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Lecture 5
Spatial Linear Filters



Pset 2

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html



Pset 2
You need to work before it gets dark… 
Outdoors in better than indoors.
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Visualizing the image Fourier transform
f [n, m] F[u, v]
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DFT

DFT-1
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DFT

DFT-1



Phase and Magnitude
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Each color channel is processed in the same way.



Phase and Magnitude

• Curious fact 
– all natural images have about the same magnitude 

transform 
– hence, phase seems to matter, but magnitude largely 

doesn’t
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Some visual areas…

From M. Lewicky
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Campbell & Robson chart

Let’s define the following image:

With:

What do you think you should see when looking at this image?







Contrast Sensitivity Function
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Blackmore & Campbell (1969)
Maximum sensitivity 

~ 6 cycles / degree of visual angle

Low High

Things far away  
are hard to see

Things that are very close  
and/or large are hard to see
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Vasarely visual illusion



Horizontal section
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  Today: A collection of useful filters

!17

Low-pass filters High-pass filters
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Low pass-filters



Box filter
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Box filter
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=1
21X21

256X256 256X256

What does it do? 
• Replaces each pixel with an average of its neighborhood 
• Achieve smoothing effect (remove sharp features)

mean

mean



Box filter
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The box filter is separable as it can be written as the convolution of two 1D kernels

1 
1 
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1  1 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1  1



Box filter
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256X256

1
21

256X256

1
21

Requires N+N sums, instead of N*N



Box filter
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If you convolve two boxes:

1  1  11  1  1 = 1  2  3  2  1

=

The convolution of two box filters is not another box filter. 
It is a triangular filter.



Gaussian filter
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In the continuous domain:



Gaussian filter
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Discretization of the Gaussian:
 At 3σ  the amplitude of the Gaussian is around 1% of its central value



Scale
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Gaussian filter
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Dali



Properties of the Gaussian filter

•  The n-dimensional Gaussian is the only completely 
circularly symmetric operator that is separable. 

• The (continuous) Fourier transform of a Gaussian is 
another gaussian

 28



Properties of the Gaussian filter

• The convolution of two n-dimensional gaussians is 
an n-dimensional gaussian.
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 where the variance of the result is the sum

(it is easy to prove this using the FT of the gaussian)



Properties of the Gaussian filter

•  Repeated convolutions of any function concentrated in 
the origin result in a gaussian (central limit theorem).
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Discretization of the Gaussian

There are very efficient approximations to the Gaussian 
filter for certain values of σ with nicer properties than 
when working with discretized gaussians.
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Binomial filter

Binomial coefficients provide a compact approximation of 
the gaussian coefficients using only integers. 
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The simplest blur filter (low pass) is 

Binomial filters in the family of filters obtained as 
successive convolutions of [1 1]

[1  1]



Binomial filter
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[1 1]    [1 1] = [1 2 1]

[1 1]    [1 1]    [1 1] = [1 3 3 1]

b1  =  [1  1]

b2  =

b3  =



Binomial filter
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Properties of binomial filters

• Sum of the values is 2n 

• The variance of bn is 
• The convolution of two binomial filters is 

also a binomial filter
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With a variance:

These properties are analogous to the gaussian property in the continuous 
domain (but the binomial filter is different than a discretization of a 
gaussian)



B2[n]
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 The simplest approximation to the Gaussian filter is the 3-tap kernel:



B2[n] versus the 3-tap box filter
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[1  2  1]

[1  1  1]

Which one is better?



B2[n]
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[…, 0, 0, 0, 0, 0, 0, …][1, 2, 1]   […, 1, -1, 1, -1, 1, -1, …]  =  

[…, -1, 1, -1, 1, -1, 1, …][1, 1, 1]   […, 1, -1, 1, -1, 1, -1, …]  =  



B2[n]
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What about the opposite of blurring?
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Gaussian filter

Laplacian filter
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Laplacian filter

+ =

Gaussian filter



Hybrid Images
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Oliva & Schyns



Hybrid Images
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Hybrid Images

!45
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 47http://cvcl.mit.edu/hybrid_gallery/gallery.html
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High pass-filters



Finding edges in the image

!49

Image gradient:

Approximation image derivative:

Edge strength

Edge orientation:

Edge normal:



Differential Geometry Descriptors
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[-1 1]

 51

g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]



[-1 1]T
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g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]T



Back to the image
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?



Reconstruction from 2D derivatives
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[-1 1]

[-1 1]T

c

c

=
c

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.



Reconstruction from 2D derivatives
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[1 -1]

[1 -1]T



Editing the edge image
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[1 -1]

[1 -1]T



Thresholding edges
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2D derivatives

!58

There are several ways in which 2D derivatives can be approximated.

 Robert-Cross operator:

And many more… 



Issues with image derivatives

• Derivatives are sensitive to noise


• If we consider continuous image derivatives, they might not be define in 
some regions (e.g., object boundaries, …)
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Derivatives

!60

We want to compute the image derivative:

If there is noise, we might want to “smooth” it with a blurring filter

But derivatives and convolutions are linear and we can move them  
around:



Gaussian derivatives

!61

The continuous derivative is:



Gaussian Scale

!62
σ=2 σ=4 σ=8



Derivatives of Gaussians: Scale
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σ=2 σ=4 σ=8



Orientation
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Orientation

 65What about other orientations not axis aligned?



Any orientation can be computed as a linear combination of two filtered images

The smoothed directional gradient is a linear combination of two kernels

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation
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cos(α) +sin(α) =

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation
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Discretization Gaussian derivatives

!68

There are many discrete approximations. For instance, we can take 
samples of the continuous functions. In practice it is common to use 
the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]

 [1, -1]



Discretization 2D Gaussian derivatives

!69

As Gaussians are separable, we can approximate two 1D derivatives 
and then convolve them. 

One example is the  Sobel-Feldman operator:



n-th order Gaussian derivatives
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n-th order Gaussian derivatives
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Gaussian



n-th order Gaussian derivatives
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Gaussian



n-th order Gaussian derivatives
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Gaussian



n-th order Gaussian derivatives

!74

Gaussian



Laplacian filter
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Made popular by Marr and Hildreth in 1980 in the search for 
operators that locate the boundaries between objects.

The Laplacian operator is defined as the sum of the second order 
partial derivatives of a function:

To reduce noise and undefined derivatives, we use the same trick:

Where: 



Laplacian filter
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The most popular approximation is the five-point formula which consists in convolving 
the image with the kernel

=



Image sharpening filter

!77



Image sharpening filter

!78

Subtract away the blurred components of the image:

This filter has an overall DC component of 1. It de-emphasizes  
the blur component of the image (low spatial frequencies).
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Input image Sharpened
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Input image


