Lecture 21
Object recognition II
Object model

• Voting

• Invariance: search strategy

Here, invariance in translation and scale is achieved by the search strategy: the classifier is evaluated at all locations (by translating the image) and at all scales (by scaling the image in small steps).

The search cost can be reduced using a cascade.
Example: screen detection

Feature output
Example: screen detection

Feature output → Thresholded output

Weak ‘detector’
Produces many false alarms.
Example: screen detection

Feature output → Thresholded output → Strong classifier at iteration 1
Example: screen detection

Feature output → Thresholded output → Strong classifier

Second weak ‘detector’
Produce a different set of false alarms.
Example: screen detection

Feature output → Thresholded output → Strong classifier

Strong classifier at iteration 2
Example: screen detection

Feature output → Thresholded output → Strong classifier

Strong classifier at iteration 10
Example: screen detection

Feature output → Thresholded output → Strong classifier

Adding features → Final classification

Strong classifier at iteration 200
Maximal suppression

Detect local maximum of the response. We are only allowed detecting each object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final performance.
Evaluation

When do we have a correct detection?

Is this correct?

\[
\frac{\text{Area intersection}}{\text{Area union}} > 0.5
\]

- ROC
- Precision-recall
ROC and Precision-Recall Detection rate

Detection rate

Precision

False alarm rate

Recall

Plots from PASCAL competition
Rapid Object Detection Using a Boosted Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:
What is novel about this approach?

- Feature set (… is huge about 16,000,000 features)
- Efficient feature selection using AdaBoost
- New image representation: Integral Image
- Cascaded Classifier for rapid detection
 - Hierarchy of Attentional Filters

What is new is the combination of these ideas. This yields the fastest known face detector for gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Image Features

“Rectangle filters”

Similar to Haar wavelets

Differences between sums of pixels in adjacent rectangles

\[
h_t(x) = \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}
\]

\[
160,000 \times 100 = 16,000,000
\]

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Integral Image

• Define the Integral Image

\[I'(x, y) = \sum_{x' \leq x} \sum_{y' \leq y} I(x', y') \]

• Any rectangular sum can be computed in constant time:

\[D = 1 + 4 - (2 + 3) \]

\[= A + (A + B + C + D) - (A + C + A + B) \]

\[= D \]

• Rectangle features can be computed as differences between rectangles

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Huge “Library” of Filters

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084 false positives.

Not quite competitive. Need to add more features, but then that slows it down.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Fast and accurate classifier using a cascade

Fleuret and Geman 2001, Viola and Jones 2001

- Given a nested set of classifier hypothesis classes

- Cascade

![Diagram of cascade classifier]

- IMAGE SUB-WINDOW
 - Classifier 1
 - T → Classifier 2
 - T → Classifier 3
 - T → FACE
 - F → NON-FACE
 - F → NON-FACE
 - F → NON-FACE
A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.

A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative) — using data from previous stage.

A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
A Real-time Face Detection System

Training faces: 4916 face images (24 x 24 pixels) plus vertical flips for a total of 9832 faces

Training non-faces: 350 million sub-windows from 9500 non-face images

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10, 25, 25, 50, 50, 50, 75, 100, …, 200, …

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Speed of Face Detector

Speed is proportional to the average number of features computed per sub-window.

On the MIT+CMU test set, an average of 9 features out of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium III, a 384x288 pixel image takes about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Output of Face Detector on Test Images

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
Number checks

Fleuret and Geman 2001
Cascade of classifiers

• Perhaps, enough efficiency can overcome combinatorics…

Fleuret and Geman 2001
Edge based descriptors
Edge based descriptors

What makes an image memorable?

Gavrila, Philomin, ICCV 1999

Papageorgiou & Poggio (2000)

J. Shotton, A. Blake, R. Cipolla. PAMI 2008.

Opelt, Pinz, Zisserman, ECCV 2006
Edges and chamfer distance

Gavrila, Philomin, ICCV 1999
Edges and chamfer distance

Gavrila, Philomin, ICCV 1999

Template
Chamfer distance

\[d_{\text{chamfer}}(x) = \sum_{u \in F} \min_{v \in E} \| (u + x) - v \|_2 \]

Find closest edge location after displacement \(x \)

Sum over pixels on the edge template \(F \)

\(E = \) edge map of the image
Chamfer distance

DT(E) = Function that assigns to each pixel the distance to the nearest edge.

Using the distance transform, the Chamfer distance can be written as a convolution
Edges and chamfer distance

Gavrila, Philomin, ICCV 1999
Distance transform

Edges
Distance transform

Edges

Distance transform
(with Manhattan distance)
Efficient computation of DT

P = set of edge pixels.

Two pass $O(n)$ algorithm for 1D L_1 norm

1. **Initialize**: For all j
 \[D[j] \leftarrow 1_{P[j]} \]
 \[// 0 \text{ if } j \text{ is in } P, \infty \text{ otherwise} \]

2. **Forward**: For j from 1 up to $n-1$
 \[D[j] \leftarrow \min(D[j], D[j-1]+1) \]

3. **Backward**: For j from $n-2$ down to 0
 \[D[j] \leftarrow \min(D[j], D[j+1]+1) \]

Adapted from D. Huttenlocher
Chamfer distance

\[d_{\text{chamfer}}(x) = \sum_{u \in F} \min_{v \in E} \| (u + x) - v \|_2 \]

Find closest edge location after displacement \(x \)

Sum over pixels on the edge template \(F \)

\(E = \) edge map of the image

\[= F \ast DT(E) \]
REAL-TIME OBJECT DETECTION FOR "SMART" VEHICLES

D.M. Gavrila

Image Understanding Systems
DaimlerChrysler Research
Ulm 89081, Germany
dariu.gavrila@DaimlerChrysler.com

V. Philomin

Computer Vision Laboratory
University of Maryland
College Park, MD 20742, U.S.A.
vasi@cs.umd.edu
To deal with multiple appearances…
Issues

Global templates are sensitive to:
• Partial occlusions
• Non-rigid deformations

Constellation of local edge fragments
Building a Fragment Dictionary

Masks
(~10 images)

Contour Fragments T_n
(~1000 fragments)
Matching Features

• Gaussian weighted oriented chamfer matching
 – aligns features to image

Opelt, Pinz, Zisserman, ECCV 2006
J. Shotton, A. Blake, R. Cipolla. PAMI 2008.
Matching Features

- Gaussian weighted oriented chamfer matching
 - aligns features to image

\[v(F_m, E|c) \] feature match score at optimal position
\[r(F_m, E|c) \] optimal position
Location Sensitive Classification

- Feature match scores make detection simple
- Detection uses a boosted classification function $K(c)$:

$$K(c) = \sum_{m=1}^{M} a_m \delta(v(F_m, E | c) > \theta_m) + b_m$$

<table>
<thead>
<tr>
<th>M</th>
<th>number of features</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_m</td>
<td>feature m</td>
</tr>
<tr>
<td>E</td>
<td>canny edge map</td>
</tr>
<tr>
<td>c</td>
<td>object centroid</td>
</tr>
</tbody>
</table>

θ_m	weak learner threshold
a_m	weak learner confidence
b_m	weak learner confidence
δ	0-1 indicator function
Object Detection

- Evaluate $K(c)$ for all c gives a classification map
 - confidence as function of position

 ![object](image)
 ![no object](image)

- Globally thresholded local maxima give final detections

 ![test image](image)
 ![classification map](image)
 ![contours](image)
Learning System

Segmented Training Data → Boosting Algorithm → K(c) → Detection

Background Training Data → Test Data

Object Detections
Training Data

Class

Segmented (10)

Unsegmented (40)

Background (50)
Boosting as Feature Selection

1. Fragment Selection
 - 1000 random fragments
 - 50 discriminative fragments

2. Model Parameter Estimation
 - Select σ, λ for each feature

3. Weak-Learner Estimation
 - Select θ, a, b for each feature
Contour Results
Contour Results
Histograms of oriented gradients
Histograms of oriented gradients

SIFT, D. Lowe, ICCV 1999

Shape context
Belongie, Malik, Puzicha, NIPS 2000

Count the number of points inside each bin, e.g.:

- Count = 4
- Count = 10

Compact representation of distribution of points relative to each point
Image features:

Histograms of oriented gradients (HOG)

Bin gradients from 8x8 pixel neighborhoods into 9 orientations

(Dalal & Triggs *CVPR* 05)

Source: Deva Ramanan
Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.
Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.
A Support Vector Machine (SVM) learns a classifier with the form:

$$H(x) = \sum_{m=1}^{M} a_m y_m k(x, x_m)$$

Where \{x_m, y_m\}, for \(m = 1 \ldots M\), are the training data with \(x_m\) being the input feature vector and \(y_m = +1, -1\) the class label. \(k(x, x_m)\) is the kernel and it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of \(H(x)\).

There is a large number of possible kernels, each yielding a different family of decision boundaries:

- **Linear kernel**: \(k(x, x_m) = x^T x_m\)
- **Radial basis function**: \(k(x, x_m) = \exp(-|x - x_m|^2/\sigma^2)\).
- **Histogram intersection**: \(k(x,x_m) = \sum_i \min(x(i), x_m(i))\)
Linear SVM

\[f(x) = (w \cdot x + b) \]
Scanning-window templates
Dalal and Triggs CVPR05 (HOG)
Papageorgiou and Poggio ICIP99 (wavelets)

pos

neg

$w \cdot x > 0$

$w = \text{weights for orientation and spatial bins}$

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Source: Deva Ramanan
How to interpret positive and negative weights?

\[w \cdot x > 0 \]

\[(w_{pos} - w_{neg}) \cdot x > 0 \]

\[w_{pos} \cdot x > w_{neg} \cdot x \]

Right approach is to compete pedestrian, pillar, doorway... models

Background class is hard to model - easier to penalize particular vertical edges

\[w_{pos}, w_{neg} = \text{weighted average of positive, negative support vectors} \]
Histograms of oriented gradients

Dalal & Trigs, 2006
Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.
Constellation models

Source: short course on object recognition. Fergus, Fei-fei, Torralba
Representation

• Object as set of parts
 – Generative representation

• Model:
 – Relative locations between parts
 – Appearance of part

• Issues:
 – How to model location
 – How to represent appearance
 – Sparse or dense (pixels or regions)
 – How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]
History of Parts and Structure approaches

- Fischler & Elschlager 1973
- Yuille ‘91
- Brunelli & Poggio ‘93
- Lades, v.d. Malsburg et al. ‘93
- Cootes, Lanitis, Taylor et al. ‘95
- Amit & Geman ‘95, ‘99
- Felzenszwalb & Huttenlocher ’00, ’04
- Crandall & Huttenlocher ’05, ’06
- Leibe & Schiele ’03, ’04
- Many papers since 2000
The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER AND ROBERT A. ELSCHLAGER

Abstract—The primary problem dealt with in this paper is the following. Given some description of a visual object, find that object in an actual photograph. Part of the solution to this problem is the specification of a descriptive scheme, and a metric on which to base the decision of "goodness" of matching or detection.

We offer a combined descriptive scheme and decision metric which is general, intuitively satisfying, and which has led to promising experimental results. We also present an algorithm which takes the above descriptions, together with a matrix representing the intensities of the actual photograph, and then finds the described object in the matrix. The algorithm uses a procedure similar to dynamic programming in order to cut down on the vast amount of computation otherwise necessary.

One desirable feature of the approach is its generality. A new programming system does not need to be written for every new description; instead, one just specifies descriptions in terms of a certain set of primitives and parameters.

There are many areas of application: scene analysis and description, map matching for navigation and guidance, optical tracking, stereo compilation, and image change detection. In fact, the ability to describe, match, and register scenes is basic for almost any image processing task.

Index Terms—Dynamic programming, heuristic optimization, picture description, picture matching.

The primary paper is the following:

THE PRIMARY paper is the following:

The object might be complicated, such as an object can be linguistic, pictorial, or geometric, and the photograph will be called a "background". An object being sought is called a "foreground".

This ability to find an object, or equivalently, to match scenes, is basic for almost any application. Application to such areas as navigation, map matching for...

Manuscript received November 30, 1971; revised May 22, 1972, and August 21, 1972.

The authors are with the Lockheed Palo Alto Research Laboratory, Lockheed Missiles & Space Company, Inc., Palo Alto, Calif. 94304.

Martin A. Fischler (S’57–M’58) was born in New York, N. Y., on February 15, 1932. He received the B.S.E.E. degree from the City College of New York, New York, in 1954 and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, Calif., in 1958 and 1963, respectively.

He served in the U.S. Army for two years and held positions at the National Bureau of Standards and at Hughes Aircraft Corporation during the period 1954 to 1958. In 1958 he joined the technical staff of the Lockheed Missiles & Space Company, Inc., at the Lockheed Palo Alto Research Laboratory, Palo Alto, Calif., and currently holds the title of Staff Scientist. He has conducted research and published in the areas of artificial intelligence, picture processing, switching theory, computer organization, and information theory.

Dr. Fischler is a member of the Association for Computing Machinery, the Pattern Recognition Society, the Mathematical Association of America, Tau Beta Pi, and Eta Kappa Nu. He is currently an Associate Editor of the journal Pattern Recognition and is a past Chairman of the San Francisco Chapter of the IEEE Society on Systems, Man, and Cybernetics.

Robert A. Elschlager was born in Chicago, Ill., on May 25, 1943. He received the B.S. degree in mathematics from the University of Illinois, Urbana, in 1965, and the M.S. degree in mathematics from the University of California, Berkeley, in 1969.

Since then he has been an Associate Scientist with the Lockheed Missiles & Space Company, Inc., at the Lockheed Palo Alto Research Center, Palo Alto, Calif. His current interests are picture processing, operating systems, computer languages, and computer understanding.

Mr. Elschlager is a member of the American Mathematical Society, the Mathematical Association of America, and the Association for Symbolic Logic.
Sparse representation

+ Computationally tractable (10^5 pixels \rightarrow 10^1 -- 10^2 parts)
+ Generative representation of class
+ Avoid modeling global variability
+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes
Region operators

- Local maxima of interest operator function
- Can give scale/orientation invariance

Figures from [Kadir, Zisserman and Brady 04]
The correspondence problem

- Model with P parts
- Image with N possible assignments for each part
- Consider mapping to be 1-1

N^P combinations!!!
Different connectivity structures

\[O(N^6) \quad O(N^2) \quad O(N^3) \]

\begin{align*}
a) & \text{Constellation [13]} \\
\quad & \text{Fergus et al. '03} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Fergus et al. '05} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
b) & \text{Star shape [9, 14]} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
c) & \text{\(k\)-fan \((k = 2)\) [9]} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
d) & \text{Tree [12]} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
e) & \text{Bag of features [10, 21]} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
f) & \text{Hierarchy [4]} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
g) & \text{Sparse flexible model} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Fei-Fei et al. '03} \\
\quad & \text{Crandall et al. '05} \\
\quad & \text{Felzenszwalb & Huttenlocher '00} \\
\quad & \text{Bouchard & Triggs '05} \\
\quad & \text{Carneiro & Lowe '06} \\
\quad & \text{Csurka '04} \\
\quad & \text{Vasconcelos '00} \\
\end{align*}
How much does shape help?

- Crandall, Felzenszwalb, Huttenlocher CVPR’05
- Shape variance increases with increasing model complexity
- Do get some benefit from shape
Some class-specific graphs

• Articulated motion
 – People
 – Animals

• Special parameterisations
 – Limb angles

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05]
Dense layout of parts

Layout CRF: Winn & Shotton, CVPR ‘06

Part labels (color-coded)
How to model location?

• Explicit: Probability density functions
• Implicit: Voting scheme

• Invariance
 – Translation
 – Scaling
 – Similarity/affine
 – Viewpoint
Explicit shape model

• Cartesian
 – E.g. Gaussian distribution
 – Parameters of model, µ and Σ
 – Independence corresponds to zeros in Σ
 – Burl et al. ’96, Weber et al. ‘00, Fergus et al. ’03

\[
\mu = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \Sigma = \begin{pmatrix} x_1 x_1 & x_1 x_2 & x_1 x_3 & x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 x_1 & x_2 x_2 & x_2 x_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 x_1 & x_3 x_2 & x_3 x_3 & x_3 y_1 & x_3 y_2 & x_3 y_3 \\ y_1 x_1 & y_1 x_2 & y_1 x_3 & y_1 y_1 & y_1 y_2 & y_1 y_3 \\ y_2 x_1 & y_2 x_2 & y_2 x_3 & y_2 y_1 & y_2 y_2 & y_2 y_3 \\ y_3 x_1 & y_3 x_2 & y_3 x_3 & y_3 y_1 & y_3 y_2 & y_3 y_3 \end{pmatrix}
\]

• Polar
 – Convenient for invariance to rotation

Mikolajczyk et al., CVPR ‘06
Implicit shape model

- Use Hough space voting to find object
- Leibe and Schiele ’03,’05

Learning
- Learn appearance codebook
 - Cluster over interest points on training images
- Learn spatial distributions
 - Match codebook to training images
 - Record matching positions on object
 - Centroid is given

Recognition

- Interest Points
- Matched Codebook Entries
- Probabilistic Voting

Spatial occurrence distributions
Deformable Template Matching

Berg, Berg and Malik CVPR 2005

- Formulate problem as Integer Quadratic Programming
- $O(N^P)$ in general
- Use approximations that allow $P=50$ and $N=2550$ in <2 secs
Multiple view points

Hoiem, Rother, Winn, 3D LayoutCRF for Multi-View Object Class Recognition and Segmentation, CVPR ‘07

Thomas, Ferrari, Leibe, Tuytelaars, Schiele, and L. Van Gool. Towards Multi-View Object Class Detection, CVPR 06
Representation of appearance

• Needs to handle intra-class variation
 – Task is no longer matching of descriptors
 – Implicit variation (VQ to get discrete appearance)
 – Explicit model of appearance (e.g. Gaussians in SIFT space)

• Dependency structure
 – Often assume each part’s appearance is independent
 – Common to assume independence with location
Representation of appearance

• Invariance needs to match that of shape model

• Insensitive to small shifts in translation/scale
 – Compensate for jitter of features
 – e.g. SIFT

• Illumination invariance
 – Normalize out
Appearance representation

- SIFT
 - Image gradients
 - Keypoint descriptor
- PCA
- Decision trees
 [Lepetit and Fua CVPR 2005]

Figure from Winn & Shotton, CVPR '06
Background clutter

- Explicit model
 - Generative model for clutter as well as foreground object

- Use a sub-window
 - At correct position, no clutter is present
A simple parts and structure object detector

ICCV 2005 short courses on
Recognizing and Learning Object Categories

An intuitive way to represent objects is as a collection of distinctive parts. Such schemas model both the relative positions of the parts as well as their appearance, giving a sparse representation that captures the essence of the object.

This simple demo illustrates the concepts behind many such "parts and structures" approaches. For simplicity, training is manually guided with the user hand-clicking on the distinctive parts of a few training images. A simple model is then built for use in recognition. Two different recognition approaches are provided: one relying on feature points [1], the other using the efficient methods of Felzenszwalb and Huttenlocher [2].

The code consists of MATLAB scripts (which should run under both Windows and Linux). The Image Processing toolbox is required. The code is for teaching/research purposes only. If you find a bug, please email me at fages@informatik.uni-stuttgart.de.

Download

Download the code and dataset (24 MB/byte)

Operation of code

To run the demos:
1. Move the .ini file into a new directory (e.g. `Demo inostructure`).
Demo (2)
Demo (3)
Demo (4)
Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Abstract—We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

Index Terms—Object Recognition, Deformable Models, Pictorial Structures, Discriminative Training, Latent SVM
PASCAL Visual Object Challenge

5000 training images

5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table
dog horse motorbike person plant sheep sofa train tv

Source: Deva Ramanan
5 years of PASCAL people detection

Discriminative mixtures of star models 2007-2010 Felzenszwalb, McAllester, Ramanan *CVPR* 2008
Felzenszwalb, Girshick, McAllester, and Ramanan *PAMI* 2009

Source: Deva Ramanan
Deformable part models

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan
Scoring function

\[\text{score}(x,z) = \sum \phi_i (x, z_i) + \sum_{i,j} \psi_i (z_i, z_j) \]

\(x = \text{image} \)
\(z_i = (x_i, y_i) \)
\(z = \{z_1, z_2, \ldots \} \)

Source: Deva Ramanan
Scoring function

$$\text{score}(x,z) = \sum_i w_i \phi(x, z_i) + \sum_{i,j} w_{ij} \Psi(z_i, z_j)$$

- $x = \text{image}$
- $z_i = (x_i, y_i)$
- $z = \{z_1, z_2, \ldots\}$

Source: Deva Ramanan
Scoring function

\[
\text{score}(x, z) = \sum_i w_i \phi(x, z_i) + \sum_{i,j} w_{ij} \Psi(z_i, z_j)
\]

- **x** = image
- **z_i** = \((x_i, y_i)\)
- **z** = \(\{z_1, z_2\ldots\}\)

- Part template scores
- Spring deformation model

E = relational graph

Source: Deva Ramanan
Scoring function

\[\text{score}(x, z) = \sum_i w_i \phi(x, z_i) + \sum_{i,j} w_{ij} \Psi(z_i, z_j) \]

\(x = \text{image} \)
\(z_i = (x_i, y_i) \)
\(z = \{z_1, z_2, \ldots\} \)

Score is linear in local templates \(w_i \) and spring parameters \(w_{ij} \)

\[\text{score}(x, z) = w \cdot \Phi(x, z) \]

Source: Deva Ramanan
Inference: $\max_z \text{ score}(x,z)$

Felzenszwalb & Huttenlocher 05

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent
Classification

\[f_w(x) = w \cdot \Phi(x) \]

\[f_w(x) > 0 \]
Latent-variable classification

\[f_w(x) = w \cdot \Phi(x) \]

\[f_w(x) > 0 \]

\[f_w(x) = \max_z S(x, z) \]

\[= \max_z w \cdot \Phi(x, z) \]

Source: Deva Ramanan
Latent SVMs

Given positive and negative training windows \{x_n\}

\[
L(w) = ||w||^2 + \sum_{n \in \text{pos}} \max(0, 1 - f_w(x_n)) + \sum_{n \in \text{neg}} \max(0, 1 + f_w(x_n))
\]

\[
f_w(x) = \max_z w \cdot \Phi(x, z)
\]

\(L(w)\) is “almost” convex

Source: Deva Ramanan
Latent SVMs

Given positive and negative training windows \(\{x_n\} \)

\[
L(w) = \|w\|^2 + \sum_{n \in \text{pos}} \max(0, 1 - f_w(x_n)) + \sum_{n \in \text{neg}} \max(0, 1 + f_w(x_n))
\]

\[
w \cdot \Phi(x_n, z_n)
\]

\[
f_w(x) = \max_z w \cdot \Phi(x, z)
\]

\(L(w) \) is convex if we fix latent values for positives

Source: Deva Ramanan
1) Given positive part locations, learn w with a convex program

$$w = \arg\min_w L(w) \quad \text{with fixed} \quad \{z_n : n \in \text{pos}\}$$

2) Given w, estimate part locations on positives

$$z_n = \arg\max_z w \cdot \Phi(x_n, z) \quad \forall n \in \text{pos}$$

The above steps perform coordinate descent on a joint loss.

Source: Deva Ramanan
Treat ground-truth labels as partially latent

Allows for “cleaning up” of noisy labels (in blue) during iterative learning

Source: Deva Ramanan
Initialization

Learn root filter with SVM
Initialize part filters to regions in root filter with lots of energy

Source: Deva Ramanan
Example models

Source: Deva Ramanan
Example models

Source: Deva Ramanan
Example models

False positive due to imprecise bounding box

Source: Deva Ramanan
Other tricks:
• Mining hard negative examples
• Noisy annotations