- - . . . Fall 2019
Illll 6.869/6.819 Advances in Computer Vision Bill Freeman, Antonio Torralba, Phillip Isola

Sept. 24, 2019




Temporal filtering

e 1 911 R
- Yern, | .; g

|

- — — - -

why filter videos?
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Sequences

Cube size = 128x128x90



Sequences

Cube size = 128x128x90



Globally constant motion

Let’s work on the continuous space-time domain...
Af (b) Vx

VY = 0




Global constant motion

A global motion can be written as:

fx,v,1) = fo(x — vty — vyt)

Where:
folx,y) =f(x,y,0)



fx.v,1) = folx —vet,y — vyt)
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Temporal Gaussian
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Spatio-temporal Gaussian
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Spatio-temporal Gaussian

How could we create a filter that keeps sharp objects that move
at some velocity (vx , vy) while blurring the rest?

g\'_\'s"’\' (.X? V, r) =g (_x — ",.\'r’ y = \/’.\.f’ r)
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examine in frequency domain...












derivatives of Gaussians
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derivatives of Gaussians




Space-time Gaussian derivatives
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Note: we can discretize time derivatives in the same way we
discretized spatial derivatives. For instance:
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Cancelling moving objects

Can we create a filter that removes objects that move at some
velocity (vx , vy) while keeping the rest?



Space-time Gaussian derivatives

For a global translation, we can write:

FOey. 1) = folx — vty — vyt)

Therefore, we can write the temporal derivative of f as a function
of the spatial derivatives of f, :
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And from here (using derivatives of f):
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This relation i1s known as the “Brightness change constraint
equation”, introduced by Horn & Schunck 1n 1981



Space-time Gaussian derivatives

Can could we create a filter that removes objects that move at
some velocity (vx , vy) while keeping the rest?

Yes, we could create a filter that implements this constraint:

We can create this filter as a combination of Gaussian derivatives:

(X, y, 85 V5, Vy) = & + Vigy + )8y
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opace-lime Gaussian
denvahves

Nulling-out v« =0, vy=0 motion



Nulling-out vx=-1, vy=0 motion



Nulling-out vx =1, vy=0 motion



GGabor wavelets
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Gabor filters at different
scales and spatial frequencies

Top row shows anti-symmetric
(or odd) filters; these are good
for detecting odd-phase
structures like edges.

Bottom row shows the
symmetric (or even) filters,
good for detecting line phase
contours.




Fourier transform of a Gabor wavelet

_x2+y2
Y. (x,y)=e 2 cos(2mu,x)
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Quadrature pair

x2+y2

Y. (x,y)=e 2 cos(2mu,x)

x2+y2

Y (x,y)=e 2 sin(27mu,x)




“oriented energy” from a quadrature pair
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Quadrature filter pairs

A quadrature filter 1s a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through
origin of the frequency domain.
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response to

an edge



| | energy

response to a
line




Using phase changes of local Gabor filters to
analyze or generate motion

)C2+y2

Y (x,y) = e 20 cos( 2 x+¢ t)
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Space-time plot of the a slice through the
patio-temporal filter of the previous slide

)Cz+y2

Y.(x,y) = e 20 cos(2nu0x+q> t)
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Gabor filters for analyzing motion as

orientation in space-time
Aw.




Motion without movement

SIGGRAPH '91 Las Vegas, 28 July 2 Auguslt 1991
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Figure 1 1 d zross sections of filters. (@) Even phase (52). (b) Odd phase (H-). (€) Filters modulated m phase aecending o Eq. (1) Nule
te apparent rightwird motion of the filter npples.

Fgure 2: la)and (b): IJ; and - filters were cpplicd to an image of Enstein. (¢) Img 2es modulated asin Eq (1), When viewed as a iemporal
sequeree, this pencrares the pereeption of dgehrwasd mordon. yer imaae remains smrionzry




Motion without movement
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Sampling



Sampling

Continuous world

Pixels




Sampling
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Sampling




Sampling

Continuous image f (x, )

We can sample 1t using a rectangular grid as

flnm]l=f (nT_x, mT_\-)
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Aliasing

Let’s start with this continuous 1image (it 1s not really continuous...)
45
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Modeling the sampling process
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Sampled signal
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Modeling the sampling process
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The Fourier transform 1s a convolution...

Interesting property of the delta train: the Fourier transform of a
delta train of period T is another delta train with period 2m/T

48



Modeling the sampling process
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Interesting property of the delta train: the Fourier transform of a
delta train of period T is another delta train with period 2m/T.

Demo 1n the class notes. "



Modeling the sampling process
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What happens when the repetitions overlap?
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Aliasing
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Allasing

f(@)
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Both waves fit the same samples. Aliasing consists in “perceiving”
the red wave when the actual input was the blue wave.
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Sampling theorem

The sampling theorem (also known as
Nyquist theorem) states that for a signal to
be perfectly reconstructed from it samples,
the sampling period T, hastobe T, > T, ./

2 where T . is the period of the highest
frequency present in the input signal.
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Antialising filtering

Before sampling, apply a low pass-filter to
remove all the frequencies that will

produce aliasing.
103x128

Without antialising = &%
filter.

With antialising
filter.



Evidence for filter-based
analysis of motion in the human
visual system
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Square wave Fourier
components

Using Fourier series we can write an ideal square wave as an infinite series of the form

4 Ssin ((2k — 1)27ft)
oare(t) = 2 2. T p )

1 1
== (sin(Q;'Tfl‘) +3 sin(6m ft) + = sin(107ft) 4 - - -
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http://en.wikipedia.org/wiki/Square_wave



http://en.wikipedia.org/wiki/Square_wave
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spatial frequency
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temporal frequency
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space Spatio-temporal aliasing
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