
6.869 Advances in Computer Vision

Bill Freeman and Antonio Torralba
MIT

Feb. 9, 2011

1

Wednesday, February 9, 2011



Outline
• Linear filtering
• Fourier Transform
• Phase
• Sampling and Aliasing
• Spatially localized analysis
• Quadrature phase
• Oriented filters
• Motion analysis
• Human spatial frequency sensitivity
• Image pyramids 2

Wednesday, February 9, 2011



Gabor	
  wavelets

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

3

Wednesday, February 9, 2011



Gabor	
  wavelets

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

u0=0

3

Wednesday, February 9, 2011



Gabor	
  wavelets

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

u0=0 U0=0.1

3

Wednesday, February 9, 2011



Gabor	
  wavelets

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

u0=0 U0=0.1 U0=0.2

3

Wednesday, February 9, 2011



Gabor	
  wavelets

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

u0=0

€ 

ψs(x,y) = e
−
x 2 +y 2

2σ 2 sin 2πu0x( )

U0=0.1 U0=0.2

3

Wednesday, February 9, 2011



Gabor	
  wavelets

€ 

ψc (x,y) = e
−
x 2 +y 2

2σ 2 cos 2πu0x( )

u0=0

€ 

ψs(x,y) = e
−
x 2 +y 2

2σ 2 sin 2πu0x( )

U0=0.1 U0=0.2

3

Wednesday, February 9, 2011



4

Jo
hn

 D
au

gm
an

, 1
98

8

Wednesday, February 9, 2011



5

Wednesday, February 9, 2011



5

Wednesday, February 9, 2011



Outline
• Linear filtering
• Fourier Transform
• Phase
• Sampling and Aliasing
• Spatially localized analysis
• Quadrature phase
• Oriented filters
• Motion analysis
• Human spatial frequency sensitivity
• Image pyramids 6

Wednesday, February 9, 2011



Quadrature	
  filter	
  pairs

+

(.)2

(.)2

A quadrature filter is a complex filter whose real part is related to its imaginary part 
via a Hilbert transform along a particular axis through the origin

Gabor wavelet:

€ 

ψ(x,y) = e
−
x 2 +y 2

2σ 2 e j2πu0x
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(.)

(.)

Contrast invariance! (same energy response for 
white dot on black background as for a black dot on 
a white background).
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edge energy 
response to 

an edge
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line energy 
response to a 

line
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How	
  quadrature	
  pair	
  filters	
  work
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Gabor filter measurements for iris recognition code
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Gabor wavelet:

€ 

ψ(x,y) = e
−
x 2 +y 2

2σ 2 e j2πu0x

Tuning filter orientation:

€ 

x'= cos(α)x + sin(α)y
y'= −sin(α)x + cos(α)y
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Simple	
  example
 “Steerability”-- the ability to synthesize a filter of any orientation from a linear 
combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991
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Steerable	
  filters

€ 

hx (x,y) =
∂h(x,y)
∂x

=
−x
2πσ 4 e

−
x 2 +y 2

2σ 2

€ 

hy (x,y) =
∂h(x,y)
∂y

=
−y
2πσ 4 e

−
x 2 +y 2

2σ 2

Derivatives of a Gaussian:

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

€ 

hα (x,y) = cos(α)hx (x,y) + sin(α)hy (x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.
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Steering	
  theorem
Change from Cartesian to polar coordinates

f(x,y) H(r,θ) 

A convolution kernel can be written using Fourier series in polar angle as:

Theorem: Let T be the number of nonzero coefficients an(r). Then, the 
function f can be steered with T functions.

20
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Steering	
  theorem	
  for	
  polynomials

For an Nth order polynomial with even or odd symmetry N+1 
basis functions are sufficient.

f(x,y) = W(r) P(x,y)

21
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37

Steerability	
  and	
  Separability
Important example is 2nd derivative of Gaussian                                       (~Laplacian):

Taken from: W. Freeman, T. Adelson, “The Design and Use of Steerable Filters”, IEEE Trans. Patt, Anal. and Machine Intell., vol 13, #9, pp 891-900, Sept 199122
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Two	
  equivalent	
  basis
These two basis can use to steer 2nd order Gaussian derivatives
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Approximated quadrature filters for 2nd order Gaussian derivatives

(this approximation requires 4 basis to be steerable)
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Steerable	
  quadrature	
  pairs

G2 H2

€ 

G2
2 + H2

2

€ 

|FT(G2 ) |,   |FT(H2 ) |

For the Gaussian derivatives we can approximate a quadrature pair

25

Wednesday, February 9, 2011



26

Wednesday, February 9, 2011



OrientaKon	
  analysis
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OrientaKon	
  analysis

High resolution in
orientation requires
many oriented filters
as basis (high order
gaussian derivatives).
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OrientaKon	
  analysis
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Local 
energy

Phase ~ 0
Phase ~ 90

edge 
detector 
output

A contour detector
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Interference:  why you should blur 
the oriented energy image
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Contrast-normalized and steered
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The space time volume
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The space time volume

38
Wednesday, February 9, 2011



The space time volume

xyt- space-time volume
y

x
t
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The space time volume

xyt- space-time volume

xt-slice
t

x
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x
t
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The space time volume

xt-slice
t

x

x

Static objects- vertical lines
Moving objects slanted lines, slope ~ motion velocity
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Motion signals in space-time

41

space-time 
domain

space

time

spatio-temporal Fourier 
transform domain
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Motion signals in space-time

41

space-time 
domain

space

time

spatio-temporal Fourier 
transform domain

note locus of energy
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Motion signals in space-time

41

space-time 
domain

space

time

spatio-temporal Fourier 
transform domain

note locus of energyspace

time cos phase filter

sin phase filter

power in 
frequency 
domain

spatio-
temporal 

filters
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Evidence for filter-based analysis of 
motion in the human visual system

42
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filters to analyze motion

43

Approximation to a square wave using 
a sequence of odd harmonics

http://en.wikipedia.org/wiki/Square_wave
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Space-time picture of translating 
square wave

space
time
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Space-time picture of translating 
square wave

space
time

sin(w x)

Wednesday, February 9, 2011



45

space
time

Space-time picture of translating fluted 
square wave
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45

space
time

Space-time picture of translating fluted 
square wave

1/3 sin(3w x)
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Translating Square Wave (phase advances by 90 degrees each time step)
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47

Translating Fluted Square Wave (phase of lowest remaining sinusoidal 
component advances by 270 degrees (-90) each time step)
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Contrast	
  SensiKvity	
  FuncKon

A demo of human contrast sensitivity as a function of spatial frequency. Frequency rises from left to right at a constant rate. Contrast drops from 
bottom to top at a constant rate. The bars are visible further up for middle frequencies, showing these are more salient to the human visual 
system. 49
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Contrast	
  SensiKvity	
  FuncKon

0.1 1 10010
Spatial frequency (cycles/degree)
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Blackmore & Campbell (1969)

Maximum sensitivity
~ 6 cycles / degree of visual angle

Low High50
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Human	
  Visual	
  PercepKon

Low	
  spaKal	
  frequency

Medium	
  spaKal	
  frequency

High	
  spaKal	
  frequency

SpaKal	
  frequency	
  channels
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Human	
  Visual	
  PercepKon

Low	
  spaKal	
  frequency

Medium	
  spaKal	
  frequency

High	
  spaKal	
  frequency

SpaKal	
  frequency	
  channels

Blur	
  image Sharp	
  image
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MulKscale	
  subband	
  decomposiKon

SpaKal	
  FrequencyLow High

8               11                17                 25               38                 57                85                128   c/i

Burt,	
  D.C.	
  &	
  Adelson	
  E.	
  (1983)	
  IEEE	
  Trans.	
  Com.
52
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PercepKon	
  of	
  hybrid	
  images

+

8               11                17                 25               38                 57                85                128   c/i54
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PercepKon	
  of	
  hybrid	
  images

+

Oliva	
  &	
  Schyns

55
Wednesday, February 9, 2011



PercepKon	
  of	
  hybrid	
  images

+

A	
  man	
  or	
  a	
  woman	
  ?

Male	
  dominance Female	
  dominance

Oliva	
  &	
  Schyns
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Hybrid	
  Images

show video...
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Image information occurs at all spatial scales

58
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Image pyramids

• Gaussian pyramid
• Laplacian pyramid
• Wavelet/QMF pyramid
• Steerable pyramid

59
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Image pyramids

60
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The Gaussian pyramid

• Smooth with gaussians, because
– a gaussian*gaussian=another gaussian 

• Gaussians are low pass filters, so 
representation is redundant.

61
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The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
62
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http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
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Convolution and subsampling as a matrix multiply (1-d case)

     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0     0     0

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     4     6     4     1     0

(Normalization constant of 1/16 omitted for visual clarity.)
65
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Next pyramid level

     1     4     6     4     1     0     0     0

     0     0     1     4     6     4     1     0

     0     0     0     0     1     4     6     4

     0     0     0     0     0     0     1     4

66
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The combined effect of the two pyramid 
levels

     1     4    10    20   31    40    44    40    31    20    10     4      1      0      0     0     0      0     0     0

     0     0     0      0      1     4     10    20    31    40    44    40   31    20    10     4     1      0     0     0

     0     0     0      0      0     0       0     0      1     4      10    20   31    40    44    40    30   16    4     0

     0     0     0      0      0     0       0     0      0     0        0      0     1     4     10    20    25   16    4     0

67
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http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
68
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Gaussian pyramids used for

• up- or down- sampling images.
• Multi-resolution image analysis

– Look for an object over various spatial scales
– Coarse-to-fine image processing:  form blur 

estimate or the motion analysis on very low-
resolution image, upsample and repeat.  Often a 
successful strategy for avoiding local minima in 
complicated estimation tasks.

69
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1-d Gaussian pyramid matrix, for  [1 4 6 4 1]  low-pass filter

70

full-band image, 
highest resolution

lower-resolution 
image

lowest resolution 
image
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Image pyramids

71

Wednesday, February 9, 2011



The Laplacian Pyramid

• Synthesis
– Compute the difference between upsampled 

Gaussian pyramid level and Gaussian pyramid 
level.

– band pass filter - each level represents spatial 
frequencies (largely) unrepresented at other level.

72
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Laplacian pyramid algorithm

73
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Laplacian pyramid algorithm
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Upsampling

     6     1     0     0   

     4     4     0     0 

     1     6     1     0 

     0     4     4     0 

     0     1     6     1

     0     0     4     4

     0     0     1     6

     0     0     0     4

Insert zeros between pixels, then 
apply a low-pass filter, [1 4 6 4 1]

74
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Showing, at full resolution, the information captured at each level 
of a Gaussian (top) and Laplacian (bottom) pyramid.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf
75
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and x4

G# is the blur-and-downsample operator at pyramid level #
F# is the blur-and-upsample operator at pyramid level #

Laplacian pyramid elements:
L1 = (I – F1 G1) x1
L2 = (I – F2 G2) x2
L3 = (I – F3 G3) x3
x2 = G1 x1
x3 = G2 x2
x4 = G3 x3

Reconstruction of original image (x1) from Laplacian pyramid elements:
x3 = L3 + F3 x4
x2 = L2 + F2 x3
x1 = L1 + F1 x2

76
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Laplacian pyramid reconstruction algorithm:  
recover x1 from L1, L2, L3 and g3

+

+
+

77
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Gaussian pyramid78
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Laplacian pyramid79
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80

1-d Laplacian pyramid matrix, for [1 4 6 4 1]  low-pass filter

high frequencies

mid-band 
frequencies

low frequencies
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Laplacian pyramid applications

• Texture synthesis
• Image compression
• Noise removal

81
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Image	
  blending

82
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Image	
  blending

• Build	
  Laplacian	
  pyramid	
  for	
  both	
  images:	
  LA,	
  LB

• Build	
  Gaussian	
  pyramid	
  for	
  mask:	
  G

• Build	
  a	
  combined	
  Laplacian	
  pyramid:	
  L(j)	
  =	
  G(j)	
  LA(j)	
  +	
  (1-­‐G(j))	
  LB(j)

• Collapse	
  L	
  to	
  obtain	
  the	
  blended	
  image	
  

84

Wednesday, February 9, 2011



Image pyramids

85
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Haar	
  transform

U= U-1=
1 1

1 -­‐1

The simplest set of functions:

86
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Haar	
  transform

U= U-1=
1 1

1 -­‐1

0.5 0.5

0.5 -­‐0.5

The simplest set of functions:
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Haar	
  transform

U= U-1=
1 1

1 -­‐1

0.5 0.5

0.5 -­‐0.5

To code a signal, repeat at several locations:

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

U=

The simplest set of functions:

U-1= ½

87
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Haar	
  transform
1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1
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Haar	
  transform
1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

Reordering rows
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Apply the same decomposition to the Low pass component:
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Haar	
  transform
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Low pass
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Haar	
  transform
1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 1

1 1

1 1

1 -­‐1
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1 -­‐1
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Reordering rows

Low pass

High pass

Apply the same decomposition to the Low pass component:

1 1

1 1

1 1

1 1

1 1

1 -­‐1

1 1

1 -­‐1

=

1 1 1 1

1 1 -­‐1 -­‐1

1 1 1 1

1 1 -­‐1 -­‐1

And repeat the same operation to the low pass component, until length 1.
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Haar	
  transform
1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 -­‐1

1 1

1 1

1 1

1 1

1 -­‐1

1 -­‐1

1 -­‐1

1 -­‐1

Reordering rows

Low pass

High pass

Apply the same decomposition to the Low pass component:

1 1

1 1

1 1

1 1

1 1

1 -­‐1

1 1

1 -­‐1

=

1 1 1 1

1 1 -­‐1 -­‐1

1 1 1 1

1 1 -­‐1 -­‐1

And repeat the same operation to the low pass component, until length 1.
88Note:  each subband is sub-sampled and has aliased signal components.
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A1A2A3

A3 A2 A1 (A3 A2 A1)-1

Recursive	
  matrix	
  construcKon	
  of	
  Haar	
  transform
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2D	
  Haar	
  transform
1

1

1

-­‐1
1 1 1 -­‐1Basic elements:
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2D	
  Haar	
  transform
1

1

1

-­‐1
1 1 1 -­‐1Basic elements:

1

1
1 1

1 1

1 1
= 2 Low pass
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=

=

=

=
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2D	
  Haar	
  transform
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2D	
  Haar	
  transform
1

1

1

-­‐1
1 1 1 -­‐1Basic elements:

1

1
1 1

1

1
1 -­‐1

1

-­‐1
1 1
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diagonal

94

Wednesday, February 9, 2011



2D	
  Haar	
  transform

1 1

1 1

1 -­‐1

1 -­‐1

1 1

-­‐1 -­‐1

1 -­‐1

-­‐1 1

2

2

2

2

Sketch of the Fourier transform
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2D	
  Haar	
  transform

1 1

1 1

1 -­‐1

1 -­‐1

1 1

-­‐1 -­‐1

1 -­‐1

-­‐1 1

2

2

2

2
Horizontal	
  high	
  
pass,	
  verKcal	
  
high	
  pass

Horizontal	
  high	
  
pass,	
  verKcal	
  
low-­‐pass

Horizontal	
  low	
  
pass,	
  verKcal	
  
high-­‐pass

Horizontal	
  low	
  pass,
VerKcal	
  low-­‐pass

Sketch of the Fourier transform
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Simoncelli	
  and	
  Adelson,	
  in	
  “Subband	
  coding”,	
  Kluwer,	
  1990.

Pyramid cascade

97
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Wavelet/QMF	
  representaKon

1 -­‐1

1 -­‐1

1 1

-­‐1 -­‐1

1 -­‐1

-­‐1 1

Same number of pixels!
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Good	
  and	
  bad	
  features	
  of	
  wavelet/
QMF	
  filters

• Bad:	
  
– Aliased	
  subbands

– Non-­‐oriented	
  diagonal	
  subband

• Good:
– Not	
  overcomplete	
  (so	
  same	
  number	
  of	
  
coefficients	
  as	
  image	
  pixels).

– Good	
  for	
  image	
  compression	
  (JPEG	
  2000).

– Separable	
  computaKon,	
  so	
  it’s	
  fast.

99
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What	
  is	
  wrong	
  with	
  orthonormal	
  basis?

Input

Decomposition
coefficients

100
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What	
  is	
  wrong	
  with	
  orthonormal	
  basis?

Input

(shifted by one pixel)

Decomposition
coefficients

The representation is not translation invariant. It is not stable.101
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Shimtable	
  transforms

The representation has to be stable under typical transformations that undergo 
visual objects:

Translation

Rotation

Scaling

… 

Shiftability under space translations corresponds to lack of aliasing.

http://www.cns.nyu.edu/pub/eero/simoncelli91-reprint.pdf102
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Image	
  pyramids

103
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59

Steerable	
  Pyramid

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

2 Level decomposition
of white circle example: 

Low pass 
residual

Subbands

104
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56

Steerable	
  Pyramid
We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as 
shown below 

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Decomposition Reconstruction

… …

105

Wednesday, February 9, 2011



56

Steerable	
  Pyramid
We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as 
shown below 

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Decomposition Reconstruction

… …
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57

Steerable	
  Pyramid
We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as 
shown below 

Images from: http://www.cis.upenn.edu/~eero/steerpyr.html

Decomposition Reconstruction
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http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995107
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http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995

But we need to get 
rid of the corner 
regions before 
starting the 
recursive circular 
filtering

107
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Reprinted from “Shiftable MultiScale Transforms,” by Simoncelli et al., IEEE Transactions
on Information Theory, 1992, copyright 1992, IEEE

108There is also a high pass residual…
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Monroe
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Steerable	
  pyramids

• Good:
– Oriented	
  subbands

– Non-­‐aliased	
  subbands

– Steerable	
  filters

– Used	
  for:	
  	
  noise	
  removal,	
  texture	
  analysis	
  and	
  synthesis,	
  
super-­‐resoluKon,	
  shading/paint	
  discriminaKon.

• Bad:
– Overcomplete

– Have	
  one	
  high	
  frequency	
  residual	
  subband,	
  required	
  in	
  
order	
  to	
  form	
  a	
  circular	
  region	
  of	
  analysis	
  in	
  frequency	
  
from	
  a	
  square	
  region	
  of	
  support	
  in	
  frequency.

111
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http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf Simoncelli and Freeman, ICIP 1995112
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• Summary	
  of	
  pyramid	
  representaKons

113
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Image	
  pyramids

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable	
  pyramid
114
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Image	
  pyramids
Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable	
  pyramid
114
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Image	
  pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable	
  pyramid
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Image	
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Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.
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• Steerable	
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Image	
  pyramids

Shows the information added in 
Gaussian pyramid at each 
spatial scale.  Useful for noise 
reduction & coding.

Progressively blurred and 
subsampled versions of the 
image.  Adds scale invariance 
to fixed-size algorithms.

Shows components at each 
scale and orientation 
separately.  Non-aliased 
subbands.  Good for texture 
and feature analysis.  But 
overcomplete and with HF 
residual.

Bandpassed representation, complete, but with 
aliasing and some non-oriented subbands.

• Gaussian

• Laplacian

• Wavelet/QMF

• Steerable	
  pyramid
114
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SchemaKc	
  pictures	
  of	
  each	
  matrix	
  
transform

Shown	
  for	
  1-­‐d	
  images

The	
  matrices	
  for	
  2-­‐d	
  images	
  are	
  the	
  same	
  idea,	
  but	
  more	
  
complicated,	
  to	
  account	
  for	
  verKcal,	
  as	
  well	
  as	
  horizontal,	
  
neighbor	
  relaKonships.

    Fourier transform, or
  Wavelet transform, or
Steerable pyramid transform

Vectorized image

transformed image

115
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Fourier	
  transform

= *

pixel domain 
image

Fourier bases 
are global:  
each 
transform 
coefficient 
depends on 
all pixel 
locations.

Fourier 
transform

116
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Fourier	
  transform

= *

pixel domain 
image

Fourier bases 
are global:  
each 
transform 
coefficient 
depends on 
all pixel 
locations.

Fourier 
transform

real

imaginary

color key

1

j
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Gaussian	
  pyramid

= *
pixel image

Overcomplete 
representation.  Low-pass 
filters, sampled 
appropriately for their blur.

Gaussian 
pyramid

117
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Gaussian	
  pyramid

= *
pixel image

Overcomplete 
representation.  Low-pass 
filters, sampled 
appropriately for their blur.

Gaussian 
pyramid
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Laplacian	
  pyramid

= *
pixel image

Overcomplete 
representation.  
Transformed pixels 
represent bandpassed 
image information.

Laplacian 
pyramid

118

Wednesday, February 9, 2011



Laplacian	
  pyramid

= *
pixel image

Overcomplete 
representation.  
Transformed pixels 
represent bandpassed 
image information.

Laplacian 
pyramid
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Wavelet	
  (QMF)	
  transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid

119
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Wavelet	
  (QMF)	
  transform

= *
pixel imageOrtho-normal 

transform (like 
Fourier transform), 
but with localized 
basis functions.  

Wavelet 
pyramid

119
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= *
pixel image

Over-complete 
representation, 
but non-aliased 
subbands. 

Steerable 
pyramid

Multiple 
orientations 
at one scale  

Multiple 
orientations 
at the next 

scale  

the next 
scale…  

Steerable	
  pyramid

120
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Matlab	
  resources	
  for	
  pyramids	
  (with	
  tutorial)

http://www.cns.nyu.edu/~eero/software.html
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Matlab	
  resources	
  for	
  pyramids	
  (with	
  tutorial)

http://www.cns.nyu.edu/~eero/software.html
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Matlab	
  resources	
  for	
  pyramids	
  (with	
  tutorial)

http://www.cns.nyu.edu/~eero/software.html
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Why	
  use	
  these	
  representaKons?

• Handle	
  real-­‐world	
  size	
  variaKons	
  with	
  a	
  
constant-­‐size	
  vision	
  algorithm.

• Remove	
  noise

• Analyze	
  texture

• Recognize	
  objects

• Label	
  image	
  features

• Image	
  priors	
  can	
  be	
  specified	
  naturally	
  in	
  
terms	
  of	
  wavelet	
  pyramids.
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