
Chapter 1

Temporal filters

Although adding time might seem like a trivial extension from 2D signals to 3D signals,
and in many aspects it is, there are some properties of how the world behaves that make
sequences to be different from arbitrary 3D signals. In 2D images most objects are bounded
occupying compact and well defined image regions. However, in sequences, objects do not
appear and disappear instantaneously unless they get occluded behind other objects or enter
or exit the scene through doors or the image boundaries. So, the behavior of object across
time t is very different than their behavior across space n,m. In time, objects move and
deform defining continuous trajectories that have no beginning and never end.

1.1 Modeling sequences

Sequences will be represented as functions f(x, y, t), where x, y are the spatial coordinates
and t is time. As before, when processing sequences we will work with the discretized version
that we will represent as f [n,m, t], where n,m are the pixel indices and t is the frame
number. Discrete sequences will be bounded in space and time, and can be stored as arrays
of size N ×M × P .

Figure 1.1 illustrates this with one sequence shown in fig. 1.1.a. This sequence has 90
frames and shows people on the street walking parallel to the camera plane and at different
distances from the camera. Fig. 1.1.b shows the space-time array f [n,m, t]. When we look
at a picture we are a looking at a 2D section, t = constant, of this cube. But it is interesting
to look at sections along other orientations. Fig. 1.1.c and d show sections for m = constant
and n = constant respectively. Although they are also 2D images, their structure looks very
different from the images we are used to seeing. Fig. 1.1.c shows an horizontal section that
is parallel to the direction of motion of the people walking. Here we see straight bands with
different orientations. This bands appear to occlude each other. Each band corresponds to
one person and its orientation is given by the speed of walk and the direction of motion.
Fig. 1.1.d looks like a foto-finish photograph as the ones used in sporting races. In both
images (d) and (c), static objects appear as vertical stripes in (b), and horizontal stripes in
(d).

One special sequence is when the image has a global motion with constant velocity
(vx, vy). In such a case we can write:

f(x, y, t) = f0(x− vxt, y − vyt) (1.1)

where f0(x, y) = f(x, y, 0) is the image being translated, and vx and vy are constants. We
use continuous functions because it allows us to deal with any velocity values. This function
assumes also that the brightness of the pixels does not change while the scene is moving
(constant brightness assumption). The FT of this globally moving image is:

F (wx, wy, wt) = F0(wx, wy)δ(wt + vxwx + vywy) (1.2)

5

6 CHAPTER 1. TEMPORAL FILTERS

m

n

t

a)

b) c) d)
n

t

t

m

Figure 1.1: a) 8 Frames from a sequence with people walking. The frames are shown at
regular time intervals. The full sequence had 90 frames (corresponding to 3 seconds of
video). b) Space-time array, f [n,m, t] of size 128 × 128 × 90. c) Section for m = 50, d)
Section for n = 75. Static objects appear as straight lines.

The continuous FT of the sequence is equal to the product of the 2D FT of the static image
f0(x, y) and a delta wall. To better understand this function let’s look at a simple example
on only one spatial dimension, as shown in figure 1.2.

Figure 1.2 shows the FT for a sequence with one spatial dimension, f(x, t), that contains
a blurry rectangular pulse moving at three different speeds towards the left. Fig. 1.2.a shows
a sequence when the pulse is static and fig. 1.2.d shows its FT. Across the spatial frequency
wx, the FT is approximately a sinc function. Across the temporal frequency wt, as the signal
is constant, its FT is a delta function. Therefore the FT is a sinc function contained inside
a delta wall in the line wt = 0. Fig. 1.2.b shows the same rectangular pulse moving towards
the left, vx = 0.5. Fig. 1.2.e shows the sinc function but skewed a long the frequency line
wt + 0.5wx = 0. Note that this is not a rotation of the sinc function from fig. 1.2.d as the
locations of the zeros lie at the same wx locations. Fig. 1.2.c shows the pulse moving at a
faster speed resulting in a larger skewing of its FT, Fig. 1.2.f.

In general, sequences will be more complex, but the properties of a globally moving
image are helpful to understand local properties in sequences. We can also write models for
more complex sequences. For instance, a sequence containing a moving object over an static
background can be written as:

f(x, y, t) = b(x, y)(1−m(x− vxt, y − vyt)) + o(x− vxt, y − vyt)m(x− vxt, y − vyt) (1.3)

where b(x, y) is the static background image, o(x, y) is the object image moving with speed
(vx, vy), and m(x, y) is a binary mask that moves with the object and that models the fact
that the object occludes the background. We let to the reader the work of computing its FT
and visualizing the effect of the mask in the Fourier domain.

1.2 Temporal filters

Linear spatio-temporal filters can be written as spatio-temporal convolutions between the
input sequence and a convolutional kernel (impulse response). Discrete spatiotemporal filters
have an impulse response h [n,m, t]. The extension from 2D filter to spatio-temporal filters

1.2. TEMPORAL FILTERS 7

wx

wt

wx

wt

wx

wt

vx = 0 vx = -0.5 vx = -1

x

t

x

t

x

t

d) e) f)

a) b) c)

Figure 1.2: a) A sequence with one spatial dimension showing a static rectangular pulse. b)
The rectangular pulse moves to the left at a speed v = −0.5 and c) moving towards the left,
v = −1. As we work with discretized signals, speed units are in pixels per frame.

does not has any additional complications. We can also classify filters as low-pass, high-pass,
etc. But in the case of time, there is another attribute used to characterize filters: causality.

• Causal filters: these are filters with output variations that only depend of the past
values of the input. This puts the following constraint: h [n,m, t] = 0 for all t < 0.
This means that if the input is an impulse at t = 0, the output will only have non-zero
values for t > 0. If this condition is satisfied, then the filter output will only depend
on the input’s past for all possible inputs.

• Non-causal filters: when the output has dependency on future inputs.

• Anti-causal filters: this is the opposite, when the output only depends on the future:
h [n,m, t] = 0 for all t > 0.

Many filters are non-causal and have both causal and anti-causal components (e.g., a Gaus-
sian filter). Note that non-causal filters can not be implemented in practice and, therefore,
any filter with an anti-causal component will have to be approximated by a purely causal
filter by bounding the temporal support and shifting in time the impulse response.

In this chapter, we have written all the filters as convolutions. However, some filters are
better described as difference equations (this is specially important in time). An example of
a difference equation is:

g [n,m, t] = f [n,m, t] + αh [n,m, t− 1] (1.4)

where the output g at time t depends on the input at time t and the output at the previous
time instant t− 1 multiplied by a constant α. We can easily evaluate the impulse response,
h [n,m, t], of such a filter by replacing f [n,m, t] with an impulse, δ [n,m, t]. The impulse
response is:

h [n,m, t] = αtδ [n,m]u [t] (1.5)

where u [t], called the Heaviside step function, is:

u [t] =

{
0 if t < 0

1 otherwise
(1.6)

8 CHAPTER 1. TEMPORAL FILTERS

n

t v=0

5

-5

5-5

n

t v=-1

5

-5

5-5

n

t v=1

5

-5

5-5
a) b) c)

Figure 1.3: a) Spatio-temporal Gaussian with σ = 1 and σt = 4. b) Same gaussian param-
eters but skewed by the velocity vector vx = −1, vy = 0 pixels/frame, c) and vx = 1, vy = 0
pixel/frame.

Most filters described by differences equations have an impulse response with infinite support.
They are called IIR (Infinite Impulse Response) filters. IIR filters can be further classified as
stable and unstable. Stable filters are the ones that given a bounded input, |f [n,m, t] | < A,
produce a bounded output, |g [n,m, t] | < B. For this to happen, the impulse response has to
be bounded. In unstable filters, the amplitude of the impulse response diverges to infinity.
In the previous example, the filter is stable if and only if |α| < 1.

Let’s now describe some spatio-temporal filters.

1.2.1 Temporal Gaussian

As with the spatial case, we can define the same low-pass filters: the box filter, triangular
filters, etc. As an example, let’s focus on the Gaussian filter. The spatio-temporal gaussian
is trivial extension of the spatial gaussian filter we have seen in section ??:

g(x, y, t;σx, σt) =
1

(2π)3/2σ2
xσt

exp−x
2 + y2

2σ2
x

exp− t2

2σ2
t

(1.7)

Where σx is the width of the gaussian along the two spatial dimensions, and σt is the width
on the temporal domain. As the units for t and x, y are unrelated, it does not make sense to
set all the σs to have the same value.

We can discretize the continuous gaussian by taking samples and building a 3D convolu-
tional kernel. We can also use the binomial approximation. The 3D Gaussian is separable
so it can be implemented efficiently as a convolutional cascade of 3 one dimensional kernels.
Figure 1.3.a shows a spatio-temporal gaussian. The temporal gaussian is a non-causal filter,
therefore it is not physically realizable. This is not a problem when processing a video stored
in memory. However, if we are processing an streamed video, we will have to bound and
shift the filter to make it causal which will result in a delay in the output.

Figure 1.4.a shows one sequence and figure 1.4.b shows the sequence filtered with the
gaussian from figure 1.3.a.This Gaussian has a small spatial width, σ = 1, and a large
temporal width, σt = 4 so the sequence is strongly blurred across time. The moving objects
show motion blur and are strongly affected by the temporal blur, while the static background
is only affected by the spatial width of the gaussian.

How could we create a filter that keeps sharp objects that move at some velocity (vx, vy)
while blurring the rest? Figure 1.4.c shows the desired output of such a filter. The bottom
image shows one frame for a sequence filtered with a kernel that keeps sharp objects moving
left at 1 pixel/frame while blurring the rest. This filter can be obtained by skewing the
gaussian:

gvx,vy (x, y, t) = g(x− vxt, y − vyt, t) (1.8)

1.2. TEMPORAL FILTERS 9

n

t

n

t

n

t

n

t

a) b) c) d)

Figure 1.4: a) One frame from the input sequence and the space-time section (on top). b)
Output when convolving the the gaussian from fig. 1.3.a. c) Output of the convolution with
fig. 1.3.b, and d) output of the convolution with fig. 1.3.c.

This directional blur is not a rotation of the original Gaussian as the change of variables is
not unitary, but the same effect could be obtained with a rotation. Figure 1.4.c shows the
effect when vx = −1, vy = 0. The gaussian is shown in fig. 1.3.b. The space-time section
shows how the sequence is blurred everywhere except one oriented bad corresponding to the
person walking left. Figure 1.4.d shows the effect when vx = 1, vy = 0. The output of this
filter looks as if the camera was tracking one of the objects while the shutter was open,
producing a blurry image of all the other objects.

1.2.2 Temporal derivatives

Spatial derivatives were useful to find regions of image variation such as object boundaries.
Temporal derivatives can be used to locate moving objects. We can approximate a temporal
derivative for discrete signals as:

f [m,n, t]− f [m,n, t− 1] (1.9)

As in the spatial case, it is useful to compute temporal derivatives of spatio-temporal
gaussians:

∂g

∂t
=
−t
σ2
t

g(x, y, t) (1.10)

where g(x, y, t) is the Gaussian as written in eq. 1.7. We can compute the spatio-temporal
gradient of a gaussian:

∇g = (gx(x, y, t), gy(x, y, t), gt(x, y, t)) =
(
−x/σ2,−y/σ2,−t/σ2

t

)
g(x, y, t) (1.11)

What should we do if we want to remove only the objects moving at a particular velocity?
In the case of a moving image with velocity (vx, vy), the sequence is f(x, y, t) = f0(x −

vxt, y − vyt), we can compute the temporal derivative of f(x, y, t) as:

∂f

∂t
=
∂f0
∂t

= −vx
∂f0
∂x
− vy

∂f0
∂y

(1.12)

If we compute the gradient of the gaussian along the vector [1, vx, vy]:

h(x, y, t; vx, vy) = gt + vxgx + vygy = ∇g (1, vx, vy)
T

(1.13)

10 CHAPTER 1. TEMPORAL FILTERS

a)

b)

c)

d)
t=0 t=1 t=2 t=3t=-3 t=-2 t=-1

Figure 1.5: Visualization of the space-time Gaussian. The gaussian has a width of σ2 = σ2
t =

1.5, and has been discretized as a 3D array of size 7 × 7 × 7. Each image shows one frame.
a) Gaussian b) The partial derivative of the Gaussian with respect to t. c) Derivative along
v = (1, 0) pixels/frame. d) v = (−1, 0) pixels/frame.

a) b) c) d)

n

t

n

t

n

t

n

tv=-1 v=1v=0

Figure 1.6: Spatio-temporal Gaussian g [n, t] and derivatives. a) Gaussian with σ2 = 1.5. b)
Partial derivative with respect to t. c) Partial derivative along (1,−1), d) Partial derivative
along (1, 1).

1.3. VELOCITY-TUNED FILTERS 11

t

n n

t

n

t

n

t

a) b) c) d)

Figure 1.7: a) Input sequence. b) vx = vy = 0, c) vx = 1 pixels/frame. d) vx = −1
pixel/frame.

and we convolve it with f0(x− vxt, y − vyt) we get a zero output (using eq. 1.12):

f0(x−vxt, y−vyt)◦h = f0(x−vxt, y−vyt)◦(gt + vxgx + vygy) =

(
∂f0
∂t

+ vx
∂f0
∂x

+ vy
∂f0
∂y

)
◦g = 0

(1.14)
The filter h is shown in figure 1.5 as a sequence for different velocities. In the example shown
in the figure, the gaussian (fig. 1.5.a) has a width of σ2 = σ2

t = 1.5, and has been discretized
as a 3D array of size 7 × 7 × 7. Figures b,c and d show the filter h for different velocities:
(vx, vy) = (0, 0), (1, 0) and (−1, 0). Fig. 1.6 shows the corresponding space-time sections of
the same spatio-temporal gaussian derivatives. Both visualizations are equivalent and help
to understand how the filter works.

Such a filter will cancel any objects moving at the velocity (vx, vy). By using different
filters, each one computing derivatives a long different space-time orientations, we

1.2.3 Spatiotemporal Gabor filters

Just as we did with Gaussian derivatives, extending Gabor filter for motion analysis is a direct
generalization of the x-y 2D Gabor function to a x-y-t 3D Gabor function. Figure 1.8.a shows
a x-t (cosine and sine) Gabor function in 1 spatial dimension, and Figure 1.8.b shows a sketch
of its Fourier transform. This function is selective to signals translating to the right with a
speed v = 1, i.e. i(x − t). The red line in Figure 1.8.b shows Dirac line that contains the
energy of the moving signal.

In 2 spatial dimensions, Figure 1.8.c shows the sketch of the Gabor transfer function.
Note that the x-y-t Gabor filter is not selective to velocity. If we have a 2D moving signal
i(x− vxt, y − vyt), the Fourier transform is contained inside a Dirac plane. Therefore, there
are an infinite number of planes that will pass by the frequencies of the Gabor filter. All those
planes intersect the red line shown in Figure 1.8.c. A single Gabor filter can not disambiguate
the input velocity.

Equation of the velocity as a function of the frequency tuning.

1.3 Velocity-tuned filters

How can we measure input velocity? There are many different approaches in the computer
vision community for measuring motion. Here we show that it is possible to measure motion
even with the simple processing machinery that we’ve developed so far.

12 CHAPTER 1. TEMPORAL FILTERS

w
x

w
t

x

t

x

t
w
x

w
y

w
t

a) b) c)

Figure 1.8: Space-time Gabor filters. a) Cosine and sine x-t Gabor filter, and b) the sketch
of its transfer function. c) Sketch of the transfer function of a spatiotemporal Gabor filter in
2 spatial dimensions (x-y-t).

w
x

w
y

w
t

w
x

w
y

w
t

a) b)

Figure 1.9: a) Space-time Gabor filters tiles. b) Set of Gabor filters selective to a particular
velocity.

1.3. VELOCITY-TUNED FILTERS 13

(.)2

+

(.)2(.)2

+

(.)2 (.)2

+

(.)2 (.)2

+

(.)2(.)2

+

(.)2 (.)2

+

(.)2 (.)2

+

(.)2 (.)2

+

(.)2

+ + + + + + + + + + + + + + + + + +

F
re

q
u
en

cy
 t

u
n
ed

la
y
er

V
el

o
ci

ty
 t

u
n
ed

la
y
er

t

x

y

In
p
u
t

se
q
u
en

ce

Figure 1.10: Architecture to create velocity-selective units. The first layer is composed
by space-time Gabor filters (cosine and sine) which are frequency-selective units. Here we
represent the impulse response of each filter by a small x-y-t cube. For each quadrature
pair we compute the amplitude. Then amplitude outputs are combined according to form
different planes in the Fourier domain to create velocity-selective outputs. A normalization
layer can be added to normalize the outputs by dividing every output by the sum of all the
amplitudes (not shown). The full architecture is non-linear.

We can use quadrature pairs of oriented filters in space-time to find motion speed and
direction in the video signal. We just need to find the space-time orientation of strongest
response. Figure 1.8.a shows a set of Gabor filters sampling the space-time frequency domain.
When the input contains a moving signal, we can use a set of filters to identify the plane in
the Fourier domain that contains the input energy. Figure 1.8.b shows the subset of filters
that have the strongest output for a particular input motion.

As an illustration, Figure 1.10 shows one possible architecture to create velocity-selective
units. The first layer is composed by Gabor filters (cosine and sine) which are frequency-
selective units. The outputs are combined according to different planes in the Fourier domain
to create velocity-selective outputs.

Given an input sequence, one can estimate velocity by looking at the velocity-tuned unit
with the strongest response.

