
6.869/6.819 Advances in Computer Vision Fall 2019

Bill Freeman, Antonio Torralba, Phillip Isola 

Lecture 9

Statistical models of images

October 3, 2019



This looks like a noisy image.  But how do you know that? 
What about the image tells you that it’s a noisy image?



Today’s lecture:
4 image models, and
3 noise removal algorithms, corresponding to 
each of the last 3 image models.



Statistical modeling of images



https://pdfs.semanticscholar.org/ee55/814e8705f5e8cf664efb66c31c0ea6372d92.pdf



Statistical modeling of images

The pixel



Model 0:  model isolated pixel intensities

Assumptions: 
• Independence: All pixels are independent. 
• Stationarity: The distribution of pixel intensities does not depend on image location.



Fitting the model

Pixel intensity
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Sampling new images

Sample



Sampling new images

Sample



Statistical modeling of images

The pixel



Model 1:  model pixel intensity covariances

The pixel

Another pixel

Image intensities assumed to be zero mean for notational convenience
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Gaussian model
We want a distribution that captures the correlation structure typical of natural images.

Let C be the covariance matrix of the image:

Diagonalization of circulant matrices: C = EDET

Stationarity assumption: Symmetrical circulant matrix

The eigenvectors are the Fourier basis
The eigenvalues are the squared magnitude of the Fourier coefficients



A remarkable property of natural images

D. J. Field, "Relations between the statistics of natural images and  
the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987) 
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Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412.

A remarkable property of natural images



Sampling new images

Sample



Sampling new images



Randomizing the phase  (fit the Gaussian image model to each 
of the images in the top row, then draw another random 

sample) you get the bottom row.



Denoising, using image model 1

= +

Decomposition of a noisy image 



Denoising

= +

Decomposition of a noisy image 

Natural imageWhite Gaussian noise: N(0, σn2)

Find I(x,y) that maximizes the posterior (maximum a posteriori, MAP): 

x

likelihood prior



Denoising
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Decomposition of a noisy image 

Natural imageWhite Gaussian noise: N(0, σn2)

Find I(x,y) that maximizes the posterior (maximum a posteriori, MAP): 

x

likelihood prior
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Denoising
x

likelihood prior

x

This can also be written in the Fourier domain, with C = EDET:

The solution is:

(note this is a linear operation)
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Decomposition of a noisy image 





=x



= +

= +

The truth:

The estimated decomposition:



And we got all this from just modeling the 
correlation between pairs of pixels!



Dead leaves model implies sparse image gradients

 Introduced in the 60’s by Matheron (67) and popularized by Ruderman (97)

From Lee, Mumford and Huang 2001



Edges
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Observation: Sparse filter response

Pixel intensity
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Red – true pdf 
Black – best Gaussian fit

Image [1 -1] filter output [1 -1] output histogramIntensity histogram



A model for the distribution of filter outputs

Red – true pdf 
Black – best Gaussian fit

p(x) = 
exp(-x2/2σ2)

2πσ2

p(x) =
exp(-|x/s|r)

2s/rΓ(1/r)

r ~ 0.8  (< 2)



Generalized Gaussian
p(x) =

exp(-|x/s|r)

2s/rΓ(1/r)

r = 10
r = 2

Gaussian distribution
r = 1

Laplacian distributionr = 0.5

Uniform distribution 
r -> infinite



Image model 2:  The wavelet marginal model

A small neighborhood

k

p(hk(x,y))

Filter outputsAll pixels and all outputs are independent



The wavelet marginal model
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What is the most probable image under 
the wavelet marginal model? 
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p(x) =
exp(-|x/s|r)

2s/rΓ(1/r)



Sampling images from the two models so far
Gaussian model Wavelet marginal model
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Steerable Pyramid 
(a good decomposition for the wavelet marginal model)

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Decomposition Reconstruction

… …
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Steerable Pyramid

Decomposition Reconstruction
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Denoising with the marginal wavelet model
Let y = noise-corrupted observation:  y = x+n, with n ~ gaussian. 

P(x|y) ~ P(y|x) P(x)

P(y|x)

P(x|y)

y

y = 25P(x)

Let x = bandpassed image value before adding noise.

By Bayes theorem



Let x = bandpassed image value before adding noise. 
Let y = noise-corrupted observation. 

By Bayes theorem

y

P(y|x)

P(x|y)

y = 50

Denoising with the marginal wavelet model

P(x|y) ~ P(y|x) P(x)



Let x = bandpassed image value before adding noise. 
Let y = noise-corrupted observation. 

By Bayes theorem

y

P(y|x)

P(x|y)

y = 115

Denoising with the marginal wavelet model

P(x|y) ~ P(y|x) P(x)



P(x)
P(y|x)

y

y = 25

P(x|y)

y

P(y|x)

P(x|y)

y = 115

For small y: probably it is due to noise and y should be set to 0 
For large y: probably it is due to an image edge and it should be kept untouched

P(x)

Denoising with the marginal wavelet model



MAP estimate,     , as function of 
observed coefficient value, y

y

x̂
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http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring 

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf


r = 2
Gaussian distribution

r = 1
Laplacian distribution

r = 0.5



original

With Gaussian noise of 
std. dev. 21.4 added, 
giving PSNR=22.06

(1) Denoised with 
Gaussian model, 
PSNR=27.87

(2) Denoised with 
wavelet marginal 
model, 
PSNR=29.24

http://www.cns.nyu.edu/pub/eero/simoncelli05a-preprint.pdf



Image model 3:  Non-parametric 
image model
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Efros & Leung Algorithm

Assuming Markov property, compute P(p|N(p)) 
– Building explicit probability tables is infeasible 

p

Synthesizing a pixel

non-parametric 
sampling

Input image 

–Instead, we search the input image for all similar 
neighborhoods — that’s our pdf for p 

–To sample from this pdf, just pick one match at 
random
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Neighborhood Window

input



Varying Window Size

Increasing window size



Synthesis Results
french canvas rafia weave



More Results
white bread brick wall



Homage to Shannon



Hole Filling



Extrapolation



Associated non-parametric noise removal 
algorithm







if there’s time…



p

Image Quilting [Efros & Freeman]

• Observation: neighbor pixels are highly correlated

Input image 

non-parametric 
sampling

B

Idea: unit of synthesis = block 

• Exactly the same but now we want P(B|N(B)) 

• Much faster: synthesize all pixels in a block at once 

• Not the same as multi-scale!

Synthesizing a block



Input texture

B1 B2

Random placement  
of blocks 

block

B1 B2

Neighboring blocks 
constrained by overlap

B1 B2

Minimal error 
boundary cut



min. error boundary

Minimal error boundary
overlapping blocks vertical boundary

_ =
2

overlap error



Texture Transfer
• Take the texture from one 

object and “paint” it onto 
another object 
– This requires separating texture 

and shape 
– That’s HARD, but we can cheat  
– Assume we can capture shape 

by boundary and rough shading 
•  

Then, just add another constraint when sampling: 
similarity to underlying image at that spot
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