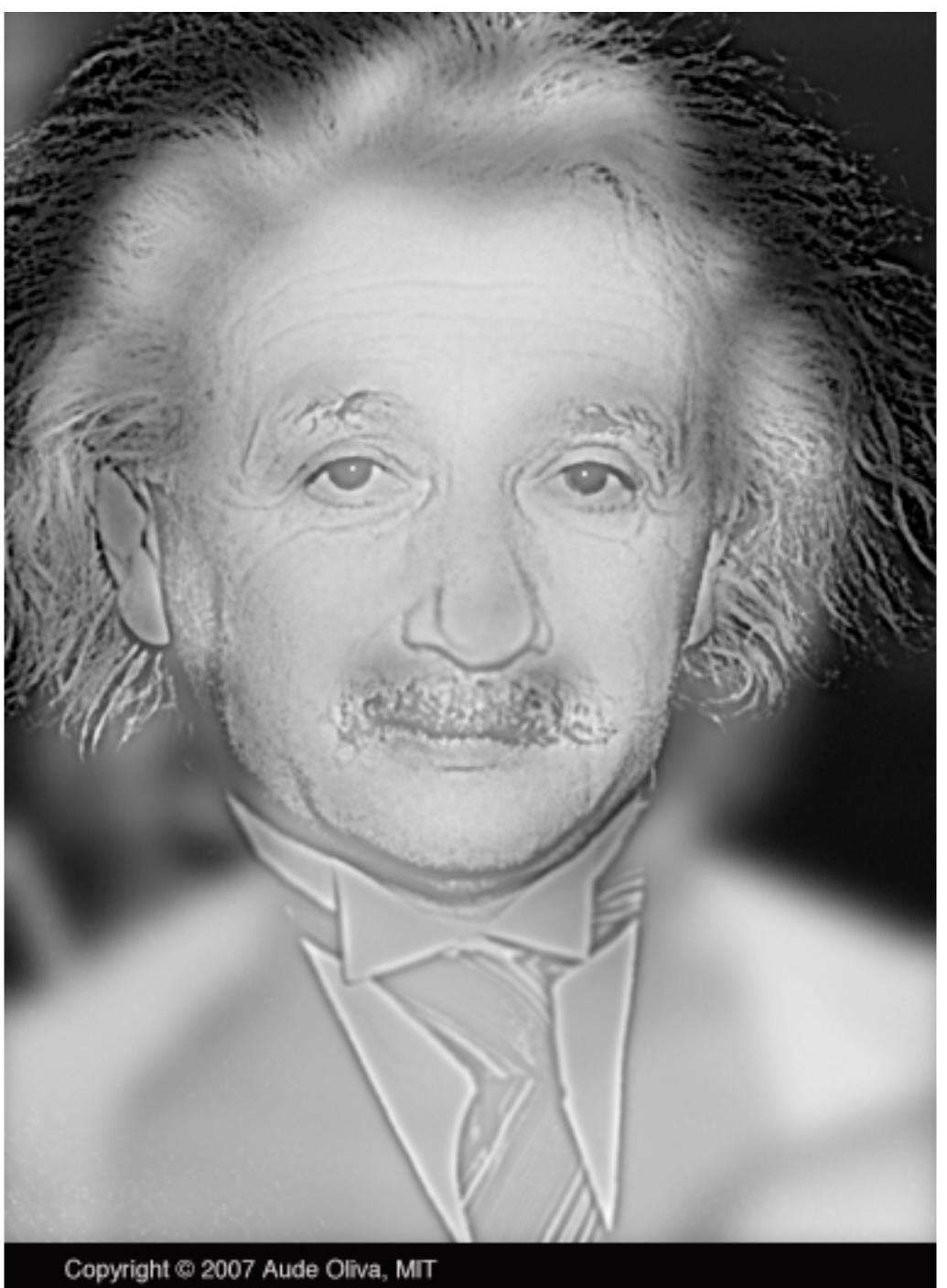
Hybrid Images

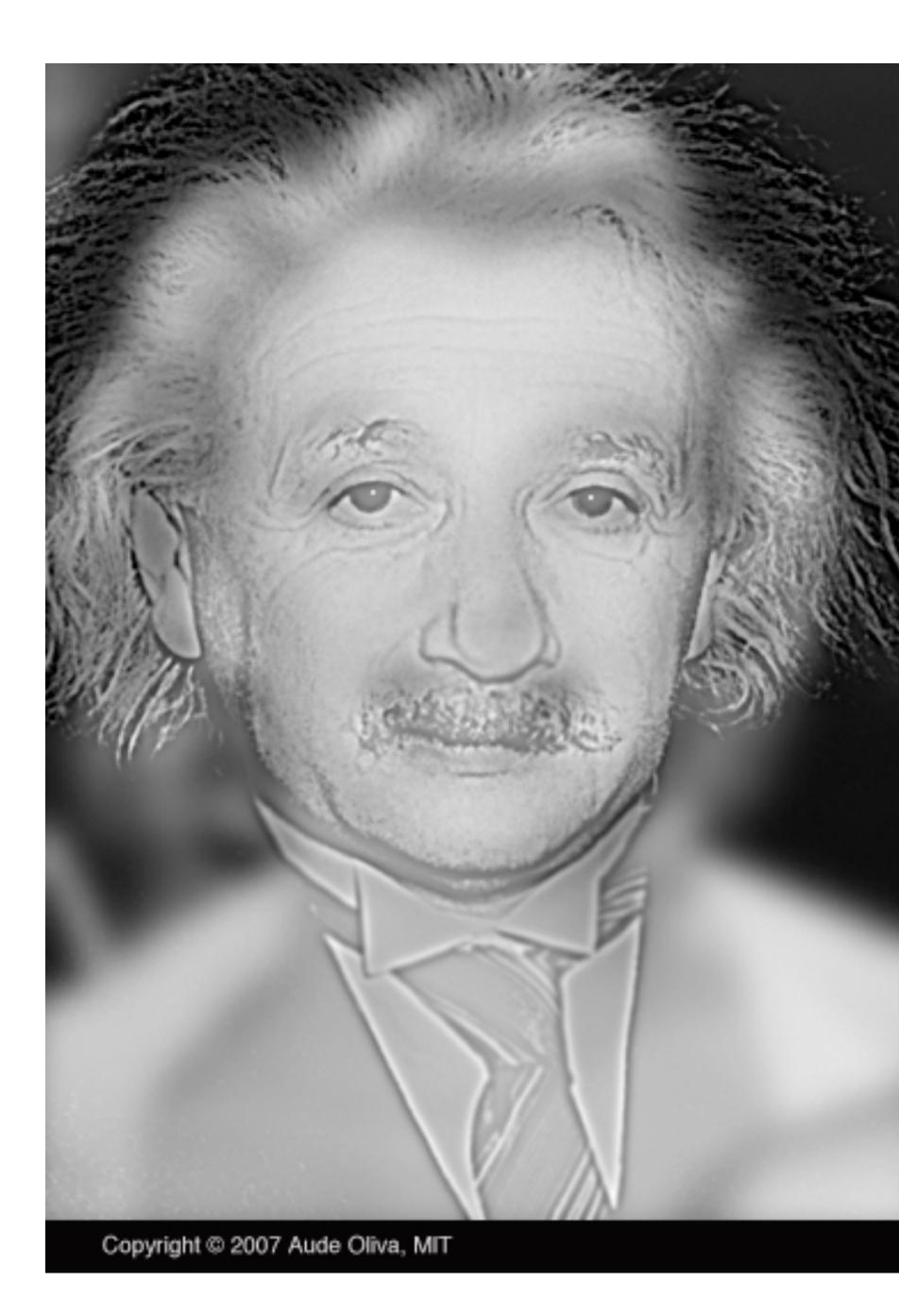
Oliva & Schyns

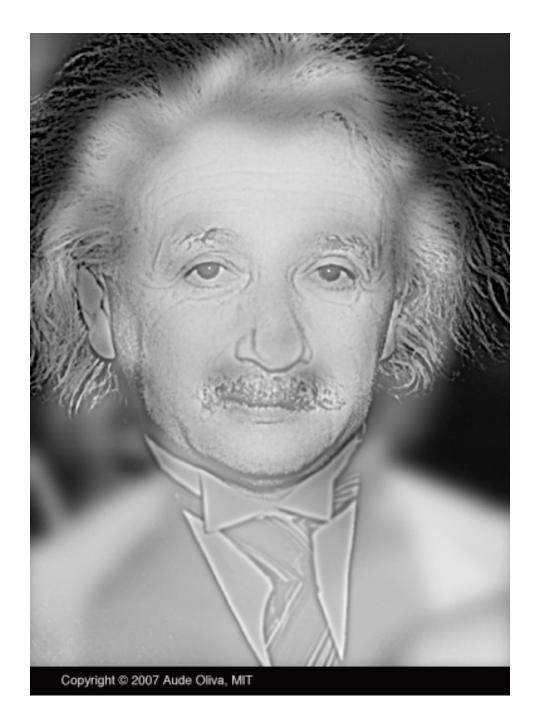
Hybrid Images

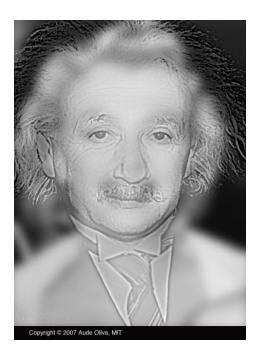


Hybrid Images









http://cvcl.mit.edu/hybrid_gallery/gallery.html

DR(MADRS)

High pass-filters

Finding edges in the image

Edge strength

Edge orientation:

Edge normal:

Image gradient:

$$\nabla \mathbf{I} = \left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)$$

Approximation image derivative:

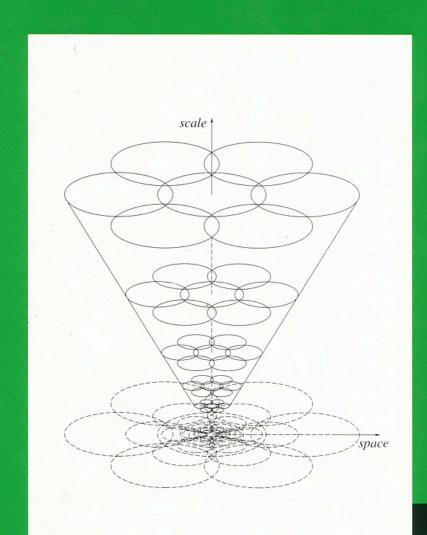
$$\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y) - \mathbf{I}(x - 1, y)$$

 $E(x,y) = |\nabla \mathbf{I}(x,y)|$

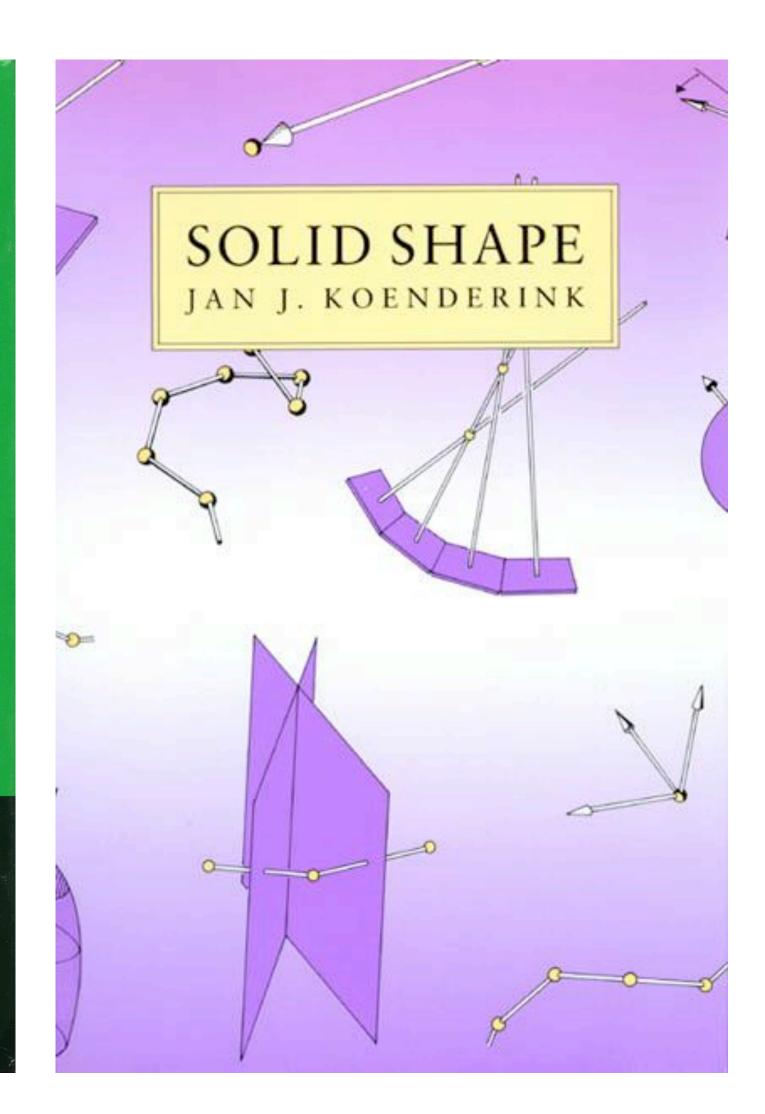
 $\theta(x, y) = \angle \nabla \mathbf{I} = \arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}$ $\mathbf{n} = \frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}$

Differential Geometry Descriptors

Scale-Space Theory in Computer Vision



Kluwer Academic Publishers **Tony Lindeberg**

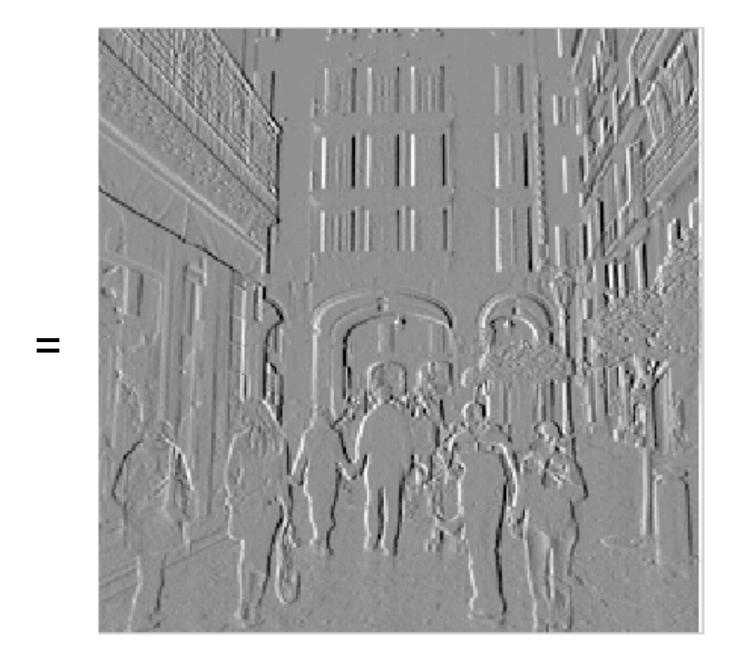


[-1, 1]

h[m,n]

g[m,n]

$\begin{bmatrix} -1 & 1 \end{bmatrix}$ $\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y) - \mathbf{I}(x - 1, y)$



f[m,n]

51

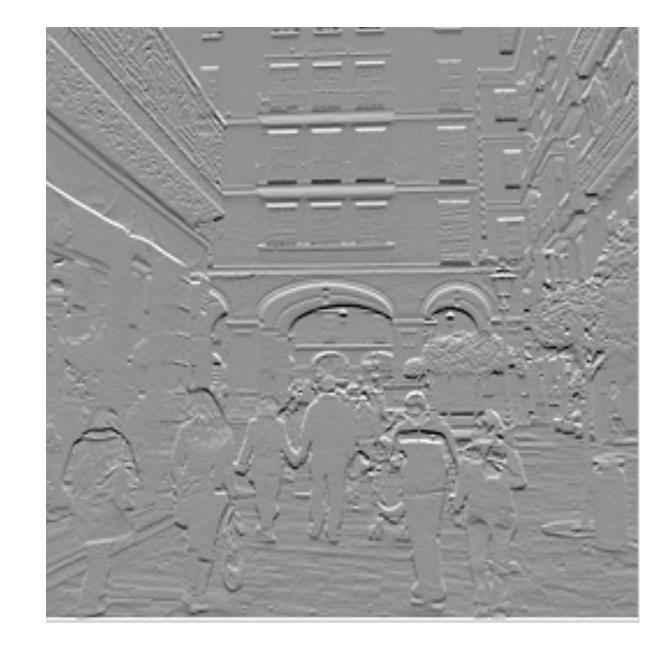
g[m,n]

[-1 1]^T

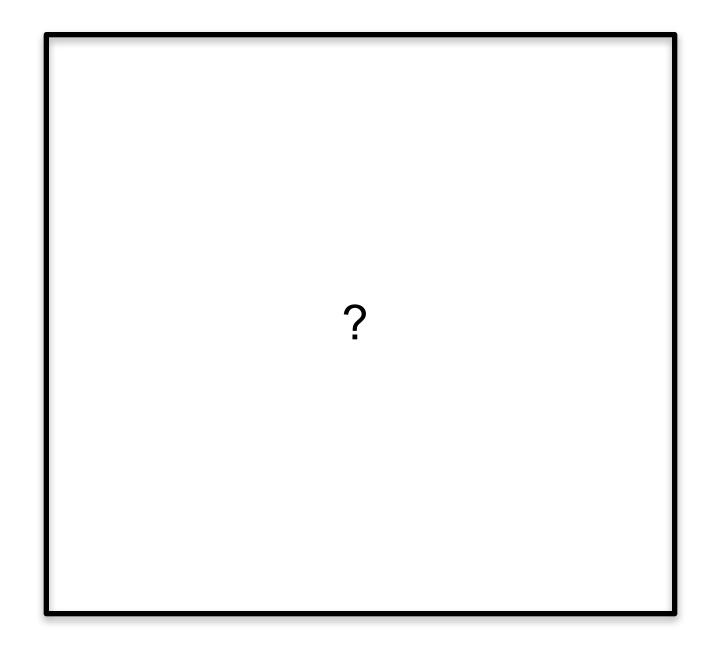
[-1, 1]⊤

h[m,n]

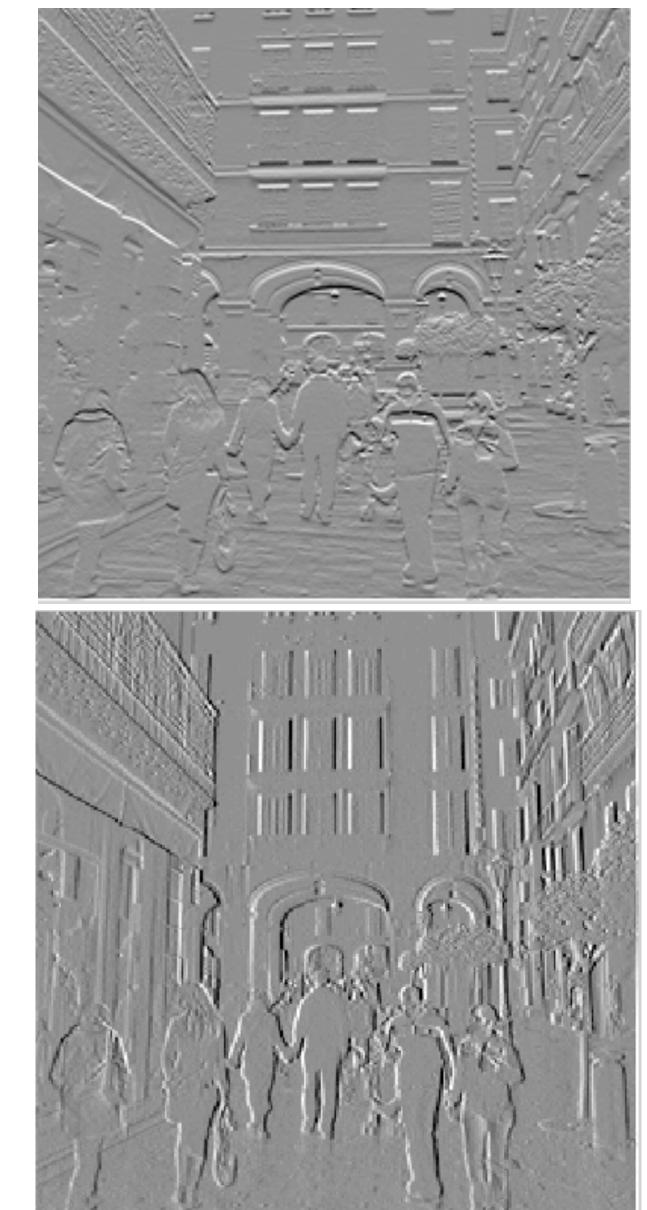
=



f[m,n]

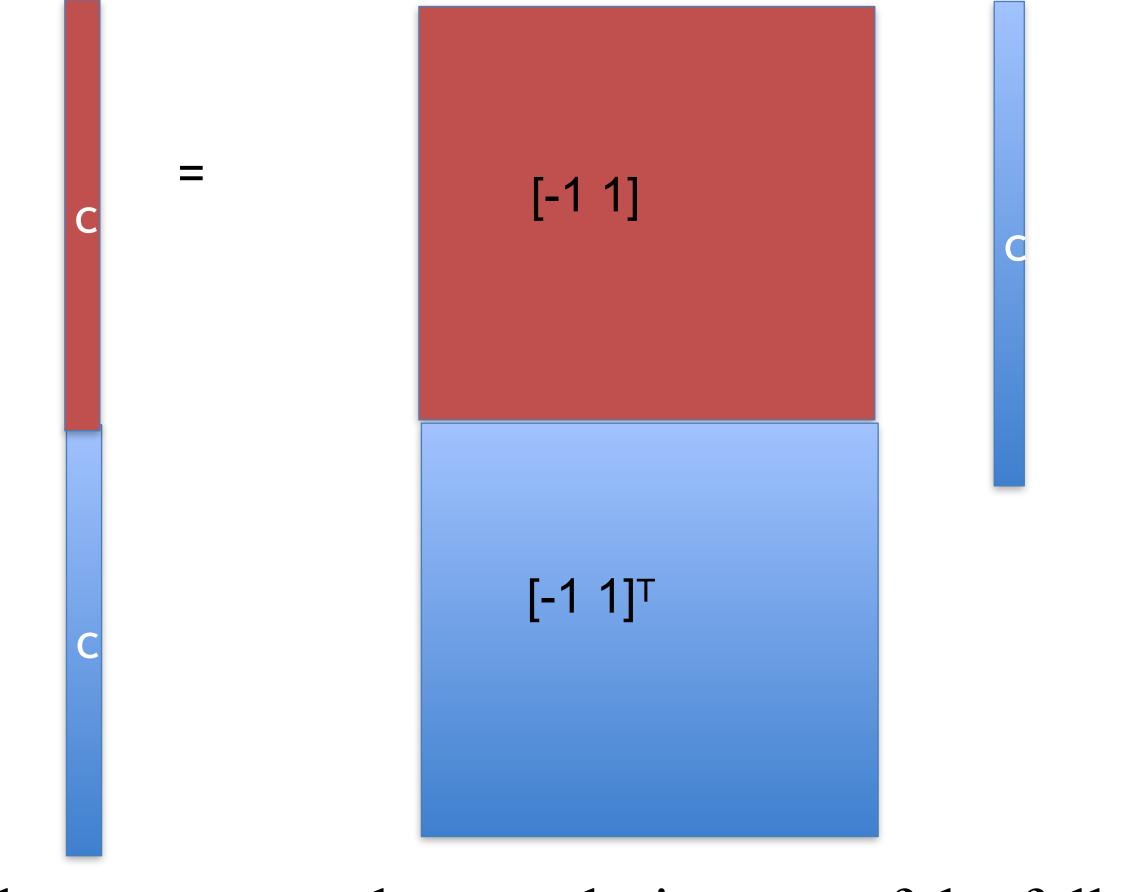


Back to the image



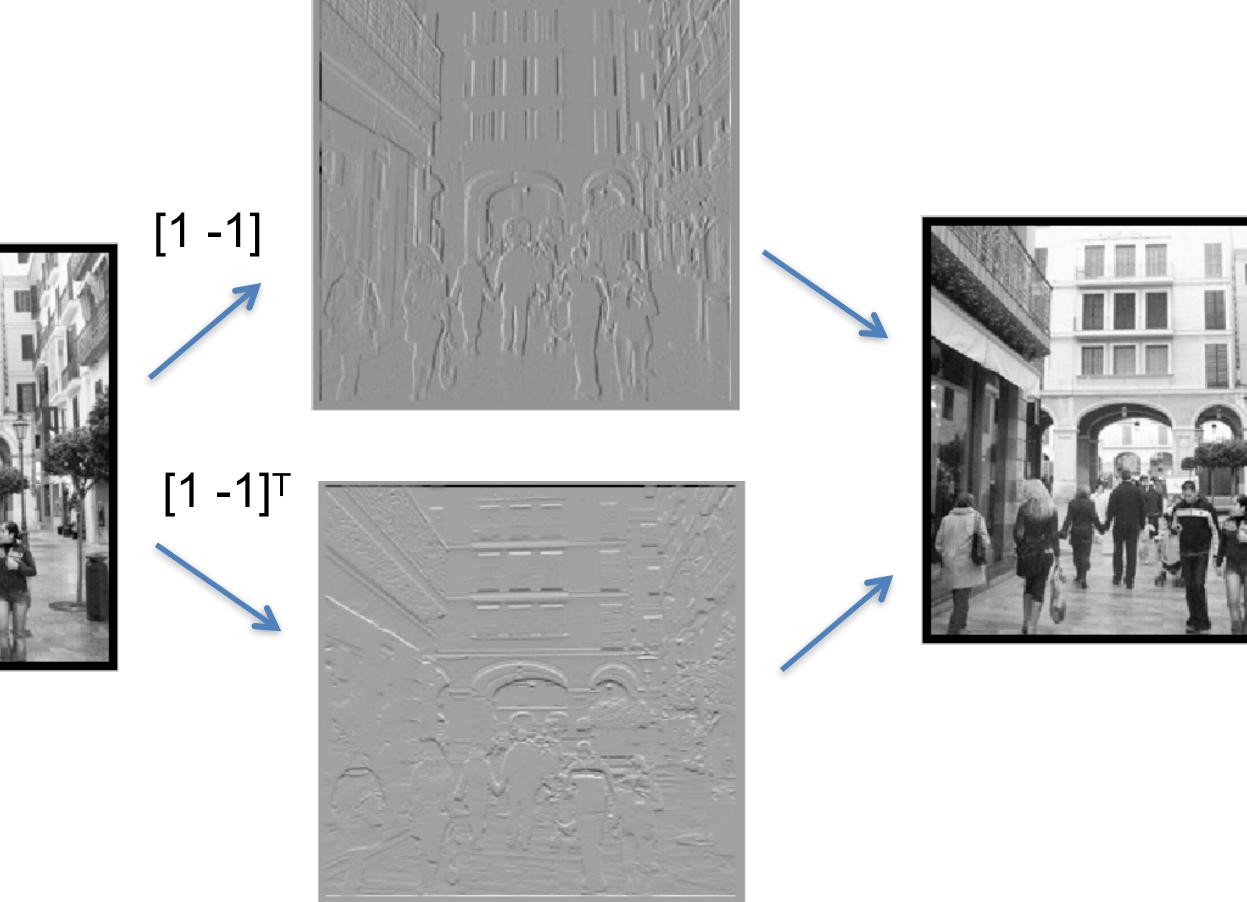
Reconstruction from 2D derivatives

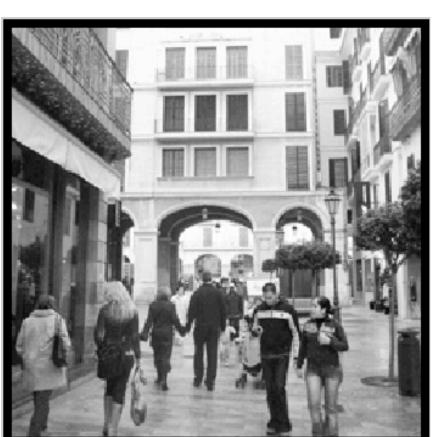
In 2D, we have multiple derivatives (along *n* and *m*)



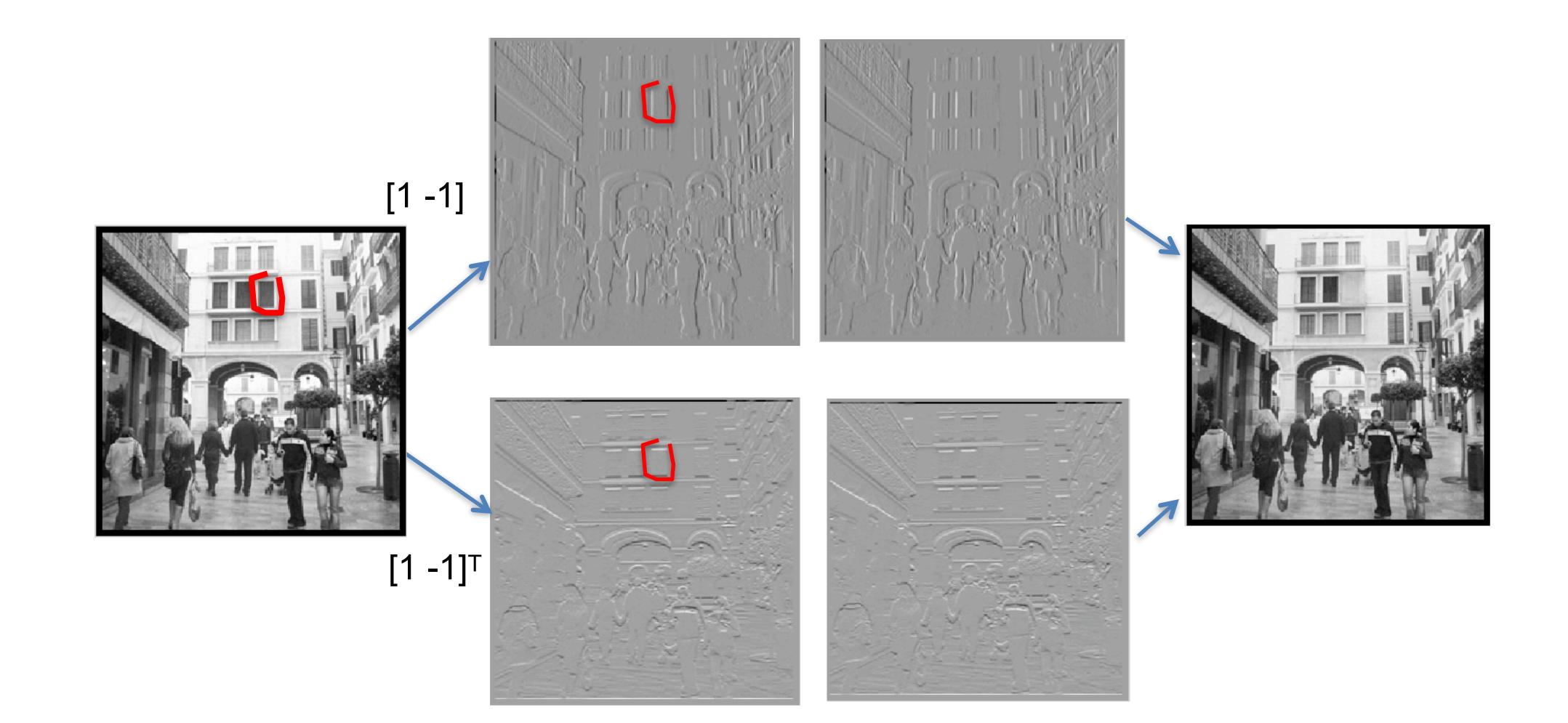
and we compute the pseudo-inverse of the full matrix.

Reconstruction from 2D derivatives





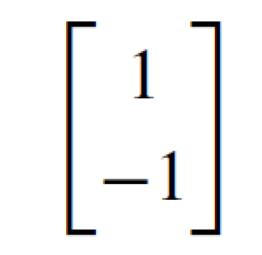
Editing the edge image



Thresholding edges

2D derivatives

There are several ways in which 2D derivatives can be approximated.



Robert-Cross operator:

And many more...

$$[1 - 1]$$

Issues with image derivatives

Derivatives are sensitive to noise \bullet

some regions (e.g., object boundaries, ...)

• If we consider continuous image derivatives, they might not be define in

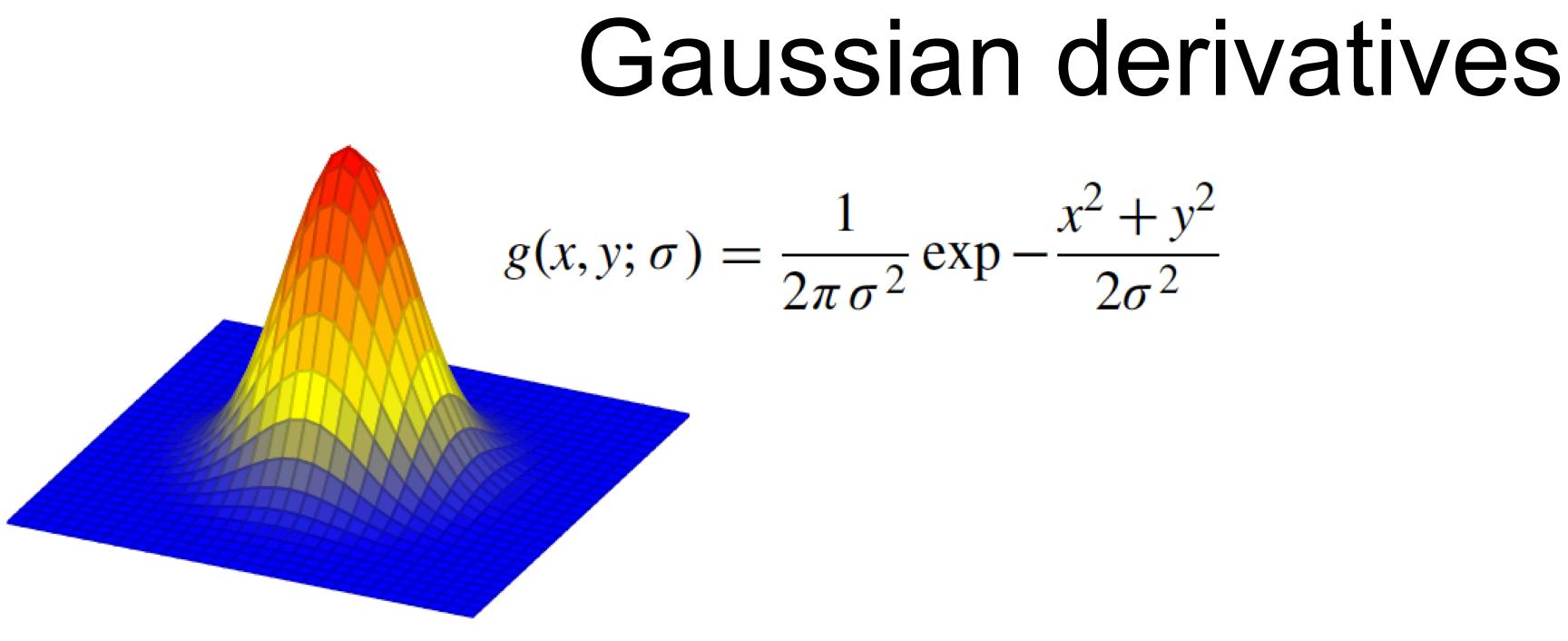
Derivatives

We want to compute the image derivative: $\frac{\partial f(x,y)}{\partial x}$ If there is noise, we might want to "smooth" it with a blurring filter $\frac{\partial f(x,y)}{\partial x} \circ g(x,y)$

But derivatives and convolutions are linear and we can move them around:

$$\frac{\partial f(x,y)}{\partial x} \circ g(x,y)$$

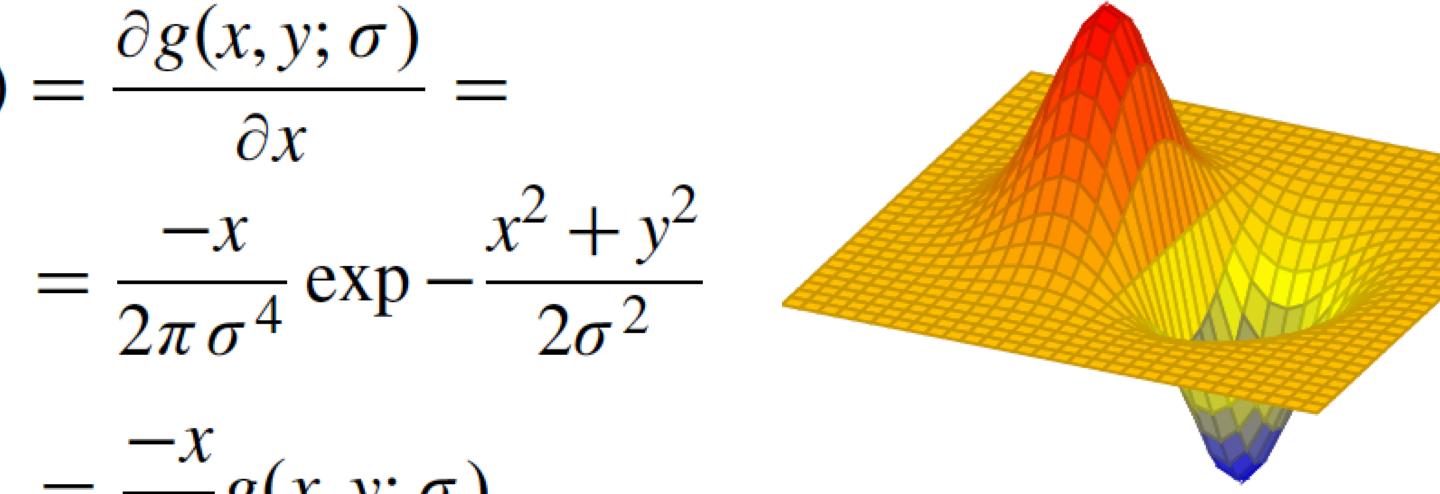
 $= f(x,y) \circ \frac{\partial g(x,y)}{\partial x}$

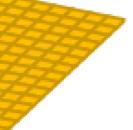


The continuous derivative is:

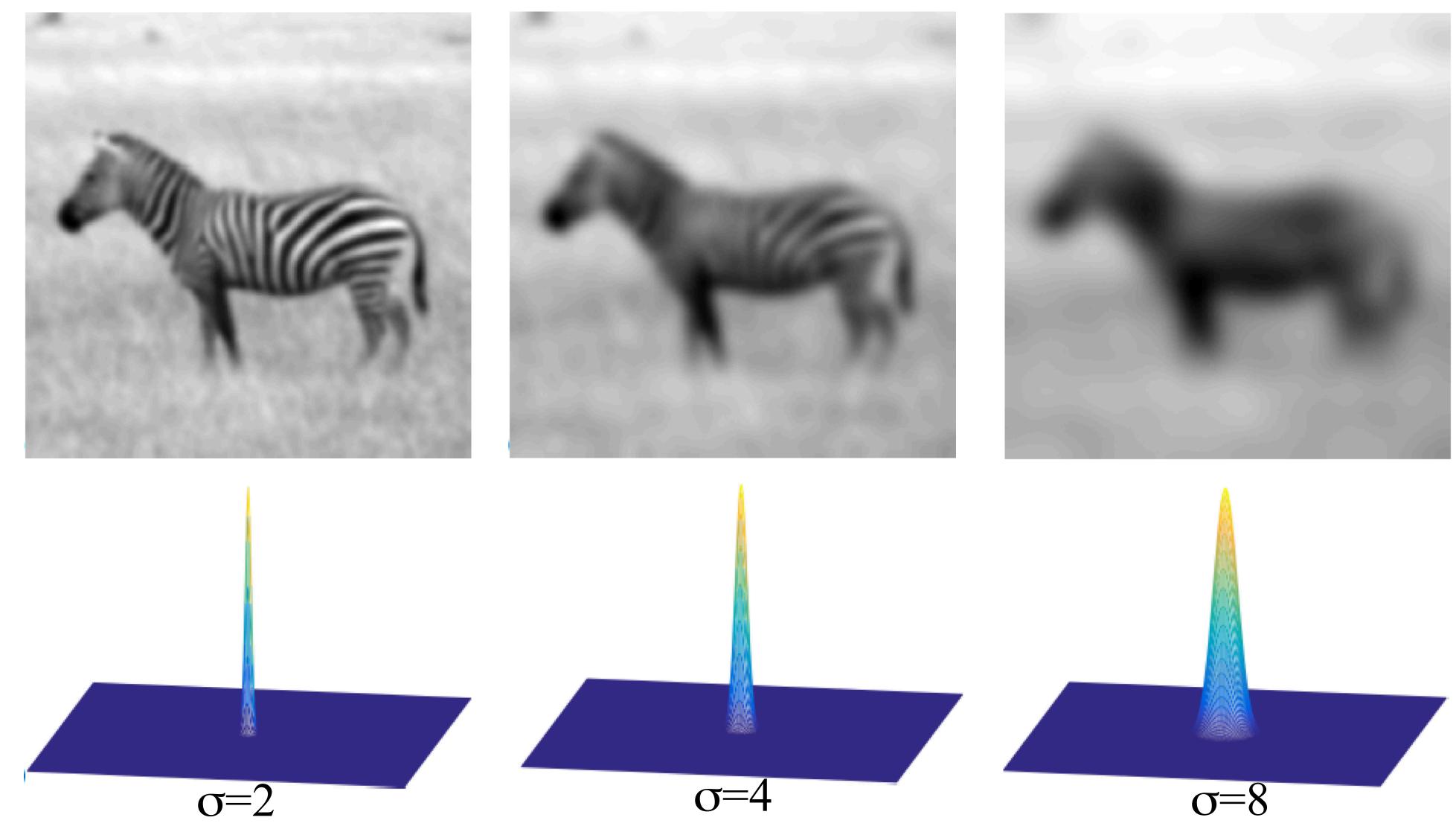
- $g_x(x,y;\sigma) = \frac{\partial g(x,y;\sigma)}{\partial x} =$

 - $= \frac{-x}{\sigma^2} g(x, y; \sigma)$

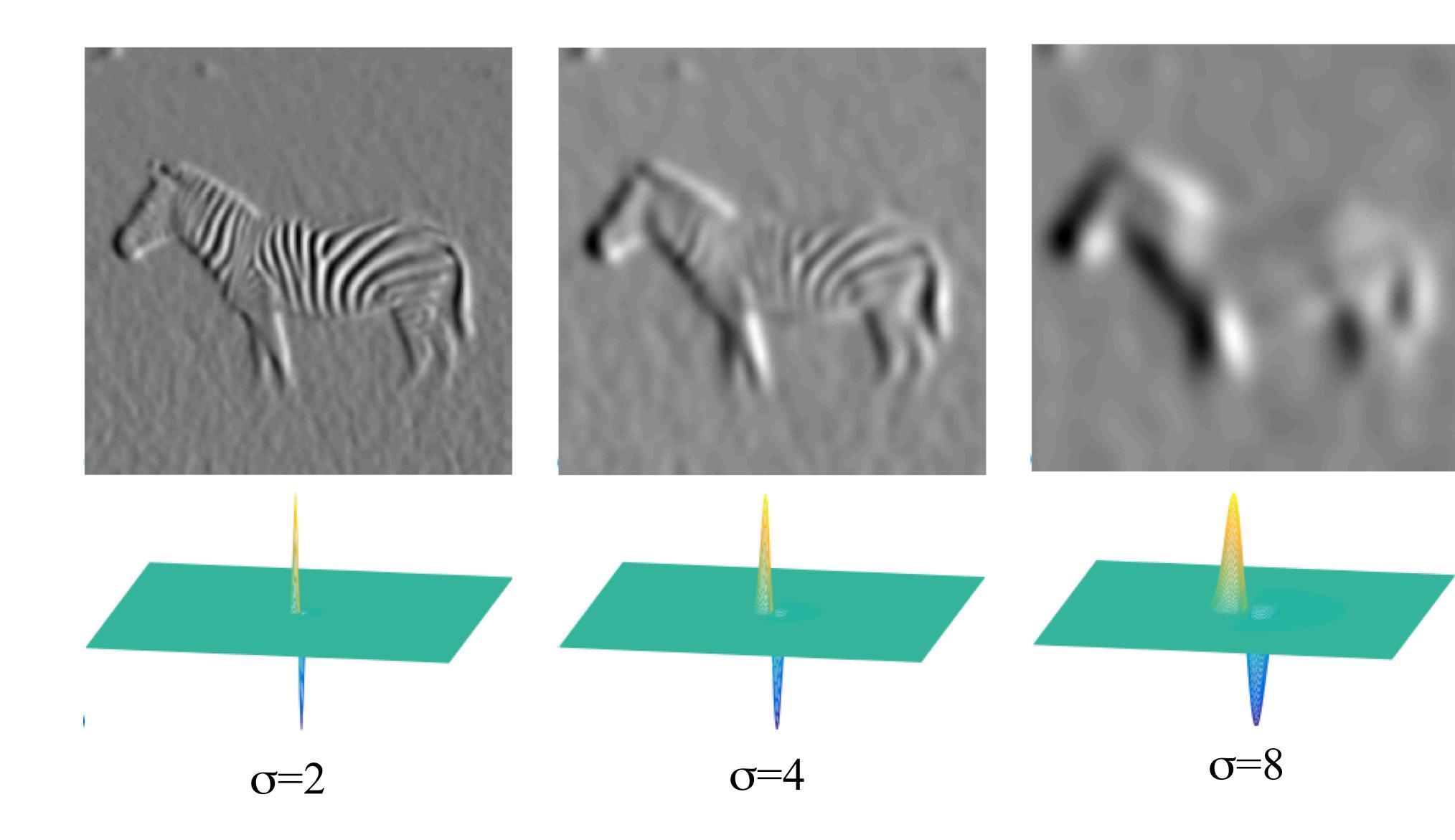




Gaussian Scale

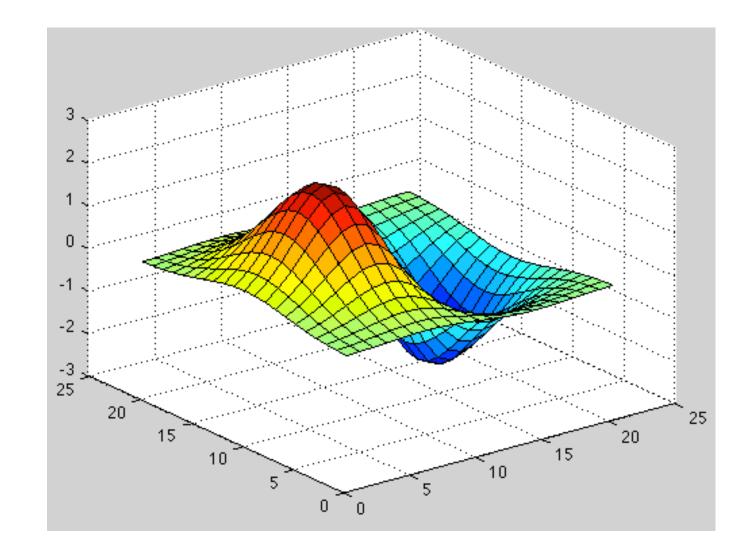


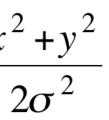
Derivatives of Gaussians: Scale

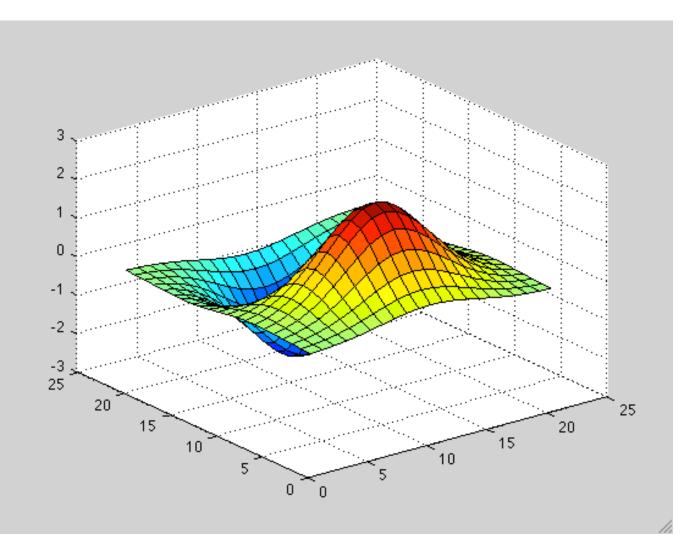


$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$g_{y}(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^{4}}e^{-\frac{x^{2}}{2\sigma^{4}}}$$

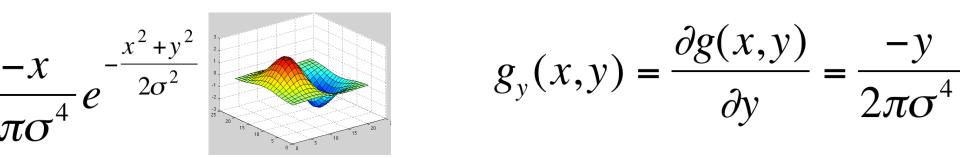






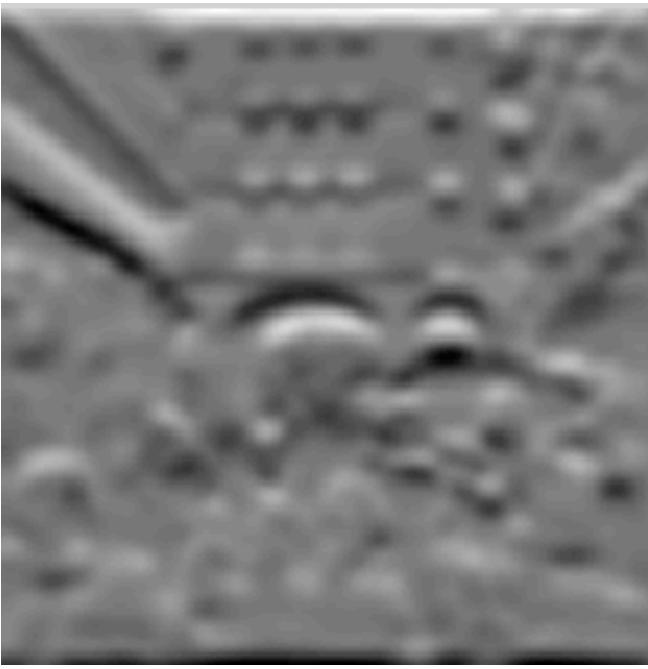
$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi o}$$

What about other orientations not axis aligned?



$$\delta_y(x,y) - \partial_y$$

$$\frac{x^2 + y^2}{2\sigma^2}$$



$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \int_{0}^{1} \int_{0}^{1}$$

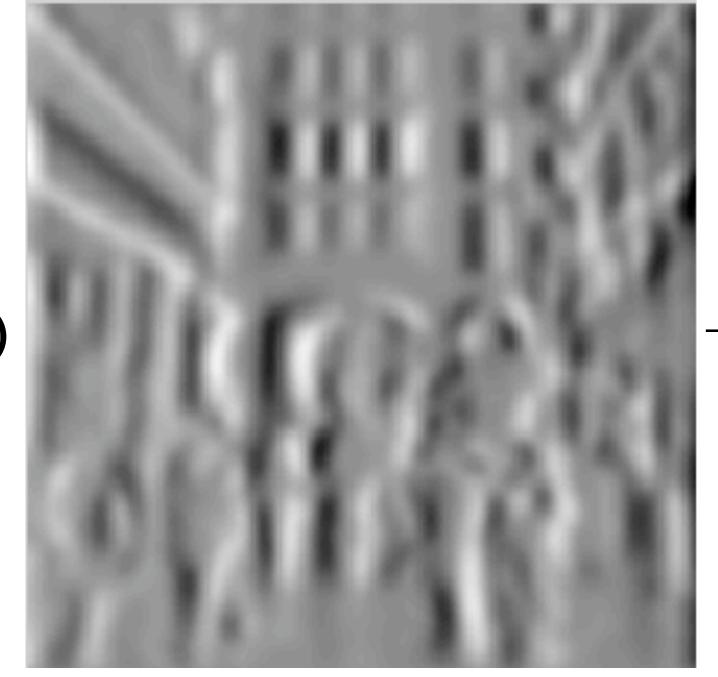
The smoothed directional gradient is a linear combination of two kernels

$$u^T \nabla g \otimes I = (\cos(\alpha)g_x(x,y) + \sin(\alpha)g_y(x,y)) \otimes I(x,y) =$$

Any orientation can be computed as a linear combination of two filtered images

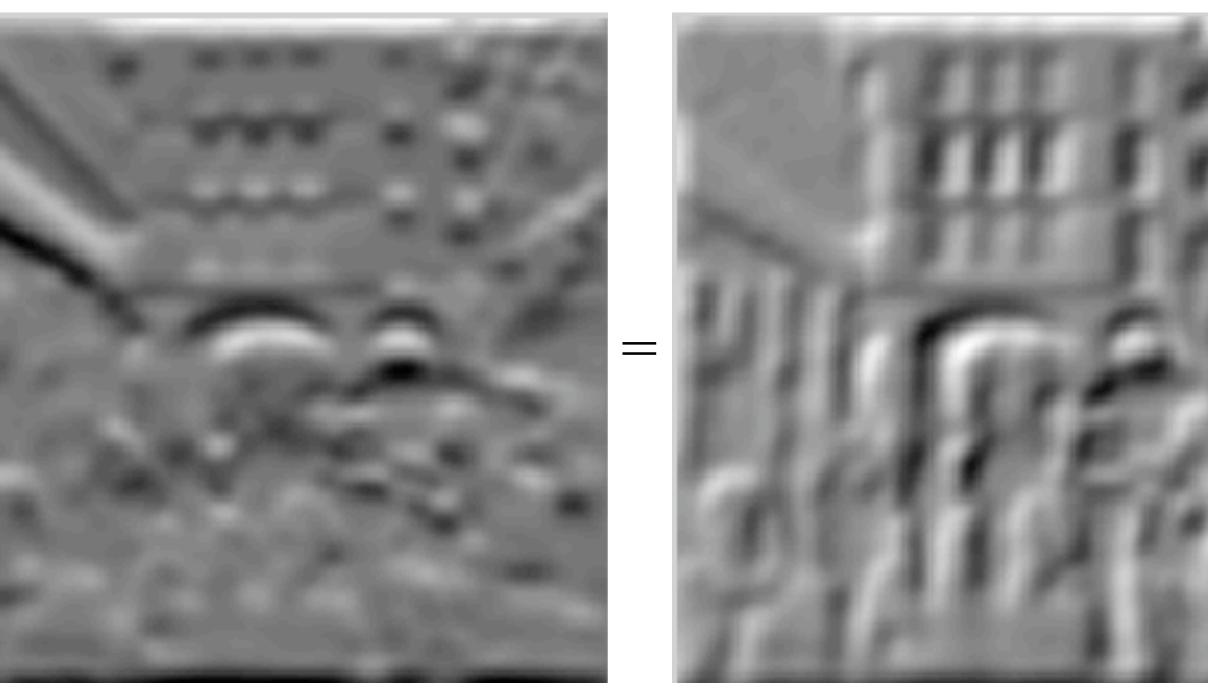
$$= \cos(\alpha)g_x(x,y) \otimes I(x,y) + \sin(\alpha)g_y(x,y) \otimes I(x,y)$$

Steereability of gaussian derivatives, Freeman & Adelson 92



 $+\sin(\alpha)$

$\cos(\alpha)$

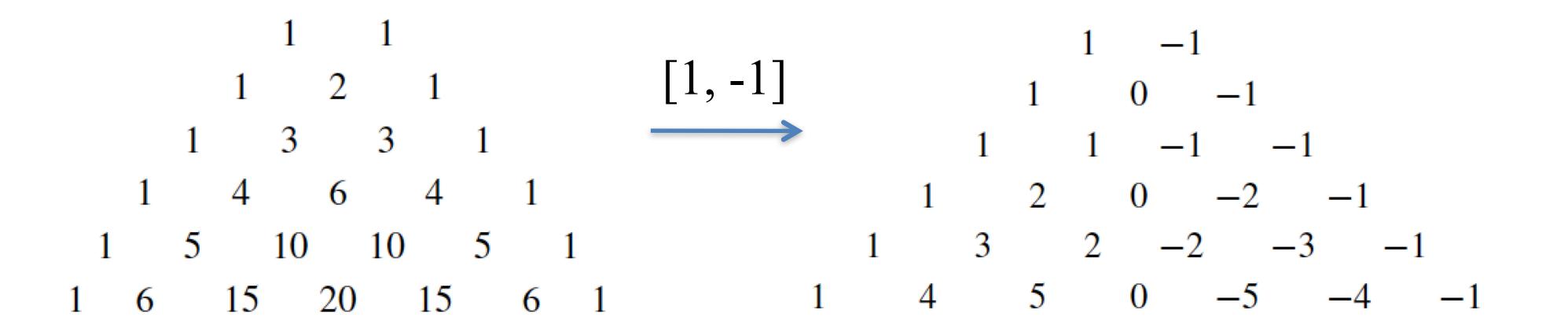


Steereability of gaussian derivatives, Freeman & Adelson 92

Discretization Gaussian derivatives

There are many discrete approximations. For instance, we can take samples of the continuous functions. In practice it is common to use the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]



Discretization 2D Gaussian derivatives

and then convolve them.

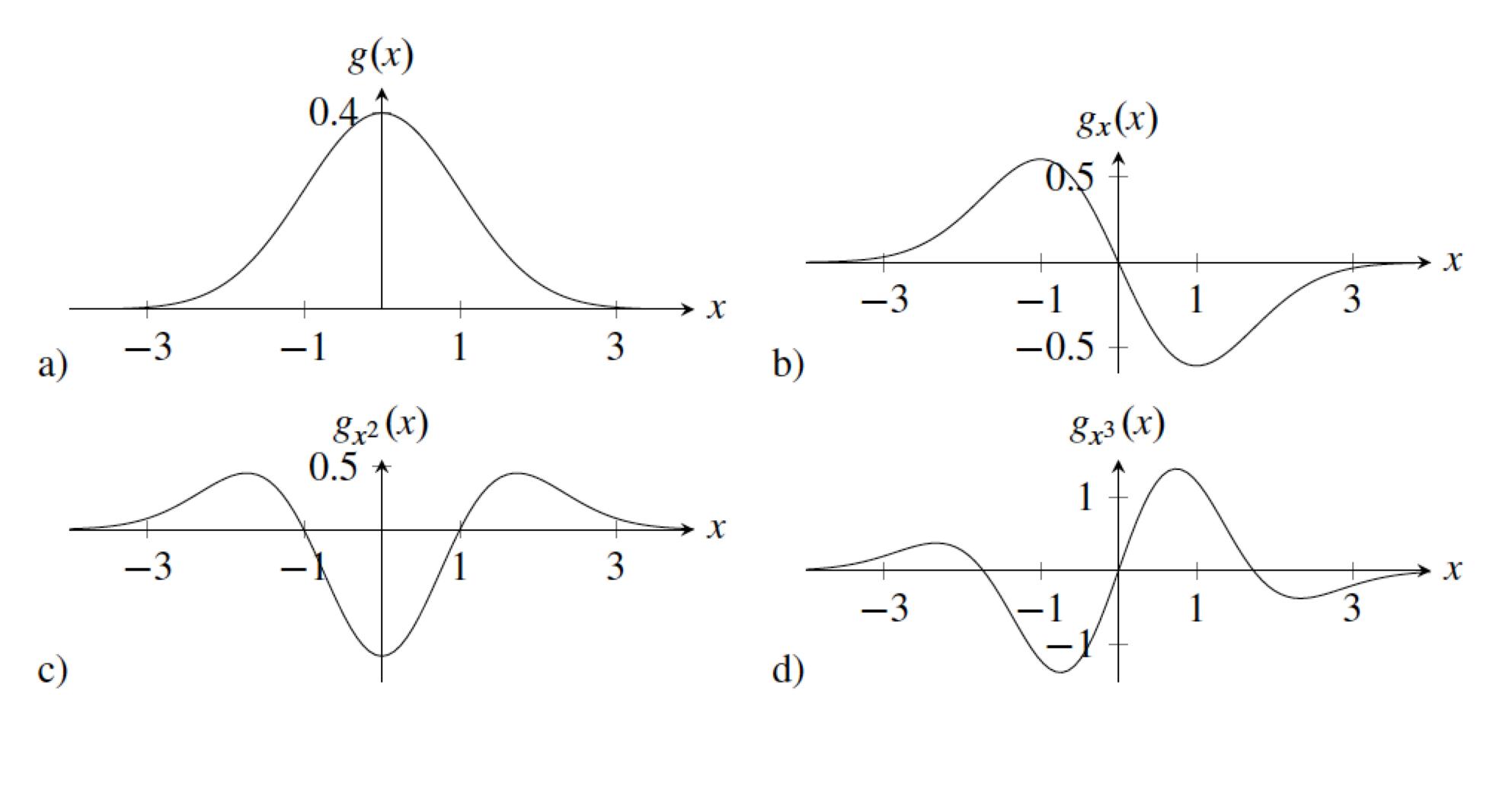
One example is the Sobel-Feldman operator:

$$Sobel_x = \begin{bmatrix} 1 & 0 \end{bmatrix} -$$

$$Sobel_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

As Gaussians are separable, we can approximate two 1D derivatives

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 1 & 0 & -1 \end{bmatrix}$$

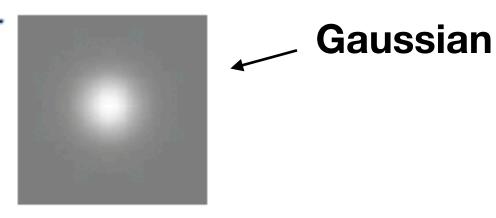


$$g_{x^{n},y^{m}}(x,y;\sigma) = \frac{\partial^{n+m}g(x,y)}{\partial x^{n}\partial y^{m}} = \left(\frac{-1}{\sigma}\right)^{n+m}g(x,y)$$

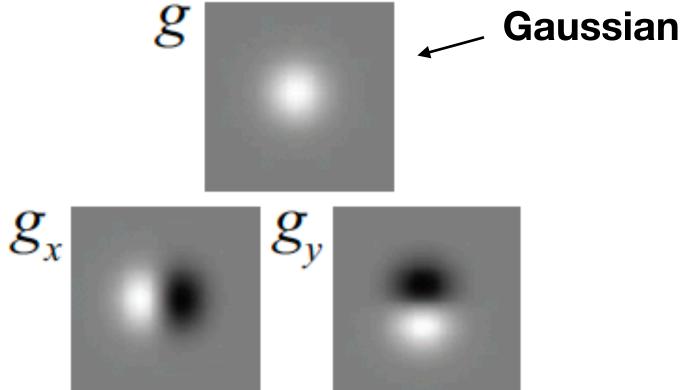
 $\frac{-1}{\sigma\sqrt{2}}\right)^{n+m} H_n\left(\frac{x}{\sigma\sqrt{2}}\right) H_m\left(\frac{y}{\sigma\sqrt{2}}\right) g(x,y;\sigma)$

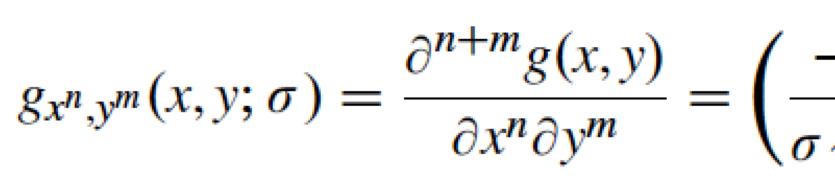
g

$$g_{x^{n},y^{m}}(x,y;\sigma) = \frac{\partial^{n+m}g(x,y)}{\partial x^{n}\partial y^{m}} = \left(\frac{\partial^{n+m}g(x,y)}{\partial x^{n}\partial y^{m}}\right)$$

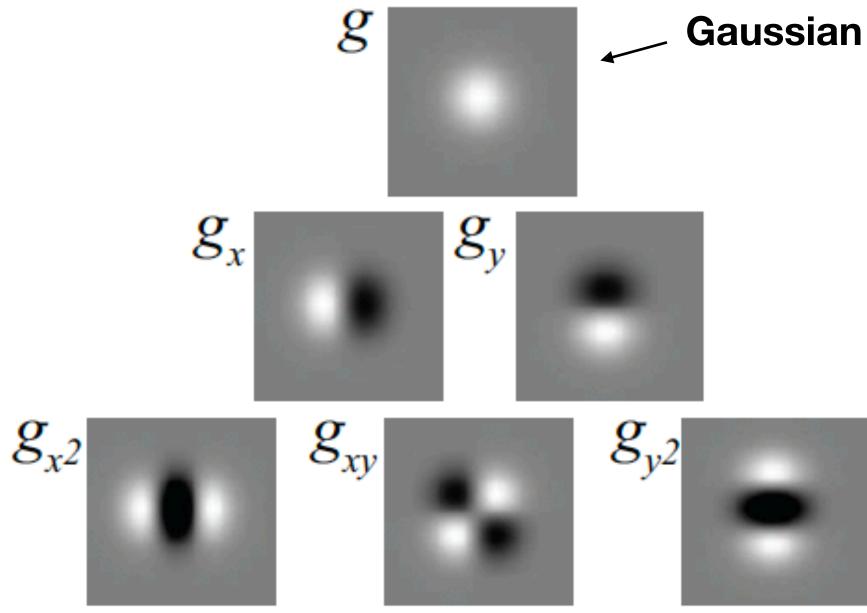


 $\frac{-1}{\sigma\sqrt{2}}\right)^{n+m} H_n\left(\frac{x}{\sigma\sqrt{2}}\right) H_m\left(\frac{y}{\sigma\sqrt{2}}\right) g(x,y;\sigma)$

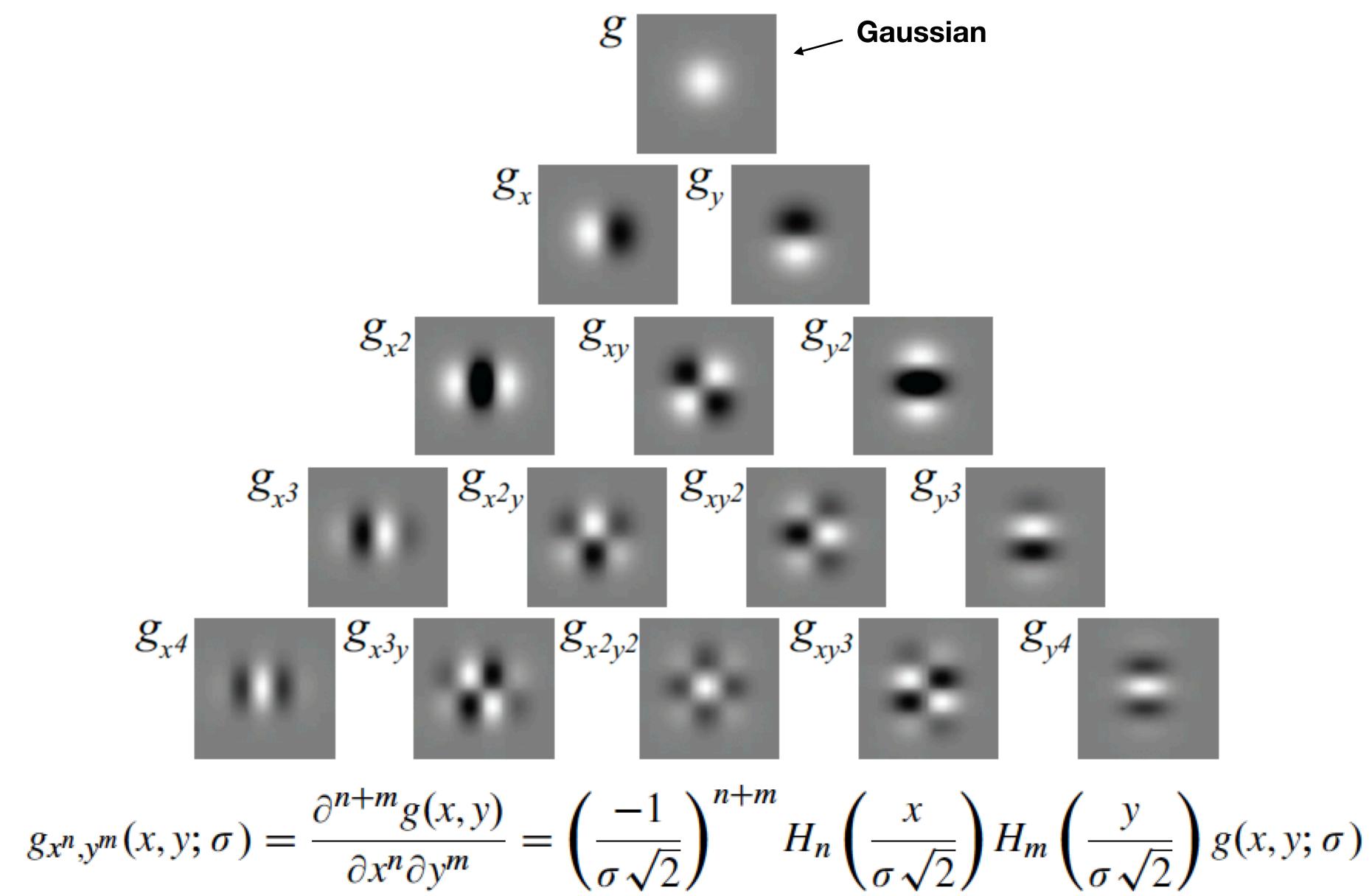




 $g_{x^{n},y^{m}}(x,y;\sigma) = \frac{\partial^{n+m}g(x,y)}{\partial x^{n}\partial y^{m}} = \left(\frac{-1}{\sigma\sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma\sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma\sqrt{2}}\right) g(x,y;\sigma)$



 $g_{x^{n},y^{m}}(x,y;\sigma) = \frac{\partial^{n+m}g(x,y)}{\partial x^{n}\partial y^{m}} = \left(\frac{-1}{\sigma\sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma\sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma\sqrt{2}}\right)g(x,y;\sigma)$



Laplacian filter

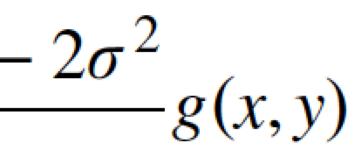
Made popular by Marr and Hildreth in 1980 in the search for operators that locate the boundaries between objects.

partial derivatives of a function:

 $\nabla^2 \mathbf{I} = \frac{\partial^2 \mathbf{I}}{\partial x^2} + \frac{\partial^2 \mathbf{I}}{\partial v^2}$ $\nabla^2 \mathbf{I} \circ g = \nabla^2 g \circ \mathbf{I}$ Where: $\nabla^2 g = \frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} g(x, y)$

- The Laplacian operator is defined as the sum of the second order

To reduce noise and undefined derivatives, we use the same trick:



75

Laplacian filter

The most popular approximation is the five-point formula which consists in convolving the image with the kernel

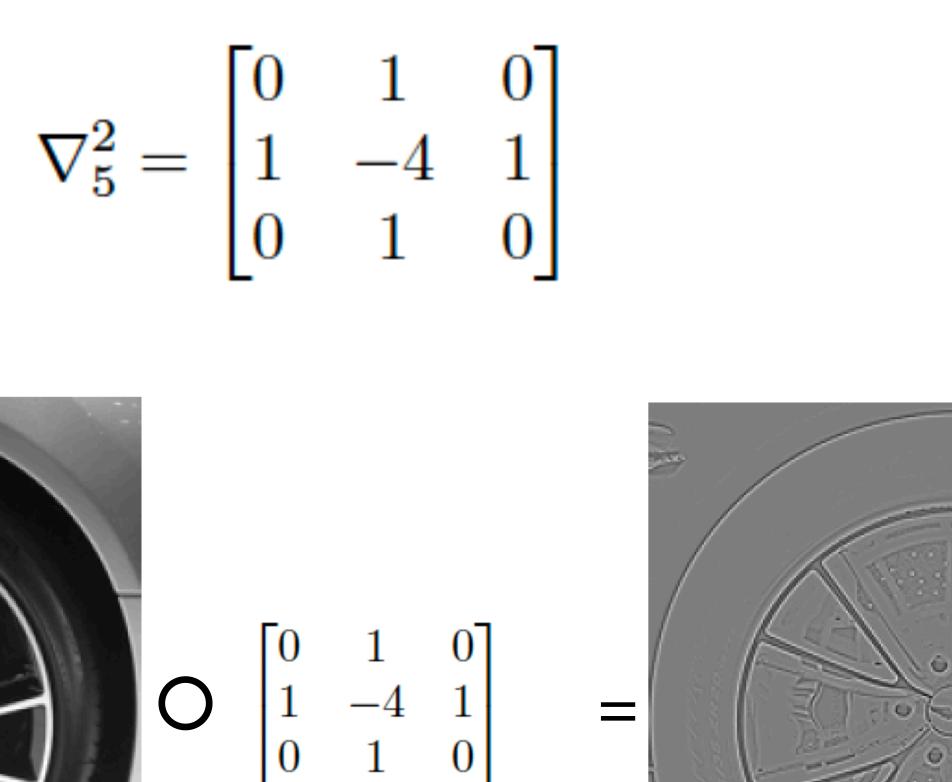


Image sharpening filter

Image sharpening filter

Subtract away the blurred components of the image:

This filter has an overall DC component of 1. It de-emphasizes the blur component of the image (low spatial frequencies).

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Input image

Sharpened

Input image

