Lecture 5
Spatial Linear Filters
Pset 2

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html
Pset 2

You need to work before it gets dark…
Outdoors in better than indoors.
Visualizing the image Fourier transform

$$f[n,m]$$

$$F[u,v]$$

Real

Imaginary

Magnitude

Phase
Phase and Magnitude

\[F[u, v] = A[u, v] \exp(j \theta[u, v]) \]

Each color channel is processed in the same way.
Phase and Magnitude

• Curious fact
 – all natural images have about the same magnitude transform
 – hence, phase seems to matter, but magnitude largely doesn’t
Some visual areas...
Figure 1. Stimulus presentation scheme. The stimuli were originally calibrated to be seen at a distance of 150 cm in a 19" display.
Campbell & Robson chart

Let’s define the following image:

\[I[n,m] = A[n] \sin(2\pi f[m] m/M) \]

With:

\[A[n] = A_{\text{min}} \left(\frac{A_{\text{max}}}{A_{\text{min}}} \right)^{n/N} \]

\[f[m] = f_{\text{min}} \left(\frac{f_{\text{max}}}{f_{\text{min}}} \right)^{m/M} \]

What do you think you should see when looking at this image?
\[I[n, m] = A[n] \sin(2\pi f[m] m/M) \]
\[I[n,m] = A[n] \sin(2\pi f[m] m/M) \]
Contrast Sensitivity Function

Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles/degree of visual angle

Contrast sensitivity

Invisible

visible

Spatial frequency (cycles/degree)

Low

High

0.1

1

10

100

Things that are very close and/or large are hard to see

Things far away are hard to see
Vasarely visual illusion
Today: A collection of useful filters

- Low-pass filters
- High-pass filters
Low pass-filters
Box filter

$$h_{N,M}[n,m] = \begin{cases} 1 & \text{if } -N \leq n \leq N \text{ and } -M \leq m \leq M \\ 0 & \text{otherwise} \end{cases}$$
Box filter

What does it do?

• Replaces each pixel with an average of its neighborhood
• Achieve smoothing effect (remove sharp features)
Box filter

The box filter is separable as it can be written as the convolution of two 1D kernels

\[h_{N,M}[n,m] = h_{N,0} \circ h_{0,M} \]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\circ
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
=
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]
Box filter

Requires $N+N$ sums, instead of N^2.
Box filter

If you convolve two boxes:

\[
\begin{array}{ccc}
1 & 1 & 1 \\
& & \\
1 & 1 & 1
\end{array}
\odot
\begin{array}{ccc}
1 & 1 & 1 \\
& & \\
1 & 1 & 1
\end{array}
=
\begin{array}{ccccc}
1 & 2 & 3 & 2 & 1
\end{array}
\]

The convolution of two box filters is not another box filter. It is a triangular filter.
Gaussian filter

In the continuous domain:

\[g(x, y; \sigma) = \frac{1}{2\pi \sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]
Gaussian filter

\[g(x, y; \sigma) = \frac{1}{2\pi \sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

Discretization of the Gaussian:

At \(3\sigma\) the amplitude of the Gaussian is around 1% of its central value

\[g [m, n; \sigma] = \exp\left(-\frac{m^2 + n^2}{2\sigma^2}\right) \]
$$g[m, n; \sigma] = \exp -\frac{m^2 + n^2}{2\sigma^2}$$
Gaussian filter
Properties of the Gaussian filter

\[g(x,y; \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

- The n-dimensional Gaussian is the only completely circularly symmetric operator that is separable.

- The (continuous) Fourier transform of a Gaussian is another gaussian

\[G(u,v; \sigma) = \exp\left(-2\pi^2(u^2 + v^2)\sigma^2\right) \]

Properties of the Gaussian filter

\[g(x, y; \sigma) = \frac{1}{2\pi \sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \]

- The convolution of two n-dimensional gaussians is an n-dimensional gaussian.

\[g(x, y; \sigma_1) \circ g(x, y; \sigma_2) = g(x, y; \sigma_3) \]

where the variance of the result is the sum

\[\sigma_3^2 = \sigma_1^2 + \sigma_2^2 \]

(it is easy to prove this using the FT of the gaussian)
Properties of the Gaussian filter

\[g(x, y; \sigma) = \frac{1}{2\pi \sigma^2} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

- Repeated convolutions of any function concentrated in the origin result in a gaussian (central limit theorem).
Discretization of the Gaussian

There are very efficient approximations to the Gaussian filter for certain values of σ with nicer properties than when working with discretized gaussians.

\[g_5[n] = [0.0183, 0.3679, 1.0000, 0.3679, 0.0183] \]
Binomial filter

Binomial coefficients provide a compact approximation of the gaussian coefficients using only integers.

The simplest blur filter (low pass) is

$$[1 \ 1]$$

Binomial filters in the family of filters obtained as successive convolutions of $$[1 \ 1]$$
Binomial filter

\[b_1 = [1 \ 1] \]

\[b_2 = [1 \ 1] \circ [1 \ 1] = [1 \ 2 \ 1] \]

\[b_3 = [1 \ 1] \circ [1 \ 1] \circ [1 \ 1] = [1 \ 3 \ 3 \ 1] \]
Binomial filter

<table>
<thead>
<tr>
<th>b_1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>b_3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>b_4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>b_5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>b_6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>b_7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>b_8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

$\sigma_1^2 = \frac{1}{4}$
$\sigma_2^2 = \frac{1}{2}$
$\sigma_3^2 = \frac{3}{4}$
$\sigma_4^2 = 1$
$\sigma_5^2 = \frac{5}{4}$
$\sigma_6^2 = \frac{3}{2}$
$\sigma_7^2 = \frac{7}{4}$
$\sigma_8^2 = 2$
Properties of binomial filters

• Sum of the values is 2^n
• The variance of b_n is $\sigma^2 = n/4$
• The convolution of two binomial filters is also a binomial filter

$$b_n \circ b_m = b_{n+m}$$

With a variance:

$$\sigma_n^2 + \sigma_m^2 = \sigma_{n+m}^2$$

These properties are analogous to the gaussian property in the continuous domain (but the binomial filter is different than a discretization of a gaussian)
The simplest approximation to the Gaussian filter is the 3-tap kernel:

$$b_2 = [1, 2, 1]$$
B2[n] versus the 3-tap box filter

\[[1 \ 2 \ 1] \]

\[[1 \ 1 \ 1] \]

Which one is better?
$$B2[n]$$

$$[1, 1, 1] \circ[\ldots, 1, -1, 1, -1, 1, -1, \ldots] = [\ldots, -1, 1, -1, 1, -1, 1, \ldots]$$

$$[1, 2, 1] \circ[\ldots, 1, -1, 1, -1, 1, -1, \ldots] = [\ldots, 0, 0, 0, 0, 0, 0, \ldots]$$
B2[n]

\[
b_{2,2} = b_{2,0} \odot b_{0,2} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}
\]
What about the opposite of blurring?

- Gaussian filter
- Laplacian filter
Laplacian filter

Gaussian filter

\[+ \quad - \]

\[\text{Gaussian filter} \]

\[\text{Laplacian filter} \]
Hybrid Images

Oliva & Schyns
Hybrid Images
High pass-filters
Finding edges in the image

Image gradient:

$$\nabla I = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right)$$

Approximation image derivative:

$$\frac{\partial I}{\partial x} \approx I(x, y) - I(x - 1, y)$$

Edge strength:

$$E(x, y) = |\nabla I(x, y)|$$

Edge orientation:

$$\theta(x, y) = \angle \nabla I = \arctan \frac{\partial I}{\partial y} \frac{\partial I}{\partial x}$$

Edge normal:

$$\mathbf{n} = \frac{\nabla I}{|\nabla I|}$$
Differential Geometry Descriptors
\[
\begin{bmatrix}
-1 & 1
\end{bmatrix}
\]

\[
\frac{\partial I}{\partial x} \approx I(x, y) - I(x - 1, y)
\]

\[
g[m,n] \times [-1, 1] = h[m,n]
\]

\[
f[m,n]
\]
\[
[-1 \ 1]^T
\]

\[g[m,n] \quad \otimes \quad [-1, 1]^T \quad = \quad h[m,n] \]

\[f[m,n] \]
Back to the image
Reconstruction from 2D derivatives

In 2D, we have multiple derivatives (along n and m)

$$c = \begin{bmatrix} -1 & 1 \end{bmatrix}^T$$

and we compute the pseudo-inverse of the full matrix.
Reconstruction from 2D derivatives
Editing the edge image

[1 -1]

[1 -1]^T
Thresholding edges
2D derivatives

There are several ways in which 2D derivatives can be approximated.

Robert-Cross operator:

\[
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 & 1 \\
-1 & 0 \\
\end{bmatrix}
\]

And many more…
Issues with image derivatives

- Derivatives are sensitive to noise

- If we consider continuous image derivatives, they might not be defined in some regions (e.g., object boundaries, …)
Derivatives

We want to compute the image derivative:

\[
\frac{\partial f(x, y)}{\partial x}
\]

If there is noise, we might want to “smooth” it with a blurring filter

\[
\frac{\partial f(x, y)}{\partial x} \circ g(x, y)
\]

But derivatives and convolutions are linear and we can move them around:

\[
\frac{\partial f(x, y)}{\partial x} \circ g(x, y) = f(x, y) \circ \frac{\partial g(x, y)}{\partial x}
\]
Gaussian derivatives

The continuous derivative is:

\[g_x(x, y; \sigma) = \frac{\partial g(x, y; \sigma)}{\partial x} = \]

\[= \frac{-x}{2\pi \sigma^4} \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

\[= \frac{-x}{\sigma^2} g(x, y; \sigma) \]
Gaussian Scale
Derivatives of Gaussians: Scale

σ = 2
σ = 4
σ = 8
Orientation

\[g_x(x, y) = \frac{\partial g(x, y)}{\partial x} = \frac{-x}{2\pi \sigma^4} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]

\[g_y(x, y) = \frac{\partial g(x, y)}{\partial y} = \frac{-y}{2\pi \sigma^4} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]
Orientation

\[g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

\[g_y(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

What about other orientations not axis aligned?
Orientation

\[g_x(x,y) = \frac{\partial g(x,y)}{\partial x} = \frac{-x}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

\[g_y(x,y) = \frac{\partial g(x,y)}{\partial y} = \frac{-y}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

The smoothed directional gradient is a linear combination of two kernels

\[u^T \nabla g \otimes I = \left(\cos(\alpha) g_x(x,y) + \sin(\alpha) g_y(x,y) \right) \otimes I(x,y) = \]

Any orientation can be computed as a linear combination of two filtered images

\[= \cos(\alpha) g_x(x,y) \otimes I(x,y) + \sin(\alpha) g_y(x,y) \otimes I(x,y) \]
Orientation

\[\cos(\alpha) + \sin(\alpha) = \]

Steereability of gaussian derivatives, Freeman & Adelson 92
Discretization Gaussian derivatives

There are many discrete approximations. For instance, we can take samples of the continuous functions. In practice it is common to use the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]
Discretization 2D Gaussian derivatives

As Gaussians are separable, we can approximate two 1D derivatives and then convolve them.

One example is the Sobel-Feldman operator:

\[
Sobel_x = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \odot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}
\]

\[
Sobel_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}
\]
n-th order Gaussian derivatives

\[g_{x^n, y^m}(x, y; \sigma) = \frac{\partial^{n+m} g(x, y)}{\partial x^n \partial y^m} = \left(\frac{-1}{\sigma \sqrt{2}} \right)^{n+m} H_n \left(\frac{x}{\sigma \sqrt{2}} \right) H_m \left(\frac{y}{\sigma \sqrt{2}} \right) g(x, y; \sigma) \]
n-th order Gaussian derivatives

\[g^{(n+m)}(x, y; \sigma) = \frac{\partial^{n+m} g(x, y)}{\partial x^n \partial y^m} = \left(\frac{-1}{\sigma \sqrt{2}} \right)^{n+m} H_n \left(\frac{x}{\sigma \sqrt{2}} \right) H_m \left(\frac{y}{\sigma \sqrt{2}} \right) g(x, y; \sigma) \]
n-th order Gaussian derivatives

\[g_{x^n, y^m}(x, y; \sigma) = \frac{\partial^{n+m} g(x, y)}{\partial x^n \partial y^m} = \left(\frac{-1}{\sigma \sqrt{2}} \right)^{n+m} H_n \left(\frac{x}{\sigma \sqrt{2}} \right) H_m \left(\frac{y}{\sigma \sqrt{2}} \right) g(x, y; \sigma) \]
n-th order Gaussian derivatives

\[g_{x^n y^m}(x, y; \sigma) = \frac{\partial^{n+m} g(x, y)}{\partial x^n \partial y^m} = \left(\frac{-1}{\sigma \sqrt{2}} \right)^{n+m} H_n \left(\frac{x}{\sigma \sqrt{2}} \right) H_m \left(\frac{y}{\sigma \sqrt{2}} \right) g(x, y; \sigma) \]
n-th order Gaussian derivatives

\[g_{x} \quad g_{y} \]

\[g_{x^2} \quad g_{xy} \quad g_{y^2} \]

\[g_{x^3} \quad g_{x^2y} \quad g_{xy^2} \quad g_{y^3} \]

\[g_{x^4} \quad g_{x^3y} \quad g_{x^2y^2} \quad g_{xy^3} \quad g_{y^4} \]

\[g_{x^n y^m}(x, y; \sigma) = \frac{\partial^{n+m} g(x, y)}{\partial x^n \partial y^m} = \left(\frac{-1}{\sigma \sqrt{2}} \right)^{n+m} H_n \left(\frac{x}{\sigma \sqrt{2}} \right) H_m \left(\frac{y}{\sigma \sqrt{2}} \right) g(x, y; \sigma) \]
Laplacian filter

Made popular by Marr and Hildreth in 1980 in the search for operators that locate the boundaries between objects.

The Laplacian operator is defined as the sum of the second order partial derivatives of a function:

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

To reduce noise and undefined derivatives, we use the same trick:

$$\nabla^2 I \circ g = \nabla^2 g \circ I$$

Where:

$$\nabla^2 g = \frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} g(x, y)$$
Laplacian filter

The most popular approximation is the five-point formula which consists in convolving the image with the kernel

$$\nabla^2_5 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
Image sharpening filter
Image sharpening filter

Subtract away the blurred components of the image:

$$\text{sharpening filter} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

This filter has an overall DC component of 1. It de-emphasizes the blur component of the image (low spatial frequencies).