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Temporal filtering

why filter videos?



Sequences

time



Sequences

Cube size = 128x128x90



Cube size = 128x128x90

Sequences



Globally constant motion

t

f (t) vx

Let’s work on the continuous space-time domain…



Global constant motion

A global motion can be written as:

Where:

(vx,vy)





Temporal Gaussian



Spatio-temporal Gaussian



Spatio-temporal Gaussian
How could we create a filter that keeps sharp objects that move 
at some velocity (vx , vy) while blurring the rest?

examine in frequency domain…









derivatives of Gaussians



derivatives of Gaussians



Space-time Gaussian derivatives

Note: we can discretize time derivatives in the same way we  
discretized spatial derivatives. For instance:



Cancelling moving objects
Can we create a filter that removes objects that move at some 
velocity (vx , vy) while keeping the rest?



Space-time Gaussian derivatives
For a global translation, we can write:

Therefore, we can write the temporal derivative of f as a function  
of the spatial derivatives of f0 :

This relation is known as the “Brightness change constraint 
equation”, introduced by Horn & Schunck in 1981 

And from here (using derivatives of f):
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Space-time Gaussian derivatives
Can could we create a filter that removes objects that move at 
some velocity (vx , vy) while keeping the rest?

Yes, we could create a filter that implements this constraint:

We can create this filter as a combination of Gaussian derivatives:
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Space-time Gaussian 
derivatives

Nulling-out vx =0, vy=0  motion



Nulling-out vx =-1, vy=0  motion



Nulling-out vx =1, vy=0  motion



Gabor wavelets
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Gabor filters at different 
scales and spatial frequencies 

Top row shows anti-symmetric  
(or odd) filters;  these are good 
for detecting odd-phase 
structures like edges.   
Bottom row shows the 
symmetric (or even) filters, 
good for detecting line phase 
contours.



Fourier transform of a Gabor wavelet

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

U0=0.1

wy

wx

wy

wx
-u0 +u0





Quadrature pair

U0=0.1
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“oriented energy” from a quadrature pair
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Quadrature filter pairs
A quadrature filter is a complex filter whose real part is related to its  
imaginary part via a Hilbert transform along a particular axis through  
origin of the frequency domain.



edge energy 
response to 

an edge



line energy 
response to a 

line



Using phase changes of local Gabor filters to 
analyze or generate motion
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Space-time plot of the a slice through the 
patio-temporal filter of the previous slide
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Gabor filters for analyzing motion as 
orientation in space-time



Motion without movement



Motion without movement



original motion magnified



original motion magnified



Sampling



Sampling
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Continuous world

Pixels



Sampling
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Sampling
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Sampling
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 Continuous image f (x, y)

We can sample it using a rectangular grid as

Tx

Ty



Aliasing

�45
Let’s start with this continuous image (it is not really continuous…)



Aliasing
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Modeling the sampling process
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t

t

t

Ts

A convenient writing:

f (t)

Delta train

Sampled signal



Modeling the sampling process
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t tTs

f (t)

Delta train*

The Fourier transform is a convolution…

Interesting property of the delta train: the Fourier transform of a  
delta train of period T is another delta train with period 2π/T



Modeling the sampling process
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tTs

Interesting property of the delta train: the Fourier transform of a  
delta train of period T is another delta train with period 2π/T. 
Demo in the class notes.
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Modeling the sampling process
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f (t)
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What happens when the repetitions overlap?



Aliasing



Aliasing

�52

Both waves fit the same samples. Aliasing consists in “perceiving”  
the red wave when the actual input was the blue wave. 



Sampling theorem
The sampling theorem  (also known as 

Nyquist theorem) states that for a signal to 
be perfectly reconstructed from it samples, 
the sampling period Ts has to be Ts > Tmin/
2  where Tmin is the period of the highest 
frequency present in the input signal.
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F (w)

2π/Tmin

w



Antialising filtering
Before sampling, apply a low pass-filter to 

remove all the frequencies that will 
produce aliasing.

Without antialising  
filter.

With antialising  
filter.



Evidence for filter-based 
analysis of motion in the human 

visual system
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Square wave Fourier 
components
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http://en.wikipedia.org/wiki/Square_wave

http://en.wikipedia.org/wiki/Square_wave


filters to analyze motion
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Spatio-temporal aliasing
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Spatio-temporal aliasing
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end
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