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Linear filtering.   

Readings:   

slide notes for lecture 2 

Szeliski, sects. 3.2, 3.3 for linear filtering. 
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A “summary” of visual features 

From M. Lewicky 



Filtering 

g [m,n] f [m,n] 

We want to remove unwanted sources of variation, and keep the 

information relevant for whatever task we need to solve 



Linear filtering 

g [m,n] f [m,n] 



f [m,n] h[m,n,k,l]g[k,l]
k,l



For a linear system, each output is a linear combination of all the input values: 

f = H g 

= 

In matrix form: 



Linear filtering 

g [m,n] f [m,n] 

In vision, many times, we are interested in operations that are spatially invariant. 

For a linear spatially invariant system: 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



= 



Linear filtering 

g [m] 

0 1 2 

h [m] 

2 

-1 -1 

0 1 2 3 

2 2 2 2 

1 1 1 0 0 



f [m  0] h[k]g[k]
k



Linear system: Input: 

Output? 

0 1 2 h [-k] 

2 

-1 -1 

f [m=0]=-2 

0 1 2 

h [1-k] 
2 

-1 -1 



f [m 1] h[1 k]g[k]
k


f [m=1]=-4 



f [m  2] h[2 k]g[k]
k

 f [m=2]=0 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l

h 



Linear filtering 

g [m,n] f [m,n] 

For a linear spatially invariant system 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l






-1 2 -1 

-1 2 -1 

-1 2 -1 

g[m,n] 

h[m,n] 
f[m,n] 

= 

111 115 113 111 112 111 112 111 

135 138 137 139 145 146 149 147 

163 168 188 196 206 202 206 207 

180 184 206 219 202 200 195 193 

189 193 214 216 104 79 83 77 

191 201 217 220 103 59 60 68 

195 205 216 222 113 68 69 83 

199 203 223 228 108 68 71 77 

m=0  1  2  … 

? ? ? ? ? ? ? ? 

? -5 9 -9 21 -12 10 ? 

? -29 18 24 4 -7 5 ? 

? -50 40 142 -88 -34 10 ? 

? -41 41 264 -175 -71 0 ? 

? -24 37 349 -224 -120 -10 ? 

? -23 33 360 -217 -134 -23 ? 

? ? ? ? ? ? ? ? 



Borders 

From Szeliski, Computer Vision, 2010 



A taxonomy of useful filters 

• Impulse, Shifts,  

• Blur 

– Rectangular blur (see artifacts) 

– Gaussian 

– Bilateral exponential 

– Asymmetrical filter: motion blur 

• Edges 

– [-1 1] 

– Derivative filter  

– Derivative of a gaussian 

– Oriented filters 

– Gabor filter 

– Quadrature filters: phase and magnitude. 

– Elongated edges: filling gaps… 



Impulse 





0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n] 

h[m,n] 

f[m,n] 

= 



Shifts 





0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 



f [m,n] I  g  h[m  k,n  l]g[k,l]
k,l



g[m,n] 

h[m,n] 

f[m,n] 

= 

2pixels 



Image rotation 





g[m,n] 

h[m,n] 

= ? 

f[m,n] 

It is linear, but not a spatially invariant operation. There is not convolution. 



Rectangular filter 





g[m,n] 

h[m,n] 

= 

f[m,n] 



Rectangular filter 





g[m,n] 

h[m,n] 

= 

f[m,n] 



Rectangular filter 





g[m,n] 

h[m,n] 

= 

f[m,n] 



Sharpening  

original 

0 

2.0 

0 

0.33 

Sharpened 

original 
2 times (the sharp 

plus the blurred 

parts) 

1 times the blurred parts 

a sharpened image--the 

blurred parts plus twice the 

sharp parts. 



Sharpening example 

c
o
e
ff
ic

ie
n
t 

-0.3 
original 

8 

Sharpened 

(differences are 

accentuated;  constant 

areas are left untouched). 

11.2 
1.7 

-2.5 

8 

filter result 

* = 



Sharpening 

before after 



Gaussian filter 

=1 

=2 

=4 



Gaussian filtering allows analysis at 
different spatial scales 

Dali 
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The Discrete Fourier transform 



f [k,l]
1

MN
F[m,n]e

i
km

M


ln

N











l0

N1


k0

M 1



Inverse transform 



F[m,n] f [k,l]e
i

km

M


ln

N











l0

N1


k 0

M 1



Forward transform 



To get some sense of what 

basis elements look like, we 

plot a basis element --- or 

rather, its real part --- 

as a function of x,y for some 

fixed u, v. We get a function 

that is constant when (ux+vy) 

is constant. The magnitude of 

the vector (u, v) gives a 

frequency, and its direction 

gives an orientation. The 

function is a sinusoid with this 

frequency along the direction, 

and constant perpendicular to 

the direction.  

u 

v 



Here u and v are 

larger than in 

the previous 

slide. 

u 

v 



And larger still... 

u 

v 



Linear image transformations 

• In analyzing images, it’s often useful to 
make a change of basis. 

    Fourier transform, or 

  Wavelet transform, or 

Steerable pyramid transform 

Vectorized image 

transformed image 



Self-inverting transforms 

Same basis functions are used for the inverse transform 

U transpose and complex conjugate 
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Fourier transform visualization 

real 

imaginary 

input signal Fourier transform matrix color key 

1 

j 



F[m,n] f [k,l]e
i

km

M


ln

N











l0

N1


k 0

M 1





Example image synthesis with 

fourier basis. 

• 16 images 



2 



6 



18 



50 



82 



136 



282 



538 



1088 



2094 



4052. 

4052 



8056. 



15366 



28743 



49190. 



 65536. 
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Now, an analogous sequence of images, but selecting Fourier 

components in descending order of magnitude. 
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9 

 



17 

 



33 

 



65 

 



129 

 



257 

 



513 

 



1025 

 



2049 

 



4097 

 



8193 

 



16385 

 



32769 

 



65536 

 



Some important Fourier 
Transforms 



Bracewell, The Fourier Transform and its Applications, McGraw Hill 1978  

Bracewell’s pictorial dictionary of Fourier transform pairs 



66 



How to interpret a 2-d Fourier 
Spectrum 

Horizontal 

orientation 

Vertical orientation 

45 deg. 

0 fmax 

0 

fx in cycles/image 

Low spatial frequencies 

High  

spatial  

frequencies 

Log power spectrum 



Some important Fourier 
Transforms 

Im
a
g
e
 

M
a
g
n

it
u
d
e
 F

T
 



Some important Fourier 
Transforms 

Im
a
g
e
 

M
a
g
n

it
u
d
e
 F

T
 



The Fourier Transform of some 
important images 

Im
a
g
e
 

L
o
g
(1

+
M

a
g
n
it
u
d
e
 F

T
) 



Fourier Amplitude Spectrum 

A B C 

1 2 3 

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size) 



Fourier transform magnitude 



Masking out the fundamental and 

harmonics from periodic pillars 



Why is the Fourier domain 

particularly useful? 

• Linear, space invariant operations are just 

diagonal operations in the frequency 

domain. 

 

• Ie, linear convolution is multiplication in 

the frequency domain. 

 



Fourier transform of convolution 

Consider a (circular) convolution of g and h 

In the transform domain, this just modulates the transform 

amplitudes 



Fourier transform of convolution 

Perform the other DFT (circular 

boundary conditions) 

Take DFT of both sides 

Write the DFT and convolution explicitly 

Move the exponent in 

Change variables in the sum 

Perform the DFT (circular boundary conditions) 

Consider a (circular) convolution of g and h 



Analysis of a simple sharpening filter 

original 

0 

2.0 

0 

0.33 

sharpened  

high-pass 

filter 

0 

1.0 

2.3 
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Phase and Magnitude 

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth 

Image with cheetah phase  

(and zebra magnitude) 

Image with zebra phase 

(and cheetah magnitude) 



Phase and Magnitude 

• Curious fact 
– all natural images have about the same magnitude transform 

– hence, phase seems to matter, but magnitude largely doesn’t 

 

 

• Demonstration 
– Take two pictures, swap the phase transforms, compute the 

inverse - what does the result look like? 



Randomizing the phase 

Fourier 

transform, 

randomize the 

phase, inverse 

transform 
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The Fourier transform of a 
sampled signal 













Sampling example 
Analyze crossed 

gratings… 

 

  



Sampling example 
Analyze crossed 

gratings… 

 

  



Sampling example 
Analyze crossed 

gratings… 

 

  



Sampling example 
Analyze crossed 

gratings… 

 

Where does 

perceived near 

horizontal grating 

come from?  



A F(A) 



B F(B) 



A*B F(A)     F(B) 



A*B F(A)     F(B) 



A*B Lowpass(                        ) 

~=F(C) 

C 

F(A)     F(B) 



Control test  

• If our analysis is correct, if we add those two 

sinusoids (or square waves), and if there is no 

non-linearity in the display of the sum, then 

there should only be summing, not 

convolution, in the frequency domain. 



F(A) + F(B)) 

A*B 

F(A)     F(B) 

A+B 



A*B 

F(A) + F(B)) F(A)     F(B) 

Low-pass filtered 
A+B 
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Problems with Fourier transform as an 

image representation 

 

124 
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What is a good representation for 

image analysis? 

• Fourier transform domain tells you “what” 

(textural properties), but not “where”. 

• Pixel domain representation tells you 

“where” (pixel location), but not “what”. 

• Want an image representation that gives 

you a local description of image events—

what is happening where. 



Analyzing local image structures 

Too much 

Too little 



The image through the Gaussian 
window 

Too much 

Too little 

Probably still too little… 

…but hard enough for now 



h(x,y)  e

x 2 y 2

2 2

1 



Analysis of local frequency  



h(x,y;x0,y0)  e

xxo 

2
 yyo 

2

2 2

(x0, y0) 



e j2u0x

Fourier basis: 

Gabor wavelet: 



(x,y)  e

x 2 y 2

2 2

e j2u0x



c (x,y)  e

x 2 y 2

2 2

cos 2u0x 



s(x,y)  e

x 2 y 2

2 2

sin 2u0x 

We can look at the real and imaginary parts: 



Gabor wavelets 



c (x,y)  e

x 2 y 2

2 2

cos 2u0x 

u0=0 



s(x,y)  e

x 2 y 2

2 2

sin 2u0x 

U0=0.1 U0=0.2 



Gabor filters at different 

scales and spatial frequencies 

 

 

 

 

Top row shows anti-symmetric  

(or odd) filters;  these are good 

for detecting odd-phase 

structures like edges.   

Bottom row shows the 

symmetric (or even) filters, good 

for detecting line phase 

contours. 
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Quadrature filter pairs 

 
+ 

(.)2 

(.)2 

A quadrature filter is a complex filter whose real part is related to its imaginary part 

via a Hilbert transform along a particular axis through the origin 

Gabor wavelet: 



(x,y)  e

x 2 y 2

2 2

e j2u0x



 
+ 

(.)2 

(.)2 

Contrast invariance! (same energy response for white 

dot on black background as for a black dot on a white 

background). 



edge 
energy 

response to 

an edge 



line energy 

response to a 

line 



How quadrature pair filters work 



How quadrature pair filters work 

 
+ 

(.)2 

(.)2 
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Gabor filter measurements for iris recognition code 
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Gabor wavelet: 



(x,y)  e

x 2 y 2

2 2

e j2u0x

Tuning filter orientation: 



x' cos()x  sin()y

y' sin()x  cos()y

Space 

Fourier domain 

Real 

Imag 

Real 

Imag 



Simple example 
 “Steerability”-- the ability to synthesize a filter of any orientation from a linear 

combination of filters at fixed orientations. 

Filter Set: 
0o 90o Synthesized 30o 

Response: 

Raw Image 

Taken from: 

W. Freeman, T. Adelson, “The Design  

and Use of Sterrable Filters”, IEEE  

Trans. Patt, Anal. and Machine Intell.,  

vol 13, #9, pp 891-900, Sept 1991 



Steerable filters 



hx (x,y) 
h(x,y)

x


x

2 4
e

x 2 y 2

2 2



hy (x,y) 
h(x,y)

y


y

2 4
e

x 2 y 2

2 2

Derivatives of a Gaussian: 

cos( ) +sin( ) 
= 

Freeman & Adelson 92 

An arbitrary orientation can be computed as a linear combination of those two 

basis functions: 



h (x,y)  cos()hx(x,y) sin()hy(x,y)

The representation is “shiftable” on orientation: We can interpolate any other 

orientation from a finite set of basis functions. 





Steering theorem 

Change from Cartesian to polar coordinates 

f(x,y)  H(r, )  

A convolution kernel can be written using Fourier series in polar angle as: 

Theorem: Let T be the number of nonzero coefficients an(r). Then, the 

function f can be steered with T functions. 



Steering theorem for polynomials 

For an Nth order polynomial with even or odd symmetry N+1 

basis functions are sufficient. 

f(x,y) = W(r) P(x,y) 



37 

Steerability and Separability 
 
Important example is 2nd derivative of Gaussian                                       (~Laplacian): 

Taken from: W. Freeman, T. Adelson, “The Design and Use of Steerable Filters”, IEEE Trans. Patt, Anal. and Machine Intell., vol 13, #9, pp 891-900, Sept 1991 



Two equivalent basis 

These two basis can use to steer 2nd order Gaussian derivatives 



Approximated quadrature filters for 2nd order Gaussian derivatives 

(this approximation requires 4 basis to be steerable) 



Steerable quadrature pairs 

G2 H2 



G2

2 H2

2



|FT(G2) |,   |FT(H2) |

For the Gaussian derivatives we can approximate a quadrature pair 



Orientation analysis 

High resolution in 

orientation requires 

many oriented filters 

as basis (high order 

gaussian derivatives). 



Orientation analysis 

 





 

Local  

energy 

Phase ~ 0 

Phase ~ 90 

edge detector 

output 

A contour detector 



 



 



 



Interference:  why you should blur 

the oriented energy image 
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The space time volume 



The space time volume 

xyt- space-time volume 

xt-slice 

t 

x 

y 

x 

t 



The space time volume 

xt-slice 

t 

x 

x 

Static objects- vertical lines 

Moving objects slanted lines, slope ~ motion velocity 



The space time volume 

xt-slice 

t 

x 

x 

Static objects- vertical lines 

Moving objects slanted lines, slope ~ motion velocity 
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space-time domain spatio-temporal Fourier 

transform domain 

space 

time 

omega_x omega_x 

omega_t 

note locus of energy 



186 

space 

time 

power in 

frequency 

domain 

cos phase filter 

sin phase filter 
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Evidence for filter-based 

analysis of motion in the human 

visual system 



188 

Square wave Fourier 

components 

http://en.wikipedia.org/wiki/Square_wave 

http://en.wikipedia.org/wiki/Square_wave
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filters to analyze motion 

QuickTime™ and a
GIF decompressor

are needed to see this picture.
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QuickTime™ and a
 decompressor

are needed to see this picture.
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QuickTime™ and a
 decompressor

are needed to see this picture.
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193 



 

Motion without movement 



G2, H2 basis filters 

 

C:\Documents and Settings\billf\My Documents\presentations\comp photog 

workshop lecture 



Motion without movement 

QuickTime™ and a
 decompressor

are needed to see this picture.



197 
http://www.psy.ritsumei.ac.jp/~akitaoka/popple-e.html 

http://www.psy.ritsumei.ac.jp/~akitaoka/popple-e.html
http://www.psy.ritsumei.ac.jp/~akitaoka/popple-e.html
http://www.psy.ritsumei.ac.jp/~akitaoka/popple-e.html
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Contrast Sensitivity Function 

A demo of human contrast sensitivity as a function of spatial frequency. Frequency rises from left to right at a constant rate. Contrast drops from 

bottom to top at a constant rate. The bars are visible further up for middle frequencies, showing these are more salient to the human visual 

system.  



Contrast Sensitivity Function 

0.1 1 100 10 
Spatial frequency (cycles/degree) 

C
o

n
tr

a
s
t 
s
e

n
s
it
iv

it
y
 

Invisible 

visible 

Blackmore & Campbell (1969) 

Maximum sensitivity 

~ 6 cycles / degree of visual angle 

Low High 



Human Visual Perception 

Low spatial frequency 

Medium spatial frequency 

High spatial frequency 

Blur image Sharp image 



Multiscale subband decomposition 

Spatial Frequency Low High 

8               11                17                 25               38                 57                85                128   c/i 

Burt, D.C. & Adelson E. (1983) IEEE Trans. Com. 



Contrast Sensitivity Function 

Spatial Frequency Low High 

0.1 1 100 10 
Spatial frequency (cycles/degree) 

C
o

n
tr

as
t 

se
n

si
ti

vi
ty

 

Invisible 

visible 

Blackmore & Campbell (1969) 

8               11                17                 25               38                 57                85                128   c/i 

Low High 

Low sensitivity 

Low sensitivity 



Perception of hybrid images 

+ 

8               11                17                 25               38                 57                85                128   c/i 



Perception of hybrid images 

+ 

A man or a woman ? 

Male dominance Female dominance 

Oliva & Schyns 



Hybrid Images 
Oliva & Schyns 



Hybrid Images 



Hybrid Images 



Hybrid Images 



Hybrid Images 

QuickTime™ and a
 decompressor

are needed to see this picture.


