
The Tiny Book of Computer Vision

Antonio Torralba, Bill Freeman, Phillip Isola

October 7, 2019

Contents

1 Intro 5

2 Probabilistic graphical models 7
2.1 Simple Examples . 8
2.2 Directed graphical models . 11

3 Inference in graphical models 13
3.1 Simple example of inference in a graphical model 14
3.2 Belief propagation (BP) . 15

3.2.1 Derivation of message-passing rule . 15
3.2.2 Marginal probability . 17
3.2.3 Message update sequence . 17

3.3 Loopy belief propagation . 19
3.4 MAP estimation and energy models . 19

3.4.1 Appendix: Numerical example of Belief Propagation 20

3

Chapter 2

Probabilistic graphical models

Probabilistic graphical models describe joint probability distributions in a modular way that
allows us to reason about the visual world even when we’re modeling very complicated
situations. These models are useful in vision, where we often need to exploit modularity to
make computations tractable.

A probabilistic graphical model is a graph that describes a class of probability distribu-
tions sharing a common structure. The graph has nodes, drawn as circles, indicating the
variables of the joint probability. It has edges, drawn as lines connecting nodes to other
nodes. At first, we’ll restrict our attention to a type of graphical model called undirected, so
the edges are line segments without arrowheads.

The edges indicate the conditional independence structure of the nodes of the graph.
If there is no edge between two nodes, then the variables described by those nodes are
independent, if you condition on the values of intervening nodes in any path between them
in the graph. If two nodes do have a line between them, then we cannot assume they are
independent. We introduce this through a set of examples.

7

8 CHAPTER 2. PROBABILISTIC GRAPHICAL MODELS

2.1 Simple Examples

Here is the simplest probabilistic graphical model:

(2.1)
This “graph” is just a single node for the variable x1. There is no restriction imposed by the
graph on the functional form of its probability function. In keeping with notation we’ll use
later, we write that the probability distribution over x1, P (x1) = �1(x1).

Another trivial graphical model is this:

(2.2)
Here, the lack of a line connecting x1 with x2 indicates a lack of statistical dependence
between these two variables. In detail, we condition on knowing the values of any connecting
neighbors of x1 and x2–in this case there are none–and thus x1 and x2 are statistically
independent. Because of that independence, the joint probability depicted by this graphical
model must be a product of each variable’s marginal probability and thus must have this
form: P (x1, x2) = �1(x1)�2(x2).

Let’s add a line between these two variables:

(2.3)
By that graph, we mean that there may be a statistical dependency between the two variables.
The class of probability distributions depicted here is now more general than the one above,
and we can only write that the joint probability as some unknown function of x1 and x2,
P (x1, x2) = �12(x1, x2). This graph o↵ers no simplification from the most general probability
function of two variables.

Here is a graph with some structure:

(2.4)
This graph means that if we condition on the variable x2, then x1 and x3 are independent.
A general form for P (x1, x2, x3) that guarantees such conditional independence is

P (x1, x2, x3) = �12(x1, x2)�23(x2, x3). (2.5)

Note the conditional independence implicit in Eq. (2.5): if the value of x2 is given (indicated
by the solid circle in the graph below), then the joint probability of Eq. (2.5) becomes a
product of some function f(x1) times some other function g(x3), revealing the independence
of x1 and x3.

(2.6)
P (x1, x2, x3) then becomes

P (x1, x2, x3) = �12(x1, x̄2)�23(x̄2, x3) = f(x1)g(x3) (2.7)

where x̄2 is the observed value of x2. In the next chapter, we’ll exploit that structure of the
joint probability to perform inference e�ciently using belief propagation.

2.1. SIMPLE EXAMPLES 9

A celebrated theorem, the Hammersley-Cli↵ord theorem, tells the form the joint prob-
ability must have for any given graphical model. The joint probability for a probabilistic
graphical model must be a product of functions of each the “maximal cliques” of the graph.
Here we define the terms.

A clique is any set of nodes where each node is connected to every other node in the
clique. These graphs illustrate the clique property:

(2.8)
A maximal clique is a clique that can’t include more nodes of the graph without losing

the clique property. The sets of nodes below form maximal cliques (left), or do not (right):

(2.9)
The Hammersley-Cli↵ord theorem: A positive probability distribution has the indepen-

dence structure described by a graphical model if and only if it can be written as a product
of functions over the variables of each maximal clique:

P (x1, x2, . . . , xN) =
Y

xc2xi

 xc , (2.10)

where the product is over all maximal cliques xc in the graph, xi.
In the example of the graph 2.4, the maximal cliques are (x1, x2) and (x2, x3), so the

Hammersley-Cli↵ord theorem says that the corresponding joint probability must be of the
form of Eq. (2.5).

Now we examine some graphical models that are especially useful in vision. In perception
problems, we typically have both observed and unobserved variables. The graph below shows
a simple “Markov chain” structure with 3 observed variables, shaded, labeled yi, and 3
unobserved variables, labeled xi:

(2.11)
This is a chain because the variables form a linear sequence. It’s Markov because the hid-
den variables have the Markov property: conditioned on x2, variable x3 is independent of
variable x1. The joint probability of all the variables shown here is P (x1, x2, x3, y1, y2, y3) =
�12(x1, x2)�23(x2, x3) 1(y1, x1) 2(y2, x2) 3(y3, x3). Using P (a, b) = P (a|b)P (b), we can also
write the probability of the x variables conditioned on the observations y,

P (x1, x2, x3|y1, y2, y3) =
1

P (~y)
�12(x1, x2)�23(x2, x3) 1(y1, x1) 2(y2, x2) 3(y3, x3). (2.12)

10 CHAPTER 2. PROBABILISTIC GRAPHICAL MODELS

(For brevity, we write P (~y) for P (y1, y2, y3).) Thus, to form the conditional distribution,
within a normalization factor, we simply include the observed variable values into the joint
probability. For vision applications, we often use such Markov chain structures to describe
events over time.

To capture relationships over space, a 2-d structure is useful:

(2.13)
Then the joint probability over all the variables factorizes into this product:

P (~x|~y) = 1

P (~y)

Y

(i,j)

�ij(xi, xj)
Y

i

 i(xi, yi), (2.14)

where the first product is over all spatial neighbors i and j, and the second product is over
all nodes i.

2.2. DIRECTED GRAPHICAL MODELS 11

2.2 Directed graphical models

In addition to undirected graphical models, another type of graphical model is commonly
used. Directed graphical models describe factorizations of the joint probability into
products of conditional probability distributions. Each node in a directed graph contributes
a well-specified factor in the joint probability: the probability of its variable, conditioned on
all the variables originating arrows pointing into it. So this graph:

(2.15)
denotes the joint probability,

P (x1, x2, x3) = P (x2)P (x1|x2)P (x3|x2) (2.16)

The general rule for writing the joint probability described by a directed graph is this:
Each node, xn, contributes the factor P (xn|x⌅), where ⌅ is the set of nodes with arrows
pointing in to node xn. You can verify that Eq. 2.16 follows this rule. Node x2 has no arrows
going into it, so contributes the factor P (x2), with no conditioning. Directed graphical
models are often used to describe causal processes.

Chapter 3

Inference in graphical models

Given a probabilistic graphical model and observations, we want to estimate the states of the
unobserved variables. For example, given image observations, we want to e�ciently estimate
the pose of the person. The belief propagation algorithm lets us do that e�ciently.

Recall the Bayesian inference task: our observations are the elements of a vector, ~y, and
we seek to infer the probability P (~x|~y) of some scene parameters, ~x, given the observations.
By Bayes’ rule, we have

P (~x|~y) = P (~y|~x)P (~x)

P (~y)
(3.1)

The likelihood term P (~y|~x) describes how a rendered scene ~x generates observations ~y. The
prior probability, P (~x), tells the probability of any given scene ~x occurring. For inference,
we often ignore the denominator, P (~y), called the evidence, as it is constant with respect to
the variables we seek to estimate, ~x.

Typically, we make many observations, ~y, of the variables of some system, and we want
to find the the state of some hidden variable, ~x, given those observations. The posterior
probability, P (~x|~y), tells us the probability for any value of the hidden variables, ~x. From

this posterior probability, we often want some single best estimate for ~x, denoted ~̂x and called
a point estimate.

Selecting the best estimate ~̂x requires specifying a penalty for making a wrong guess. If we
penalize all wrong answers equally, the best strategy is to guess the value of ~x that maximizes
the posterior probability, P (~x|~y) (because any other explanation ~̂x for the observations ~y
would be less probable). That is called the MAP estimate, for maximum a posteriori.

But we may want to penalize wrong answers as a function of how far they are from the
correct answer. If that penalty function is the squared distance in ~x, then the point estimate
that minimizes the average value of that error is called the minimum mean squared error
estimate, or MMSE. To find this estimate, we seek the ~̂x that minimizes the squared error,
averaged over all outcomes:

~̂xMMSE = argmin~̃x

Z

~x
P (~x|~y)(~x� ~̃x)0(~x� ~̃x)d~x (3.2)

Di↵erentiating with respect to ~x to solve for the stationary point, the global minimum for
this convex function, we find

~̂xMMSE =

Z

~x
~xP (~x|~y)d~x. (3.3)

Thus, the minimum mean square error estimate, ~̂xMMSE , is the mean of the posterior distri-
bution. If ~x represents a discretized space, then the marginalization integrals over d~x become
sums over the corresponding discrete states of ~x.

For now, we’ll assume we seek the MMSE estimate. By the properties of the multi-variate
mean, to find the mean at each variable, or node, in a network, we can first find the marginal
probability at each node, then compute the mean of each marginal probability. In other

13

14 CHAPTER 3. INFERENCE IN GRAPHICAL MODELS

words, given P (~x|~y), we will compute P (xi|~y), where i is the ith hidden node. From P (xi|~y)
it is simple to compute the posterior mean at node i.

3.1 Simple example of inference in a graphical model

To gain intuition, let’s calculate the marginal probability for a simple example. Consider the
three-node Markov chain of 3.4, reproduced here.

(3.4)
This can model the probability of a pixel belonging to an object boundary, given evidence,
observations ~y, at a point and two neighboring location. The inferred states ~x could be a
label indicating an edge.

We seek to marginalize the joint probability to find the marginal probability at node 1,
P (x1|~y), given obervations y1, y2, and y3, which we write as ~y. We have

P (x1|~y) =
X

x2

X

x3

P (x1, x2, x3|~y) (3.5)

Here’s the main point: If we knew nothing about the structure of the joint probability
P (x1, x2, x3|~y), the computation would require |x|3 computations: a double-sum over all x2

and x3 states must be computed for each possible x1 state. (We’re denoting the number of
states of any of the x variables as |x|). In the more general case, for a Markov chain of N
nodes, we would need |x|N summations to compute the desired marginal at any node of the
chain. Such a computation quickly becomes intractable as N grows.

But we can exploit the model’s structure to avoid the exponential growth of the com-
putation with N . Substituting the joint probability, from the graphical model, into the
marginalization equation, Eq. (3.6), gives

P (x1|~y) =
1

P (~y)

X

x2

X

x3

�12(x1, x2)�23(x2, x3) 1(y1, x1) 2(y2, x2) 3(y3, x3) (3.6)

This form for the joint probability says that not every variable is coupled to every other one.
We can pass summations through variables they doesn’t sum over, letting us compute the
marginalization much more e�ciently. This will make only a small di↵erence for this short
chain, but it makes a huge di↵erence for longer ones. So we write

P (x1|~y) =
1

P (~y)

X

x2

X

x3

�12(x1, x2)�23(x2, x3) 1(y1, x1) 2(y2, x2) 3(y3, x3) (3.7)

=
1

P (~y)
 1(y1, x1)

X

x2

�12(x1, x2) 2(y2, x2)
X

x3

�23(x2, x3) 3(y3, x3) (3.8)

That factorization of Eq. (3.8) is the key step in “belief propagation” It reduces the number
of terms summed from order |x|3 to order 2|x|2, and for a chain of length N chain, from
order |x|N to order (N � 1)|x|2, a huge computational savings for large N.

Because we may re-use them, we name the partial sums of Eq. (3.8) “messages”. We call
the message from node 3 to node 2 m32(x2) =

P
x3
�23(x2, x3)m63(x3). The other partial

sum is the message from node 2 to node 1, m21(x1) =
P

x2
�12(x1, x2)m52(x2)m32(x2).

Note that the messages are always messages about the states of the node that the message
is being sent to–the arguments of the message mij are the states xj of node j.

3.2. BELIEF PROPAGATION (BP) 15

Figure 3.1: Summary of the messages (partial sums) for a simple belief propagation example.

Eq. (3.8) giave us the marginal probability at node 1. To find the marginal probability at
another node, you can write out the sums over variables needed for that node, and pass the
sums through factors in the joint probability that they don’t operate on, to come up with an
e�cient reorganization of summations analogous to Eq. (3.8). You would find that many of
the summations from marginalization at the node x1 would need to be recomputed for the
marginalization at node x2. That motivates storing and reusing the messages.

3.2 Belief propagation (BP)

For more complicated graphical models, we want to replace the manual factorization with
an automatic procedure for identifying the computations needed for marginalizations and to
cache them e�ciently. Belief propagation does that by identifying those reusable sums, the
“messages”.

3.2.1 Derivation of message-passing rule

We’ll describe belief propagation (BP) only for the special case of graphical models with pair-
wise potentials. The clique potentials between neighboring nodes are ij(xj , xi). Extensions
to higher-order potentials is straightforward. (Convert the graphical model into one with
only pairwise potentials. This can be done by augmenting the state of some nodes to encom-
pass several nodes, until the remaining nodes only need pairwise potential functions in their
factorization of the joint probability.) You can find formal derivations of belief propagation
in [?, ?].

Consider Fig. 3.2. There is a network of N + 1 nodes, numbered 0 through N and we
will marginalize over nodes x1 . . . xN . Fig. 3.2 (a) shows the marginalization equation. If
we assume the nodes form a tree, we can distribute the marginalization sum past nodes for
which the sum is a constant value to obtain the sums depicted in Fig. 3.2 (b).

We define a belief propagation message:
A message mij, from node i to node j, is the sum of the probability over all

states of all nodes in the subtree that leaves node i and does not include node j.
Referring to Fig. 3.2, (a) shows the desired marginalization sum over a network of pair-

wise cliques. (This approach can be extended to more general cliques). We can pass the
summations over node states through nodes that are constant over those summations, arriv-
ing at the factorization shown in (b). Remembering that the message from node i to node
j is the sum over the tree leaving node i, we can read-o↵ the recursive belief propagation
message update rule from Fig. 3.2:

To compute the message from node j to node i:

1. Multiply together all messages coming in to node j, except for the message from node
i back to node j,

16 CHAPTER 3. INFERENCE IN GRAPHICAL MODELS

x0

⌃x1...xN

x1 xi xj

xj+1

xq

(a)

x0

⌃x1...xi

x1 xi xj

⌃xj
xj+1

⌃xj+1...xq�1

xq⌃xq...xN

(b)

Figure 3.2: Example motivating the formula for belief propagation.(a) shows the marginal-
ization for a general graph, focussing on the partial sums at note xj . (b) Shows how the
partial sums distribute over the nodes

2. Multiply by the pairwise compatibility function ij(xi, xj).

3. Marginalize over the variable xj .

These steps are summarized in this equation to compute the message from node j to node i:

mji(xi) =
X

xj

 ij(xi, xj)
Y

k2⌘(j)\i
mkj(xj) (3.9)

where ⌘(j)\imeans “the neighbors of node j except for node i”. Figure 3.3 shows this equation
in a graphical form. Any local potential functions �j(xj) are treated as an additional message
into node j, m0j(xj) = �j(xj). For the case of continuous variables, the sum over the states
of xj in Eq. (3.9) is replaced by an integral over the domain of xj .

As mentioned above, BP messages are partial sums in the marginalization calculation.
The arguments of messages are always the state of the node that the message is going to.

3.2. BELIEF PROPAGATION (BP) 17

mji(xi)

=

�ij(xi, xj)

xj

xi x

mk1j(xj)

.*

mk2j(xj)

.*

mk3j(xj)

.* . . .

Figure 3.3: Pictorial depiction of belief propagation message passing rules of Eq. (3.9),
showing vector and matrix shapes. To send a message from node j to node i: We term-by-
term multiply (shown by .*) the messages (column vectors) coming in to node j, then matrix
multiply (shown by x) the resulting column vector by the compatibility matrix �ij(xi, xj)
to obtain mji(xi).

Figure 3.4: To compute the marginal probability at node i, we multiply together all the
incoming messages at that node: Pi(xi) =

Q
j2⌘(i) mji(xi), remembering to include any local

potential terms �i(xi) as another message.

3.2.2 Marginal probability

The marginal probability at a node i is the sum over all states except those of xi. That is
the product (because of the conditional independence structure) of the sum of all states of
all nodes in each tree leaving node i. Thus the marginal probability at node i is the product
of all the incoming messages:

Pi(xi) =
Y

j2⌘(i)

mji(xi) (3.10)

(We include the local clique potential at node i, i(xi), as one of the messages in the product
of all messages into node i).

3.2.3 Message update sequence

So we need to find the messages. When do we invoke the recursive BP update rule, Eq. (3.9)?
Whenever all the incoming messages in the BP update rule are defined. If there are no
incoming messages to a node, then its outgoing message is well-defined in the update rule.
This lets us start the recursive algorithm.

A node can send a message whenever all the incoming messages it needs have been
computed. We can start by computing the outgoing messages from leaf nodes in the graphical
model tree, since they have no incoming messages other than from the node to which they are
sending a message, which doesn’t enter in the outgoing message computation. Two natural
message passing protocols are consistent with that rule: depth-first update, and parallel
update. In depth-first update, one node is arbitrarily picked as the root. Messages are then
passed from the leaves of the tree (leaves, relative to that root node) up to the root, then
back down to the leaves. In parallel update, at each turn, every node sends every outgoing
message for which it has received all the necessary incoming messages. Figure 3.5 depicts
the flow of messages for the parallel, synchronous update scheme.

18 CHAPTER 3. INFERENCE IN GRAPHICAL MODELS

(a) (b) (c)

Figure 3.5: Example of a synchronous parallel update schedule for BP message passing.
Whenever any node has the required incoming messages needed to send an outgoing message,
it does. (a) At the first iteration, only the leaf nodes have the needed incoming messages
to send an outgoing message (by definition, leaf nodes have no links other than the one
on which they’ll be sending their outgoing message, so they have no incoming messages to
wait for). (b) second iteration, (c) third iteration. By the third iteration, every edge has
messages computed in both directions, and we can now compute the marginal probability at
every node in the graph.

(a) (b) (c) (e)

Figure 3.6: Example of a depth-first update schedule for BP message passing. We
arbitrarily select one node as the root. (a) Messages begin at the leaves and (b) proceed
to the root. Once all the messages reach the designated root node, (c) an outgoing sweep
computes the remaining messages, (d) ending at the leaf nodes.

Note that, when computing marginals at many nodes, we re-use messages with the BP al-
gorithm. A single message-passing sweep through all the nodes lets us calculate the marginal
at any node (using the depth-first update rules to calculate the marginal at the root node).
A second sweep from the root node back to all the leaf nodes calculates all the messages
needed to find the marginal probability at every node. It takes only twice the number of
computations to calculate the incoming messages to every node as it does to calculate the
incoming messages at a single node.

3.3. LOOPY BELIEF PROPAGATION 19

3.3 Loopy belief propagation

The BP message update rules only work to give the exact marginals when the topology of
the network is that of a tree or a chain. In general, one can show that exact computation of
marginal probabilities for graphs with loops depends on a graph-theoretic quantity known
as the treewidth of the graph. For many graphical models of interest in vision, such as 2-d
Markov Random Fields related to images, these quantities can be intractably large.

But the message update rules are described locally, and one might imagine that it is a
useful local operation to perform, even without the global guarantees of ordinary BP. It turns
out that is true. Here is the algorithm: loopy belief propagation algorithm

1. convert graph to pairwise potentials

2. initialize all messages to all ones, or to random values between 0 and 1.

3. run the belief propagation update rules of Sect. 3.2.1 until convergence.

One can show that fixed points of the belief propagation algorithm (message configura-
tions where the messages don’t change with a message update) correspond to minima of a
well-known approximation from the statistical physics community known as the Bethe free
energy [?]. In practice, the solutions found by the loopy belief propagation algorithm are
often quite good.

3.4 MAP estimation and energy models

Instead of summing over the states of other nodes, we are sometimes interested in finding
the ~x that maximizes the joint probability. The argmax operator passes through constant
variables just as the summation sign did. This leads to an alternate version of the belief
propagation algorithm with the summation (of multiplying the vector message products by
the node compatibility matrix) replaced with “argmax”. This is called the “max-product”
version of belief propagation, and it computes an MAP estimate of the hidden states.

Improvements have been developed over loopy belief propagation for the case of MAP
estimation, see, for example, tree-reweighted belief propagation,

https://pub.ist.ac.at/~vnk/papers/TRW-S-PAMI.pdf

Published in: IEEE Transactions on Pattern Analysis and Machine

Intelligence (Volume: 28 , Issue: 10 , Oct. 2006)

V. Kolmogorov

and graph cuts,

http://www.cs.cornell.edu/rdz/Papers/KZ-ECCV02-graphcuts.pdf

What Energy Functions Can Be Minimizedvia Graph Cuts?

February 2004, pp. 147-159, vol. 26

Authors

Ramin Zabih, IEEE

Vladimir Kolmogorov, IEEE

20 CHAPTER 3. INFERENCE IN GRAPHICAL MODELS

Figure 3.7: Details of numerical example.

3.4.1 Appendix: Numerical example of Belief Propagation

Here we work though a numerical example of belief propagation. To make the arithmetic
easy, we’ll solve for the marginal probabilities in the graphical model of two-state (0 and 1)
random variables shown in Fig. 3.7. That graphical model has 3 hidden variables, and one
variable observed to be in state 0. The compatibility matrices are given in the arrays below
(for which the state indices are 0, then 1, reading from left to right and top to bottom).

 12(x1, x2) =

✓
1.0 0.9
0.9 1.0

◆
(3.11)

 23(x2, x3) =

✓
0.1 1.0
1.0 0.1

◆
(3.12)

 42(x2, y2) =

✓
1.0 0.1
0.1 1.0

◆
(3.13)

Note that in defining these potential functions, we haven’t taken care to normalize the
joint probability, so we’ll need to normalize each marginal probability at the end. (remember
P (x1, x2, x3, y2) = 42(x2, y2) 23(x2, x3) 12(x1, x2), which should sum to 1 after summing
over all states.)

For this simple toy example, we can tell what results to expect from looking at the
problem (then we can verify that BP is doing the right thing). Node x2 wants very much to
look like y2 = 0, because 42(x2, y2) contributes a large valued to the posterior probability
when x2 = y2 = 1 or when x2 = y2 = 0. From 12(x1, x2) we see that x1 has a very mild
preference to look like x2. So we expect the marginal probability at node x2 will be heavily
biased toward x2 = 0, and that node x1 will have a mild preference for state 0. 23(x2, x3)
indicates that x3 strongly wants to be the opposite of x2, so it will be biased toward the
state x3 = 1.

Let’s see what belief propagation gives us. We’ll follow the parallel, synchronous update
scheme for calculating all the messages. The leaf nodes can send messages in along their
edges without waiting for any messages to be updated. For the message from node 1, we
have

m12(x2) =
X

x1

 12(x1, x2) (3.14)

=

✓
1.0 0.9
0.9 1.0

◆✓
1
1

◆
(3.15)

=

✓
1.9
1.9

◆
(3.16)

= k

✓
1
1

◆
(3.17)

For numerical stability, we typically normalize messages so their entries sum to 1, or so their
maximum entry is 1, then remember to renormalize the final marginal probabilities to sum

3.4. MAP ESTIMATION AND ENERGY MODELS 21

to 1. Here, we’ve normalized the messages for simplicity, (absorbing the normalization into
a constant, k).

The message from node 3 to node 2 is

m32(x2) =
X

x3

 32(x2, x3) (3.18)

=

✓
0.1 1.0
1.0 0.1

◆✓
1
1

◆
(3.19)

=

✓
1.1
1.1

◆
(3.20)

= k

✓
1
1

◆
(3.21)

We have a non-trivial message from observed node y2 (node 4) to the hidden variable x2:

m42(x2) =
X

x4

 42(x2, y2) (3.22)

=

✓
1.0 0.1
0.1 1.0

◆✓
1
0

◆
(3.23)

=

✓
1.0
0.1

◆
(3.24)

where y2 has been fixed to y2 = 0, thus restricting 42(x2, y2) to just the first column.
Now we just have two messages left to compute before we have all messages computed

(and therefore all node marginals computed from simple combinations of those messages).
The message from node 2 to node 1 uses the messages from nodes 4 to 2 and 3 to 2:

m21(x1) =
X

x2

 12(x1, x2)m42(x2)m32(x2) (3.25)

=

✓
1.0 0.9
0.9 1.0

◆✓
1.0
0.1

◆
. ⇤

✓
1
1

◆�
=

✓
1.09
1.0

◆
(3.26)

The final message is that from node 2 to node 3 (since y2 is observed, we don’t need to
compute the message from node 2 to node 4). That message is:

m23(x3) =
X

x2

 23(x2, x3)m42(x2)m12(x2) (3.27)

=

✓
0.1 1.0
1.0 0.1

◆✓
1.0
0.1

◆
. ⇤

✓
1
1

◆�
=

✓
0.2
1.01

◆
(3.28)

Now that we’ve computed all the messages, let’s look at the marginals of the three hidden
nodes. The product of all the messages arriving at node 1 is just the one message, m21(x1),
so we have (introducing constant k to normalize the product of messages to be a probability
distribution)

P1(x1) = km21(x1) =
1

2.09

✓
1.09
1.0

◆
(3.29)

As we knew it should, node 1 shows a slight preference for state 0.
The marginal at node 2 is proportional to the product of 3 messages. Two of those are

trivial messages, but we’ll show them all for completeness:

P2(x2) = km12(x2)m42(x2)m32(x2) (3.30)

= k

✓
1
1

◆
. ⇤

✓
1.0
0.1

◆
. ⇤

✓
1
1

◆
(3.31)

=
1

1.1

✓
1.0
0.1

◆
(3.32)

22 CHAPTER 3. INFERENCE IN GRAPHICAL MODELS

As expected, a strong bias for being in state 0.
Finally, for the marginal probability at node 3, we have

P3(x3) = km23(x3) =
1

1.21

✓
0.2
1.01

◆
(3.33)

As predicted, this variable is biased toward being in state 1.
By running belief propagation within this tree, we have computed the exact marginal

probabilities at each node, reusing the intermediate sums across di↵erent marginalizations,
and exploiting the structure of the joint probability to perform the computation e�ciently.
If nothing were known about the joint probability structure, the marginalization cost would
grow exponentially with the number of nodes in the network. But if the graph structure
corresponding to the joint probability is known to be a chain or a tree, then the marginal-
ization cost only grows linearly with the number of nodes, and is quadratic in the node state
dimensions.

