Chapter 23

Intelligent agents

Intelligent agents interact with an environment to solve tasks. They are given observations
of the world as input and take actions as output:

Agent

Environment

23.1 Imitation learning

Imitation learning is just supervised learning applied to learning a policy, i.e. a mapping
from environment states s to actions a. We denote a policy as 7 : s = a. Imagine we wish
to learn to play chess. The imitation learning solution is to watch Gary Kasparov play the
game, and learn to do exactly what he does:

a
x Learner
Y
{:. d3 & b4+ } Objective
B 9 m(s) = softmax(gs(s))
xl
K L(a,m(s)) = H(a,n(s))
" af3 &6 > — - M:S—a
o ’ Hypothesis space
a5
by | Convolutional neural net
.
{:! 0-0 j_xc3} Optimizer
an 9 Stochastic gradient descent
N
7% = arg min g L(m(s;),a;)
mell i—1

2 CHAPTER 23. INTELLIGENT AGENTS

On the left, we have a bunch of demos of what Kasporov did in millions of different
game states. We simply train a policy that tries to match what Kasporov did whenever it
encounters the same game states, or sufficiently similar ones.

23.2 Reinforcement learning

How can we learn to execute good actions if we have no expert to imitate? One answer
is reinforcement learning (RL). In RL we are only given rewards that indicate if our
behavior is good or bad, and we must explore (i.e. try out different behaviors) to figure out
which give the most positive rewards. The big difference between RL and imitation learning
(a.k.a. supervised learning) is that in RL, we are not given examples (a.k.a. demos). This
makes RL a much harder problem. Supervised learning is learning from examples. RL is
learning by trial and error.

The basic idea of RL is actually rather intuitive: try out a bunch of behaviors, then adopt
the one that led to the best outcome. For example, a chess playing agent could try out a
bunch of different strategies in a tournament against human players. Maybe one strategy
ends up beating all the humans. Then the agent will adopt that strategy as the one to use
in future tournaments (we then say it has learned that strategy). How to do this efficiently
is the central question of RL algorithms.

We can formalize the RL problem as follows. We wish to maximize the total rewards ac-
cumulated by our behavior. Behavior is defined as a trajectory 7 : {so, ag, 7o, 51, 01,71, ...},
which is a sequence of environment states s;, actions taken a;, and rewards achieved r;. The
policy 7 : s; — a; generates actions based on states. At every time step, the environment
gives a reward 7;. This reward may be zero if nothing much has happened, positive if, e.g.,
we scored a point in a game, and negative if, e.g., we lost a point in a game. The total sum of
rewards over a behavioral trajectory is called the Return, R(7). Often we use discounted
returns to avoid infinite sums over trajectories of unbounded length:

R(r)=> 7'ni (23.1)
t=0

The discount factor « should be in the range (0,1) so that the series doesn’t diverge. You
can think of v as how much more we care about a dollar today versus a dollar tomorrow.
Here is how the environment-agent loop looks with our notation filled in:

Policy
/ T8 — Qg \

State Actions
St+1,T¢ ag

\ Environment /

f DS, Q¢ — T, St

The RL problem is to optimize the expected Returns achieved by our policy:

7" = argmax E; . [R(7)] (23.2)

s

Methods for performing this optimization (i.e. the optimizers for this learning problem)
include policy gradient methods, Q learning, genetic algorihms, and model-based
methods.

23.2. REINFORCEMENT LEARNING 3

23.2.1 Markov Decision Processes

Let’s look at the expectation in Eqn. 23.2 in more detail. What is the expectation over? The
notation 7 ~ m needs to be unpacked. In words it means “trajectories sampled by following
the policy 7 in some environment f starting at some initial state sqg.” In general, we want
policies that do well in many different environments with random variations, and starting
from any random initial state. So the expectation could be over randomized environments
and/or randomized initial states. Often we will also use a stochastic policy that makes
noisy decisions (this helps with optimization). So the expectation can also be over noise in
the policy outputs. Finally, for a given environment f, the transition function may itself
be stochastic (due to, e.g., unmodeled noise in an environment). So we can also take the
expectation over noise in the transition function. When the transition function is stochastic,
we may represent it with a probability distribution P(s;11]s¢, a¢). The policy is another
distribution, 7(at|st). The reward function can also in principle be stochastic, and in general
we treat it as a function of the tuple {s¢, at, s¢+1}, so it is a distribution 7(r¢|s¢, at, St41)-

In general, then, the distribution over trajectories, 7 ~ m, is modeled a Mlarkov decision
process or MDP, which is a graphical model with the following form:

- (23.3)
{50, G0,70,51,01,71,...} ~ T (23.4)
so ~ P(sp) <initial state distribution (23.5)

St41 ~ P(sp11]8¢t, at) < transition function (23.6)

a; ~ m(ag|st) < policy (23.7)

re ~ 1(re|Se, as, Se41) <reward function (23.8)

O

Reward 7

Action @

State S

time

are the environment dynamics. The green arrows are the rewards. The yellow arrows are
the policy decisions. RL is the problem of learning the parameters of the yellow arrows so
as the maximize the expected Return of the resulting MDP.

CHAPTER 23. INTELLIGENT AGENTS

Bibliography

