
DIY Deep Learning:
Advice on Weaving Nets

with your host: Evan Shelhamer
1

tour of collected advice

Q&A about deep learning in general and your projects in particular

Today

2

expertise noun

Experience and Expertise

1. skill or knowledge

2. knowing most of mistakes that can be made in a particular field

3

know your data! if you don't, how will you know if your model does?

DATA

4

DATA

inspect the distribution of the inputs and targets

- inspect random selection of inputs and targets to have a general sense

- histogram input dimensions to see range and variability

- histogram targets to see range and imbalance

- select, sort, and inspect by type of target or whatever else

5

DATA

inspect the inliers, outliers, and neighbors

- visualize distribution and outliers, especially outliers, to uncover dataset issues

- look at nearest neighbors
in the raw data, or pre-trained net for same domain, or randomly initialized net

- examples:
rare grayscale images in color dataset, huge images that should have been
rescaled, corrupted class labels that had been cast to uint8

6

pre-processing: the data as it is loaded is not always the data as it is stored!

- inspect the data as it is given to the model by output = model(data)

DATA

7original DeCAF Caffe

pre-processing:

- summary statistics: check the min/max and mean/variance
to catch mistakes like forgetting to standardize

- shape: are you certain of each dimension and its size?
sanity check with dummy data of prime dimensions: there are no common
factors, so mistaken reshaping/flattening/permuting will be more obvious.
example: a 64x64x64x64 array can be permuted without knowing.

- type: check for casting, especially to lower precision
what's -1 for a byte? how does standardization change integer data?

DATA

8

pre-processing:

- start with less, and then add more… once everything works at all

- for instance: just standardize at first,
and only augment once there is a model and it fits

DATA

9

- resample the data to decorrelate: that is, remember to shuffle

DATA

10

- consider selecting miniature train and test sets for development and testing:
these should be chosen once and fixed throughout optimization + evaluation

it's heartbreaking to wait an entire epoch and then and only then
have your experiment-to-be crash

check if you can do the task, as it is given to the model

- take windowed data at receptive field size and stride

- (consider the task with and without pre-processing)

...if it's a reasonable perceptual task for a human

DATA

11

MODEL

keep it as simple as you can!

- sure, there are sophisticated models out there

- but they were made by either

(1) going step-by-step, from simple to complex
or
(2) suffering, madness, and the gnashing of teeth

12

MODEL

keep it as simple as you can!

- do your first experiment with the simplest possible model w/ and w/o your idea

- at least you will be armed with a little understanding

- then follow-up with bidirectional search
between simple models and state-of-the-art models
with your own model in the middle

13

MODEL

resist snowflake syndrome! try defaults first

but my data/task/idea is special

...no it's not, or not until proven so (by say defeating a residual net)

- once while consulting I replaced 1 month+ of model development with LeNet
and it was more accurate and >10,000x faster

- even if an off-the-shelf net does not prevail, it can serve as a baseline 14

double-check the model actually is what you thought you defined

walk the model for inspection
for name_, module_ in model.named_modules():

if name_ == 'name' or isinstance(module_, nn.Conv2d):
[...]

MODEL

15

simple baselines catch many issues and swiftly too

- learn a linear model on random features
by fixing all of the parameters at their initialization except for the output

- zero out the data by x.zero_() and check that results are worse

MODEL

16

we are still learning how to optimize deep nets

much progress is being made but it's nevertheless a dark forest

explore if you like, but balance exploration by exploitation of a known good setting,
or the closest setting you can find

OPTIMIZATION

17

figure out optimization on one/few/many points in that order

- overfit to a single data point

- then fit a batch

- and finally try fitting the dataset (or a miniature edition of it)

to discover issues as soon as possible

OPTIMIZATION

18

sanity check the loss against a suitable reference value

- classification with cross-entropy loss: uniform distribution

- regression with squared loss: mean of targets (or even just zero)

and if your loss is constant, double-check for zero initialization of the weights

OPTIMIZATION

19

the learning rate and batch size are more-or-less the cardinal hyperparameters

- choose the learning rate on a small set (see Bottou)

- simplify your life and use a constant rate, that is, no schedule
until everything else is figured out

- schedule according to epochs (== number of passes through the data),
not number of iterations

OPTIMIZATION

20

https://cilvr.cs.nyu.edu/diglib/lsml/bottou-sgd-tricks-2012.pdf

bias learning in the right direction by setting output biases

- set to mean of targets for regression

- set to pr(positive) for imbalanced binary classification problem
as seen in object detection (RetinaNet) and contour detection

OPTIMIZATION

21

https://arxiv.org/abs/1708.02002

clear gradients after each iteration or else they accumulate

remember opt.zero_grad()!

remarkably, with adaptive optimizers and enough time a model can still learn
if the gradients are never cleared out… but it's really sensitive

OPTIMIZATION

22

accumulate gradients to decouple learning batch size from computational batch size

OPTIMIZATION

23

 while iteration < max_iter:

 epoch += 1

 for data, target in loader:

 data = data.to(device)

 target = target.to(device)

 out = model(im)

 loss = loss_fn(out, target)

 loss.backward()

 grad_counter += 1

 if grad_counter == args.iter_size:

 opt.step()

 opt.zero_grad()

 iteration += 1

 grad_counter = 0

warning! watch out for normalization
at the computational batch size

checkpoint features + gradients to trade space for time and fit large models

- checkpoint utility in PyTorch

- systems paper on checkpointing for deep nets

- reversible nets are a special architecture for decoupling memory from depth

note: this applies equally well to convolutional/recurrent/whatever nets

OPTIMIZATION

24

https://pytorch.org/docs/stable/checkpoint.html
https://arxiv.org/pdf/1604.06174.pdf
http://www.cs.toronto.edu/~mren/research/revnet/index.html

live on the edge and try extreme settings (but just a little bit)

If optimization never diverges, your learning rate is too low.

in the style of the Umeshism

If you’ve never missed a flight, you’re spending too much time in airports.

OPTIMIZATION

25

check for accidental non-differentiability from max/min/etc.

clipping the output or the loss is not the same as clipping the gradients!

y_hat = torch.min(y_hat, 0.5)

discards the gradient w.r.t. the parameters for y_hat > 0.5

OPTIMIZATION

26

check the sign of the loss

- surely ascent is not descent, but that can be hard to remember in the moment

- definitely for custom losses! the defaults were checked for you, not so your own

once asked a generative model to minimize the probability of the data,
and it sure did

OPTIMIZATION

27

switch to evaluation mode by model.eval()

no, really

and check the mode by model.training

EVALUATION

28

know the output! metrics and summaries can obscure all kinds of issues

- inspect input-output pairs
across min/max/quartiles
of the loss and other metrics of interest

- keep an eye on the output and loss for a chosen set
across iterations to have a sense of the learning dynamics
(the chosen set could be the whole validation set)

- doesn't hurt to eyeball a few subsets chosen at random
in case you catch anything surprising

EVALUATION

29

separate evaluation from optimization!

- save checkpoints at intervals and evaluate them offline

- there are the perils of nondeterminism, batch norm, etc.
when mixing training and testing

- plus it only slows down training

EVALUATION

30

evaluate on the whole set: batch-wise statistics, even if smoothed, are too noisy

- if this is slow, then it's all the more reason to decouple evaluation from training

- if the evaluation is truly massive, consider a miniature set for routine evaluation
and only evaluate on the full set at longer intervals

EVALUATION

31

try the scientific method
change one thing at a time

not the computer scientific method
change everything every time

...except perhaps when you really have no idea what's going on

(joke courtesy Dave Patterson)

TUNING

32

random search over grid search

TUNING

33

Bergstra & Bengio, JMLR 2012.

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Coarse-to-fine search for hyperparameters

- wider search for shorter training
(on the same data: remember to set the seed!)

- narrower search for longer training

- but be careful with greed! still need to tune for full training,
because the best hyperparameters for short runs may not prevail in the end

TUNING

34

don't be finger-bound! script the optimization + evaluation of your models

every character you type is a chance to make a mistake

EXECUTION

35

log everything! especially arguments

import logging

def setup_logging(logfile):

 FORMAT = '[%(asctime)s.%(msecs)03d] %(message)s'

 DATEFMT = '%Y-%m-%d %H:%M:%S'

 logging.root.handlers = [] # clear logging from elsewhere

 logging.basicConfig(level=logging.INFO, format=FORMAT, datefmt=DATEFMT,

 handlers=[

 logging.FileHandler(logfile),

 logging.StreamHandler(sys.stdout)

])

 logger = logging.getLogger()

 return logger

EXECUTION

36

 args = parser.parse_args()

 log = setup_logging('log')

 log.info(f"args: {vars(args)}")

check versioning status and restrain yourself from reckless changes

import subprocess

record version for reproducibility

try:

 version = subprocess.check_output(

 ['git', 'describe', '--always']).decode().strip()

 log.info(f"version: {version}")

 is_dirty = subprocess.check_output(

 ['git', 'status', '--short']).decode()

 if is_dirty:

 log.warning("Working directory is dirty, and "

 "might not be reproducible!")

except:

 log.warning("Could not determine version without git.")

if it's worth running the experiment, it's worth committing the conditions

EXECUTION

37

there's no writing like rewriting, and no coding like debugging

thankfully with PyTorch we're hacking imperatively in Python!
we can debug as usual with pdb

import pdb; pdb.set_trace()

https://docs.python.org/3/library/pdb.html
https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger

EXECUTION

38

https://docs.python.org/3/library/pdb.html
https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger

test correctness or settle for incorrectness, as there's very little middle ground

- anything untested might be wrong (if not now, then later)

- rely on a separate, simpler implementation as a reference
like this convolution by loops

Caffe has hundreds of unit tests for a reason:
every one is a guard—but not guarantee—against error

TESTING

39

https://github.com/BVLC/caffe/blob/master/src/caffe/test/test_convolution_layer.cpp#L19-L139

check gradients and do it thoroughly

- gradcheck is the checker bundled into PyTorch

- cs231n has gradient checking rules of thumb

- Tim Vieira has further tips for accurate and thorough checking

TESTING

40

https://pytorch.org/docs/stable/autograd.html?highlight=gradcheck#torch.autograd.gradcheck
http://cs231n.github.io/neural-networks-3/#gradcheck
https://timvieira.github.io/blog/post/2017/04/21/how-to-test-gradient-implementations/

more hardware, more problems don't parallelize immediately

- make your model work on a single device first

- attempt to parallelize on a single machine

- only then go to a multi machine setup

- and check that iterations/time actually improves!

see Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour for good advice

COMPUTATION

41

https://arxiv.org/abs/1706.02677

- this isn’t a problem (save for neuroscientists)

- be wary of neural realism hype or “it just works because it’s like the brain”

- network, not neural network
unit, not neuron

HYPE

42

Not So “Neural”
these models are not how the brain works

we don’t know how the brain works!

Not quite.

The tools are better every day, but
tools are no substitute for thought.

While there are many layers,
hopefully you're now more ready
to cut through the complexity.

Next time you bake, you could
try Andrej Karpathy's recipe:
http://karpathy.github.io/2019/04/25/recipe/

So, is Deep Learning a Piece of Cake?

43

http://karpathy.github.io/2019/04/25/recipe/

Thanks! Questions?

44

Good luck with your nets!

