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6.869 and 6.819 students are expected to finish all problems unless there is an addi-
tional instruction.

We provide a python notebook with the code to be completed. You can run it locally
or in Colab (upload it to Google Drive and select ’open in colab’ ) to avoid setting up your
own environment. Once you finish, run the cells and download the notebook to be submitted.

Submission Instructions: Please submit a .zip file named <your kerberos>.zip con-
taining 1) report named report.pdf including your answers to all required questions with
images and/or plots showing your results, and 2) the python notebook provided, with the
cells run and the relevant source code. If you include other source code files for a given
exercise, please indicate it in the report.

Late Submission Policy: If your pset is submitted within 7 days (rounding up) of
the original deadline, you will receive partial credit. Such submissions will be penalized by a
multiplicative coefficient that linearly decreases from 1 to 0.5.

Problem 1 Texture Synthesis

In this problem you will implement the Efros and Leung algorithm [1] for texture synthesis
discussed in Section 10.3 of Forsyth and Ponce [2]. In addition to reading the textbook you
may also find it helpful to visit Efros’ texture synthesis website:
http://people.eecs.berkeley.edu/̃ efros/research/EfrosLeung.html

in which many of the implementation details described below can be found. The Efros and
Leung algorithm synthesizes a new texture by performing an exhaustive search of a source
texture for each synthesized pixel in the target image, in which sum-of-squared differences
(SSD) is used to associate similar image patches in the source image with that of the target.
The algorithm is initialized by randomly selecting a 3 × 3 patch from the source texture and
placing it in the center of the target texture. The boundaries of this patch are then recursively
filled until all pixels in the target image have been considered. Implement the Efros and Leung
algorithm as the following Python function:

synthIm = SynthTexture(sample, w, s)

where sample is the source texture image, w is the width of the search window, and s=[ht,
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wt] specifies the height and width of the target image synthIm. As described above, this
algorithm will create a new target texture image, initialized with a 3x3 patch from the source
image. It will then grow this patch to fill the entire image. As discussed in the textbook, when
growing the image un-filled pixels along the boundary of the block of synthesized values are
considered at each iteration of the algorithm. A useful technique for recovering the location
of these pixels is using dilation, a morphological operation that expands image regions.

Use scipy.ndimage.binary dilation, numpy.nonzero and numpy.ix routines to recover
the un-filled pixel locations along the boundary of the synthesized block in the target image.

In addition to the above function we ask you to write a subroutine that for a given pixel in
the target image, returns a list of possible candidate matches in the source texture along with
their corresponding SSD errors. This function should have the following syntax:

bestMatches, errors = FindMatches(template, sample, G)

where bestMatches is the list of possible candidate matches with corresponding SSD errors
specified by errors. template is the w × w image template associated with a pixel of the
target image, sample is the source texture image, and G is a 2D Gaussian mask discussed
below. This routine is called by SynthTexture and a pixel value is randomly selected from
bestMatches to synthesize a pixel of the target image. To form bestMatches accept all pixel
locations whose SSD error values are less than the minimum SSD value times (1 + ε). To
avoid randomly selecting a match with unusually large error, also check that the error of the
randomly selected match is below a threshold δ. Efros and Leung use threshold values of
ε = 0.1 and δ = 0.3.

Note that template can have values that have not yet been filled in by the image growing
routine. Mask the template image such that these values are not considered when computing
SSD. Efros and Leung suggest using the following image mask:

Mask = G .* validMask

where validMask is a square mask of width w that is 1 where the template is filled, 0 otherwise
and G is a 2D zero-mean Gaussian with variance σ = w/6.4 sampled on a w×w grid centered
about its mean. G can be pre-computed using scipy.ndimage.gaussian filter routine.
The purpose of the Gaussian is to down-weight pixels that are farther from the center of the
template. Also, make sure to normalize the mask such that its elements sum to 1.

Test and run your implementation using the grayscale source texture image rings.jpg pro-
vided in the folder, with window widths of w = 5, 7, 13, s = [100, 100] and an initial starting
seed of (x, y) = (4, 32). Explain the algorithm’s performance with respect to window size. For
a given window size, if you re-run the algorithm with the same starting seed do you get the
same result? Why or why not? Is this true for all window sizes? Also run your implementation
using real color image texture.jpg and see how window size affects the performance.

Include in your report the synthesized textures that correspond to each window size along
with answers to the above questions.
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