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<«— Back wall
of camera

Digital =~
camera

http://www.foundphotography.com/Photo Thoughts/archives/2005/04/pinhole_camera_2.html



Pset 2

You need to work before it gets dark...
Outdoors in better than indoors.




Visualizing the image Fourier transform

real imaginary

image
fln.m) m










Phase and Magnitude
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|u, v| exp

Flu,v] =

Each color channel 1s processed 1n the same way.



Phase and Magnitude

e Curious fact

—all natural images have about the same magnitude
transform

—hence, phase seems to matter, but magnitude largely
doesn’t



Some visual areas...

From M. Lewicky



Figure 1. Sumulus presentation scheme. The stimuli were
originally calibrated to be seen at a distance of 150 ¢cm in a
19" display.
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Campbell & Robson chart

Let’s define the following image:

\) AR

What do you think you should see when looking at this 1mage?
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Contrast Sensitivity Function

Blackmore & Campbell (1969) . o
Maximum sensitivity

~ 6 cycles / degree of visual angle

Contrast sensitivity

0.1 1 10 , 100
Low Spatial frequency (cycles/degree) High

Things that are very close Things far away
and/or large are hard to see are hard to see



Vasarely visual 1llusion
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Horizontal section
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Today: A collection of useful filters

| ow-pass filters High-pass filters



Low pass-filters
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hy pm [n,m] = {

Box filter

2N+1
1 1 1
1 1 1

1 1 1 | 2M+1

1 1 1 1
] if = N<n<Nand - M<m<M
0 otherwise

A

h[n] with N=1

1

n= n
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Box filter

mean

N
>< —k
N

1

mean

256X256 256X256

What does it do?

* Replaces each pixel with an average of its neighborhood
e Achieve smoothing effect (remove sharp teatures)
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Box filter

The box filter is separable as it can be written as the convolution of two 1D kernels

hym ln.m| = hyoohom

(Y
Y
Y

|
b p—
b p—



Box filter

256X256 256X256

Requires N+N sums, instead of N*N
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Box filter

[f you convolve two boxes:

111 Ooll1ll1=12321

Mmoo

The convolution of two box filters 1s not another box filter.
It 1s a triangular filter.
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Gaussian filter

In the continuous domain:

1

glx,y;0) = exp —

2

2wo

X2 -+ y2

202
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Gaussian filter

1 X2 4y

g(x,y;0) = exp — ,

Discretization of the Gaussian:

At 30 the amplitude of the Gaussian 1s around 1% of its central value

2 | 2
m- —+n-

glmn;o|l =exp——
’ : 202



glm,n;o| =exp—

m? —I—n2

202

Scale
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Dali

Gaussian filter
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Properties of the Gaussian filter

2 2
1 X°+y°

glx,y;0) = exp —
2m o2 P 202

* The n-dimensional Gaussian is the only completely
circularly symmetric operator that is separable.

* The (continuous) Fourier transform of a Gaussian is
another gaussian

- -. 2,2 . 2.2
G(u,vy;o) =exp—2x-(u”~+v-)o~



Properties of the Gaussian filter

P P
| X~ +y°

g(x,_)‘,()') — CXP — .
2m o2 P 202

* The convolution of two n-dimensional gaussians is
an n-dimensional gaussian.

g(x,y;01)0gx,y;00) = g(x,y; 03)

where the variance of the result 1s the sum

(1t 1s easy to prove this using the FT of the gaussian)



Properties of the Gaussian filter

D 2
1 X“ 4+ y°

gx,y;0) = exp —
2m o2 P 202

» Repeated convolutions of any function concentrated in
the origin result in a gaussian (central limit theorem).



Discretization of the Gaussian

There are very efficient approximations to the Gaussian
filter for certain values of o with nicer properties than

when working with discretized gaussians.

[

0.8 . 7] 2 m— 1 / 2
0.6 -
0.4
0.2 L //
0 - __1 | , | r— .
-3 -2 -1 0 1 2 3

gs [n] = [0.0183, 0.3679, 1.0000, 0.3679, 0.0183]



Binomial filter

Binomial coefficients provide a compact approximation of
the gaussian coefficients using only integers.

The simplest blur filter (low pass) is
[l 1]

Binomial filters in the family of filters obtained as
successive convolutions of [1 1]



Binomial filter

b, = [1 1]

by =[11]o[l1]=[121]

b; = [11]o[l1]of[l1]=[1331]



LA

ILter
mial filt
Bino
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N

/4
- 1/2
G§=3/4
a§=1
Uj:s/«:t
052:3/2
063:7/4
Uiiz
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34



Properties of binomial filters

e Sum of the values is 2n
. The variance of b, is ¢° =n/4

 The convolution of two binomial filters is
also a binomial filter

by © by = bpim

With a variance:

], 2

o F

Gn + O-m — Gr +m

These properties are analogous to the gaussian property in the continuous
domain (but the binomial filter 1s different than a discretization of a

gaussian)



B2[n]
The simplest approximation to the Gaussian filter 1s the 3-tap kernel:

b =1,2,1]

—0-0-00000089 200000000/
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B2[n] versus the 3-tap box filter

bg [I'Z]
12 1] X
e
—5-900000000 2000000009/
—10 0 10
hi[n]
11 1] )
poo
000000000 000000000 /
—10 0 10

Which one 1s better?




B2[n]

1,1, 170[....,1,-1,1,-1,1,-1, .1 = [...,-1,1,-1,1,-1, 1, ...]

1,2, 1]0f....1,-1,1,-1,1,-1,...] = [....0,0,0,0,0,0, ...]



B2[n]

br> =brpobpyr = [1 2 1] 0

i

1 2 1
2 4 2
1 2 1

|
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What about the opposite of blurring?

(Gaussian filter

-+

40



-+

Gaussian filter

i

i Htidaas
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Oliva & Schyns

Hybrid Images

42



Hybrid Images
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Copyright © 2(

0/

Aude Oliva. MIT
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Copyright @ 2007 Aude Oliva, MIT

http://cvel.mit.edu/hybrid gallery/gallery.html






FInding edges In the Image

Edge strength

Edge orientation:

Edge normal:

Image gradient:

o1 oI
VI = ,
(011:' 81/)

Approximation image derivative:
ol
or

~ I(z,y) —I(z — 1,y)

E(z,y) = |VI(z,y)

0(x,y) = £LVI = arctan gggz
VI

~ VI

Il
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Differential Geometry Descriptors

Scale-Space Theory in
Computer Vision

|
l

SOLID SIHIAPE |

\JANJ.KOENDHUNK o

scale |

_space

Kluwer Tony Lindeberg
Academic
Publishers
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g[m,n]

[-1 1]

~ I(z,y) - I(z -1,
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g[m,n]

[-1 1]
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Reconstruction from 2D derivatives

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.
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Reconstruction from 2D derivatives
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Editing the edge image
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INg edges

Threshold
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2D derivatives

There are several ways 1n which 2D derivatives can be approximated.
|
[ } -1
—1

Robert-Cross operator:
0 1
—1 0

b

And many more...
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Issues with image derivatives

e Derivatives are sensitive to noise

* |f we consider continuous image derivatives, they might not be define in
some regions (e.g., object boundaries, ...)

N
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Derivatives

We want to compute the 1mage derivative:

af ()C ’ .}‘)
OX

[f there 1s noise, we might want to “smooth™ 1t with a blurring filter

af (.X- ’ y)

. O g (x ’ }‘)

00X
But derivatives and convolutions are linear and we can move them
around:

of (x, V) o 0g(x,y)

og(x,y)=71(x,y)o0
™ gx,y) =f(x,y) ™
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(Gaussian derivatives

| X2+ y2

,V;0) = exp —
g(x,y; 0) >3 CXP

202

The continuous derivative 1s:

W_ oglx,y;0)
gX(xaya O-) — -
OX
R’ oy X% + y2
- 2rob P D02

0



Gaussian Scale

62



Derivatives of Gaussians: Scale

03



Orientation

gy =X o

20° 0 3. et

4 P e S R
dx Zﬂg 1'\é ...... «. ...... .,' ......

gx(xay) =

et

0ol
- A




o ww W

f . .&n‘i mi {‘II

Orientation

What about other orientations not axis aligned?
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Orientation

2
X +Yy

BXY) =Y o
Jy 20"

gy(-xay) =

g.(x,y) = = re

The smoothed directional gradient 1s a linear combination of two kernels

u'Vg®1I = (cos(a)gx(x,y) + sin(a)gy(x,y)) ®I(x,y) =

Any orientation can be computed as a linear combination of two filtered i1mages

=cos(at)g. (x,y) ® I(x,y) + Sin(a)gy(xay) ®I1(x,y)

Steereability of gaussian derivatives, Freeman & Adelson 92



Orientation

Steereability of gaussian derivatives, Freeman & Adelson 92 67



Discretization Gaussian derivatives

There are many discrete approximations. For instance, we can take
samples of the continuous functions. In practice 1t 1S common to use
the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]

f—
2
|—
1
Y
\9
|
(W
| S—
—
—
f—
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Discretization 2D Gaussian derivatives

As Gaussians are separable, we can approximate two 1D derivatives
and then convolve them.

One example 1s the Sobel-Feldman operator:

_ 1] [ro -1
Sobel, =1 0 —=1|o |2l =12 0 =2
' Sl (10 -1
T
Sobel,

|
—_ O
—_— O
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n-th order Gaussian derivatives

gxn. Jn(\ V; O') — ermQ(\ \) ( —1 n—}-m , | |
X Ul(} G\/E (_\/‘) m((‘f) Q(l \ O')

——> X
] ~ 3
| —— X
I 3
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n-th order Gaussian derivatives

gn/G aaaaaaa




n-th order Gaussian derivatives

g n __ Gaussian
gx-gy.

0" g(x. ) ( - )"+"’ ( x ) ( V )
mym(x,y;0) = —— = H, Hp | — (x,y; 0
SxLY ox"oy™ o~/2 oa/2 o~/2 8 )

(2



n-th order Gaussian derivatives

g n Y Gaussian
gx-gy.
gxz m gxy H gﬂ-

" (x, ) ( - )ﬁm ( - ) ( d )
x", (x,y; 0) = | — = | Hn, ' Hm ‘ - (xa}-‘; g
o ) ox"oy™ o~/2 /2, o+/2 5 )
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n-th order Gaussian derivatives

g n __ Gaussian
i -
NN
‘A -
RS "I ”’I I
" Mg(ry) _ y

OxX"oy™m af af m/i 8(%.5;0) 24

gxnym(X,y; 0) =



Laplacian filter

Made popular by Marr and Hildreth 1n 1980 1n the search for
operators that locate the boundaries between objects.

The Laplacian operator 1s defined as the sum of the second order
partial derivatives of a function:

. .
V2 o<1 o-1
 ox2 T Oy2

To reduce noise and undefined derivatives, we use the same trick:
p) ),
ViIog=V-gol

2, .2 A2
x“+y-—20

= g(x,y)

Where: V2o
C O' 4




Laplacian filter

The most popular approximation is the five-point formula which consists in convolving
the image with the kernel

0 1 0
Vi=1[1 -4 1
0 1 0
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Image sharpening filter

’r’



Image sharpening filter

Subtract away the blurred components of the image:

[0 0 0] [1 2 1]
sharpening filter= 10 2 0 2472

LoooJ 16 121]

This filter has an overall DC component of 1. It de-emphasizes
the blur component of the image (low spatial frequencies).

/8



Input 1mage Sharpened




Input 1mage
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