6.869 Computer Vision

Recursive filtering for tracking--Kalman filtering
and particle filtering.
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Bill Freeman and Antonio Torralba
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» See slide notes for material to be presented on
board.
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Representing non-linear
Distributions
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Representing non-linear
Distributions

Unimodal parametric models fail to capture real-
world densities...
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Distributions
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Discretize by evenly sampling
over the entire state space

Tractable for 1-d problems like stereo, but not for
high-dimensional problems.
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Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:
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Representing Distributions using
Weighted Samples

Rather than a parametric form, use a set of samples
to represent a density:

Na
e M

{('u.", wh) }

Sample positions Probability mass at each sample

This gives us two knobs to adjust when representing a probability density by samples:
the locations of the samples, and the probability weight on each sample. 21
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Representing distributions using

welghted samples, another picture

Probability —. posterior
density

@ weighted

J\/\/\/l

wo@ awo {Po o  Sue

-

22
[Isard 1998]
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Sampled representation of a
probability distribution

Represent a probability distribution

f(X)
X)
P T [fU)dU
by a set of N weighted samples
{ ('u,‘ : w' ) }

where u* ~ s(u) and w' = f(u?)/s(u?).

You can also think of this as a sum of dirac delta functions,
each of weight w:

Pf(x)=2Wi6(x—ui) 23
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Tracking, 1n particle filter representation

p(x)= EW’B (x—u')
P(x ly..y )=kP(y, Ixn)fdxn_lP(xn lx DP(x,_ 1y,..y, )

Prediction step
Update step
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Particle filter

* Let’s apply this sampled probability density
machinery to generalize the Kalman filtering
framework.

* More general probability density representation
than uni-modal Gaussian.

* Allows for general state dynamics, f(x) + noise

25
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P(:B, |y0? .

Sampled Prediction

",yé—l) — ?

26
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Sampled Prediction

P(z:|yg,-- s Y1) = ?

P(Xi—1|Ygr > ¥Yi1)

{(ui}:—lww;‘,’c—l)}
— Zl?i:f(illi_l)—}—gi —

{((f(u’fc—l) % gia uf—l)) wf—l)}
p(Xi)Xi—1|y0> smiely y-i.—l)
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Sampled Prediction

P(z:|yo,-- -, Yi—1) = 7

p(Xi-1lYo, -5 Yi1)

{(u?—lvwﬁj—l)}
— ;= f(®i-1)+ & —>

{((f(u-f—l) .= 5-;{, uf—l), wf—l)}

p(X‘i)Xi—l IyO} smiely y-i—l)

Drop elements to marginalize to get
P(zi|yo, .., ¥i1) ~=

{(f(uf—ﬂ + fg, wf—l)}w_
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Sampled Correction (Bayes rule)

Prior = posterior

Reweight every sample with the likelihood of the
observations, given that sample:

p(Yi =y | Xi = 877w

4

yielding a set of samples describing the probability
distribution after the correction (update) step:

s Iy o L %
{(Sf‘ (Y = y;| Xy = '5: ,)w;') )}

27
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Naive PF Tracking

 Start with samples from something simple
(Gaussian)

* Repeat
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Take each particle from the prediction step and
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Naive PF Tracking

 Start with samples from something simple
(Gaussian)

Take each particle from the prediction step and

* Repeat

— Correct

— Predict

¢ k { ke
{ (j (S ;—1) T g-i: rw?—l,) }
f
Run every particle through the dynamics function and add noise.

28
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Naive PF Tracking

 Start with samples from something simple
(Gaussian)

Take each particle from the prediction step and

* Repeat

— Correct

Run every particle through the dynamics function and add noise.

But doesn’t work that well because of sample
impoverishment. ..

Monday, April 11, 2011
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Sample impoverishment

10 of the 100 particles, along with the true Kalman
filter track, with variance:

2 T T L} 1 h

15k

05p

O

05 F
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Resample the prior

In a sampled density representation, the frequency of
samples can be traded off against weight:

._ N
(Sk,wk) . (Sk, 12) Ni copies s.t. Ni e

These new samples are a representation of the same
density.

I.e., make N draws with replacement from the
original set of samples, using the weights as the

probability of drawing a sample.
30
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Resampling concentrates samples

*

P

o
pbt 0¢¢¢0"¢o¢¢oo¢, ,,0¢0¢,’

1oty #

©

05 -#f”“
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A practical particle filter with resampling

Initialization: Represent P(X () by a set of N samples

{(sb™,wh)}

where
85" ~ Py(S) and wy'™ = P(sg" )/ P(S = s5'™)

Ideally, P(X ) has a simple form and s~ ~ P(X,) and we'™ = 1.
Prediction: Represent P{X |y, 4._¢) by

(CET)

where Y g o %
577 = f(s7]) + & and wT = w2} and & ~ N(0,Ba,)

Correction: Represent P(X,|y,,y,) by

{@h i)

where
st =" and Wt = P(Y; =y |X; = sl

2 T

Resampling: Normalise the weights so that Ziwf'+ = 1 and compute the
variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N samples
from the old set, using the weights as the probability that a sample will be drawn.
The weight of each sample is now 1/N.

32
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Pictorial view

pPlxy_q] Z|_| ) =

PX1 Zyy) —

Pzl X.)\

\
0

predict

measure

33
[Isard 1998]
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©J Contour tracking by stochastic propagation of conditional density - Mozilla Firefox

Fle Edt Vew Go Bockmarks TJooks Hep o
@ - - § @ | htp:ffresearch.microsoft.comfusers/misardfabstracts/eccvdb.isard. html v @ Go }CI,

P Getting Started L) Latest Headines

Contour tracking by stochastic propagation of conditional density
Michael Isard and Andrew Blake

Proc. European Conference on Computer Vision, vol. 1, pp. 343--356, Cambridge UK,
(1996).

Abstract

The problem of tracking curves m dense wisual clutter 15 a challenging one. Trackers based on Kalman filters are of koted use,
because they are based on Gaussian densites which are urumodal, they cannot represent ssmultaneous alterative hypotheses.
Extensions to the Kalman filter to handle multiple data associahons work satisfactonly m the simple case of pomnt targets, but
do not extend nanurally to continuzous curves. A new, stochastc algonthm is proposed here, the Condensation algorithm ---
Condmonal Density Propaganon over ime. It uses 'factored sampling’, a method previously apphed to mnterpretation of static
images, m whuch the distbution of possible mnrerpretations 15 represented by a randomly generated set of representatives. The
Condensation algonthm combmes factored sampling with leared dynamical models to propagate an entire probability
distnbution for object positon and shape, over time. The result 15 haghly robust tracking of agile motion 1 clutter, markedly

supenor to what has prewiously been attanable from Kalman filtering. Notwathstanding the use of stochastc methods, the
algonthm runs m near real-time

Click here for a compressed postscript version

Back to

Michael Isard's home page
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e Edt  View Hgtory Bookmear Tools  Help
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'he Condensation Algorithm

b ackground

"Tracking objects through highly cluttered scenes 15 dficult. We believe that for tracking to be robust when followmng agile
o ‘ movmng objects, m the presence of dense background clutter, probabihstic algonthms are essenhal Previous algonthms, for
example the Kalman filter, have been hrited m the range of probability distnbutions they represent. We have developed a new
algonthm, the Condensation algonthm (Condiional Density Propagation) which allows quite general representations of
probabilty. Expenimental results show that this mcreased generality does mdeed lead to a marked unprovement m tracking
performance. In addiion to permtting high-quality tracking i clutter, the simpheity of the Condensation algonthm also allows
the use of non-hnear motion models more complex than those commonly used n Kalman flters. We have implemented a maxed
discrete/continuous tracker m the Condensation framework whach swatches between multiple continuous Auto-Regressive
Process motion models according to a discrete transihion matnx. Also, by using the statistical techrugue of importance
ppding 1t 15 possible to buld a Condensation tracker which runs m real e, and we have inplemented a real-time hand-tracker on a low-end SGI
orkstaton. My D Phil thesis gives a thorough descnption of the algonthm and some apphcations

ample Code
ownload source code of a stmple tmplementation of the Condensanon algorthm
Lesults

ere 15 an MPEG (2 3Mb) showing the Condensation algonthm tracking a leaf blowing i the wind, aganst a background of

1 1

| Find: @ Next @ Previous [7] Match case
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Animation of condensation algorithm

36
[Isard 1998
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Animation of condensation algorithm
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Applications
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Tracking

Applications

37

Monday, April 11, 2011




Tracking
— hands

Applications
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Tracking
— hands
— bodies

Applications
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Applications

Tracking
— hands

— bodies
— Leaves

What might we expect?
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Applications

Tracking
— hands

— bodies
— Leaves

What might we expect?
Reliable, robust, slow

37
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Contour tracking

38
[Isard 1998]
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Head tracking

Picture of the states represented by
the top weighted particles

The mean state

39
[Isard 1998]
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Head tracking

(b)

Picture of the states represented by The mean state 39
the top weighted particles [Isard 1998]
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Leaf tracking

40
[Isard 1998]
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Leaf tracking

40
[Isard 1998]
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Hand tracking

41
[Isard 1998]
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Hand tracking

41
[Isard 1998]
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Probabilistic Tracking and
Reconstruction of 3D Human Motion
in Monocular Video Sequences

Presentation of the thesis work of:
Hedvig Sidenbladh, KTH

Thesis opponent: Prof. Bill Freeman, MIT
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Thesis supervisors

* Prof. Jan-Olof Eklundh, KTH
* Prof. Michael Black, Brown University

Collaborators

 Dr. David Fleet, Xerox PARC
* Prof. Dirk Ormoneit, Stanford University
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Models of Human Dynamics

* Action-specific model - Walking
— Training data: 3D motion capture data

— From training set, learn mean cycle and
common modes of deviation (PCA)

Mean cycle Small noise Large noise
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— Training data: 3D motion capture data
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* Action-specific model - Walking
— Training data: 3D motion capture data
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#samples
from 15000
to 2500

by using the
learned
likelithood

Walking Person

Walking model

2500 samples
~10 min/frame
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Walking Person

#samples
from 15000
to 2500

by using the
learned

2500 samples
likelithood

.. ~10 min/frame

Walking model
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No likelihood

* how strong 1s the walking prior?
(or 1s our likelihood doing anything?)
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No likelihood

* how strong 1s the walking prior?
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