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• See slide notes for material to be presented on 
board.
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Representing non-linear 
Distributions
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Representing non-linear 
Distributions

Unimodal parametric models fail to capture real-
world densities…
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Discretize by evenly sampling 
over the entire state space

Tractable for 1-d problems like stereo, but not for 
high-dimensional problems.
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Representing Distributions using 
Weighted Samples

Rather than a parametric form, use a set of samples 
to represent a density:
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Representing Distributions using 
Weighted Samples

Rather than a parametric form, use a set of samples 
to represent a density:

Sample positions Probability mass at each sample

This gives us two knobs to adjust when representing a probability density by samples:  
the locations of the samples, and the probability weight on each sample.
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[Isard 1998]

Representing distributions using 
weighted samples, another picture
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Sampled representation of a 
probability distribution

You can also think of this as a sum of dirac delta functions, 
each of weight w:
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Tracking, in particle filter representation

24

€ 

P(xn | y1...yn ) = k P(yn | xn ) dxn−1P(xn | xn−1)P(xn−1 | y1...yn−1)∫

x1 x2 x3

y1 y2 y3

Prediction step
Update step
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Particle filter

• Let’s apply this sampled probability density 
machinery to generalize the Kalman filtering 
framework.

• More general probability density representation 
than uni-modal Gaussian.

• Allows for general state dynamics, f(x) + noise
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Sampled Prediction
=  ?
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Sampled Prediction
=  ?
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Sampled Prediction
=  ?

~=
Drop elements to marginalize to get
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Sampled Correction (Bayes rule)

Prior  posterior
Reweight every sample with the likelihood of the 

observations, given that sample: 

yielding a set of samples describing the probability 
distribution after the correction (update) step:
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Naïve PF Tracking

• Start with samples from something simple 
(Gaussian)

• Repeat
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Naïve PF Tracking
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Take each particle from the prediction step and 
modify the old weight by multiplying by the 
new likelihood
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Naïve PF Tracking

• Start with samples from something simple 
(Gaussian)

• Repeat

– Predict

– Correct

s

Take each particle from the prediction step and 
modify the old weight by multiplying by the 
new likelihood

Run every particle through the dynamics function and add noise.
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Naïve PF Tracking

• Start with samples from something simple 
(Gaussian)

• Repeat

But doesn’t work that well because of sample 
impoverishment…

– Predict

– Correct

s

Take each particle from the prediction step and 
modify the old weight by multiplying by the 
new likelihood

Run every particle through the dynamics function and add noise.
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10 of the 100 particles, along with the true Kalman 
filter track, with variance:

Sample impoverishment

time
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In a sampled density representation, the frequency of 
samples can be traded off against weight:

These new samples are a representation of the same 
density.

I.e., make N draws with replacement from the 
original set of samples, using the weights as the 
probability of drawing a sample.

Resample the prior

s.t.

…
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Resampling concentrates samples
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A practical particle filter with resampling
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Pictorial view

[Isard 1998]
Monday, April 11, 2011



34

Monday, April 11, 2011



35

Monday, April 11, 2011



36

Animation of condensation algorithm

[Isard 1998]
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Animation of condensation algorithm

[Isard 1998]
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Applications
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Tracking

Applications
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– hands
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Tracking
– hands
– bodies
– Leaves

What might we expect?
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Tracking
– hands
– bodies
– Leaves

What might we expect?
Reliable, robust, slow

Applications
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Contour tracking

[Isard 1998]
Monday, April 11, 2011



39

Head tracking

[Isard 1998]
Picture of the states represented by 

the top weighted particles
The mean state
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Head tracking

[Isard 1998]
Picture of the states represented by 

the top weighted particles
The mean state
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Leaf tracking

[Isard 1998]
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Leaf tracking

[Isard 1998]
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Hand tracking

[Isard 1998]
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Hand tracking

[Isard 1998]
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Probabilistic Tracking and 
Reconstruction of 3D Human Motion 

in Monocular Video Sequences

Presentation of the thesis work of:
Hedvig Sidenbladh, KTH

Thesis opponent:  Prof. Bill Freeman, MIT
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Thesis supervisors

• Prof. Jan-Olof Eklundh, KTH
• Prof. Michael Black, Brown University

• Dr. David Fleet, Xerox PARC
• Prof. Dirk Ormoneit, Stanford University

Collaborators
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Models of Human Dynamics

• Action-specific model - Walking
– Training data: 3D motion capture data
– From training set, learn mean cycle and 

common modes of deviation (PCA)

Mean cycle Small noise Large noise
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Walking Person

Walking model

2500 samples
~10 min/frame

#samples 
from 15000 
to 2500
by using the 
learned 
likelihood
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No likelihood

* how strong is the walking prior?
   (or is our likelihood doing anything?)
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