
Motion Estimation (I)

Ce Liu

celiu@microsoft.com

Microsoft Research New England

We live in a moving world

• Perceiving, understanding and predicting motion is an
important part of our daily lives

Motion estimation: a core problem of
computer vision

• Related topics:
– Image correspondence, image registration, image matching, image

alignment, …

• Applications

– Video enhancement: stabilization, denoising, super resolution

– 3D reconstruction: structure from motion (SFM)

– Video segmentation

– Tracking/recognition

– Advanced video editing

Contents (today)

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Readings

• Rick’s book: Chapter 8

• Ce Liu’s PhD thesis (Appendix A & B)

• S. Baker and I. Matthews. Lucas-Kanade 20 years on: a
unifying framework. IJCV 2004

• Horn-Schunck (wikipedia)

• A. Bruhn, J. Weickert, C. Schnorr. Lucas/Kanade meets
Horn/Schunk: combining local and global optical flow
methods. IJCV 2005

Contents

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Seeing motion from a static picture?

http://www.ritsumei.ac.jp/~akitaoka/index-e.html

More examples

How is this possible?

• The true mechanism is to be
revealed

• FMRI data suggest that illusion
is related to some component of
eye movements

• We don’t expect computer vision
to “see” motion from these
stimuli, yet

What do you see?

In fact, …

The cause of motion

• Three factors in imaging process
– Light

– Object

– Camera

• Varying either of them causes motion
– Static camera, moving objects (surveillance)

– Moving camera, static scene (3D capture)

– Moving camera, moving scene (sports, movie)

– Static camera, moving objects, moving light (time lapse)

Motion scenarios (priors)

Static camera, moving scene Moving camera, static scene

Moving camera, moving scene Static camera, moving scene, moving light

We still don’t touch these areas

Not challenging enough?

Motion analysis: human vs. computer

• Challenges of motion estimation
– Geometry: shapeless objects

– Reflectance: transparency, shadow, reflection

– Lighting: fast moving light sources

– Sensor: motion blur, noise

• Key: motion representation
– Ideally, solve the inverse rendering problem for a video sequence

• Intractable!

– Practically, we make strong assumptions

• Geometry: rigid or slow deforming objects

• Reflectance: opaque, Lambertian surface

• Lighting: fixed or slow changing

• Sensor: no motion blur, low-noise

Contents

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Parametric motion

• Mapping: 𝑥1, 𝑦1 → (𝑥2, 𝑦2)
– (𝑥1, 𝑦1): point in frame 1

– (𝑥2, 𝑦2): corresponding point in frame 2

• Global parametric motion: 𝑥2, 𝑦2 = 𝑓(𝑥1, 𝑦1; 𝜃)

• Forms of parametric motion

– Translation:
𝑥2
𝑦2

=
𝑥1 + 𝑎
𝑦1 + 𝑏

– Similarity:
𝑥2
𝑦2

= 𝑠
cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

𝑥1 + 𝑎
𝑦1 + 𝑏

– Affine:
𝑥2
𝑦2

=
𝑎𝑥1 + 𝑏𝑦1 + 𝑐
𝑑𝑥1 + 𝑒𝑦1 + 𝑓

– Homography:
𝑥2
𝑦2

=
1

𝑧

𝑎𝑥1 + 𝑏𝑦1 + 𝑐
𝑑𝑥1 + 𝑒𝑦1 + 𝑓

, 𝑧 = 𝑔𝑥1 + ℎ𝑦1 + 𝑖

Parametric motion forms

Translation

Homography

Optical flow field

• Parametric motion is limited and cannot describe the
motion of arbitrary videos

• Optical flow field: assign a flow vector 𝑢 𝑥, 𝑦 , 𝑣 𝑥, 𝑦 to

each pixel (𝑥, 𝑦)

• Projection from 3D world to 2D

Optical flow field visualization

• Too messy to plot flow vector for every pixel

• Map flow vectors to color

– Magnitude: saturation

– Orientation: hue

Ground-truth flow field Visualization code

[Baker et al. 2007]

Input two frames

Matching criterion

• Brightness constancy assumption

 𝐼1 𝑥, 𝑦 = 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 + 𝑛

 𝑛 ∼ 𝑁 0, 𝜎2

• Noise 𝑛

• Matching criteria
– What’s invariant between two images?

• Brightness, gradients, phase, other features…

– Distance metric (L2, robust functions)

 𝐸 𝑢, 𝑣 = 𝐼1 𝑥, 𝑦 − 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 2
𝑥,𝑦

– Correlation, normalized cross correlation (NCC)

Contents

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Lucas-Kanade: problem setup

• Given two images 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦), estimate a parametric
motion that transforms 𝐼1 to 𝐼2

• Let 𝐱 = 𝑥, 𝑦 𝑇 be a column vector indexing pixel coordinate

• Two typical transforms

– Translation: 𝑊 x; p =
𝑥 + 𝑝1
𝑦 + 𝑝2

– Affine: 𝑊 x;p =
𝑝1𝑥 + 𝑝3𝑦 + 𝑝5
𝑝2𝑥 + 𝑝4𝑦 + 𝑝6

=
𝑝1 𝑝3 𝑝5
𝑝2 𝑝4 𝑝6

𝑥
𝑦
1

• Goal of the Lucas-Kanade algorithm

p∗ = argmin
p

 𝐼2 𝑊 x; p − 𝐼1 x
2

x

An incremental algorithm

• Difficult to directly optimize the objective function

p∗ = argmin
p

 𝐼2 𝑊 x; p − 𝐼1 x
2

x

• Instead, we try to optimize each step

Δp∗ = argmin
Δp

 𝐼2 𝑊 x; p + Δp − 𝐼1 x
2

x

• The transform parameter is updated:

 p ← p + Δp∗

Taylor expansion

• The term 𝐼2 𝑊 x; p + Δp is highly nonlinear

• Taylor expansion:

𝐼2 𝑊 x; p + Δp ≈ 𝐼2 𝑊 𝑥; 𝑝 + 𝛻𝐼2
𝜕𝑊

𝜕p
Δp

•
𝜕𝑊

𝜕p
 : Jacobian of the warp

• If 𝑊 x; p = 𝑊𝑥 x; p ,𝑊𝑦 x; p
𝑇
 , then

𝜕𝑊

𝜕p
=

𝜕𝑊𝑥

𝜕𝑝1
…

𝜕𝑊𝑥

𝜕𝑝𝑛
𝜕𝑊𝑦

𝜕𝑝1
…

𝜕𝑊𝑦

𝜕𝑝𝑛

Jacobian matrix

• For affine transform: 𝑊 x; p =
𝑝1 𝑝3 𝑝5
𝑝2 𝑝4 𝑝6

𝑥
𝑦
1

 The Jacobian is
𝜕𝑊

𝜕p
=

𝑥 0
0 𝑥

𝑦 0
0 𝑦

1 0
0 1

• For translation : 𝑊 x; p =
𝑥 + 𝑝1
𝑦 + 𝑝2

 The Jacobian is
𝜕𝑊

𝜕p
=

1 0
0 1

Taylor expansion

• 𝛻𝐼2 = [𝐼𝑥 𝐼𝑦] is the gradient of image 𝐼2 evaluated at

𝑊(x; p): compute the gradients in the coordinate of 𝐼2 and
warp back to the coordinate of 𝐼1

• For affine transform
𝜕𝑊

𝜕p
=

𝑥 0
0 𝑥

𝑦 0
0 𝑦

1 0
0 1

𝛻𝐼2
𝜕𝑊

𝜕p
= 𝐼𝑥𝑥 𝐼𝑦𝑥 𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑥 𝐼𝑦

• Let matrix 𝐁 = 𝐈𝑥𝐗 𝐈𝑦𝐗 𝐈𝑥𝐘 𝐈𝑦𝐘 𝐈𝑥 𝐈𝑦 ∈ ℝ𝑛×6, 𝐈𝑥 and

𝐗 are both column vectors. 𝐈𝑥𝐗 is element-wise vector
multiplication.

Gauss-Newton

• With Taylor expansion, the objective function becomes

Δp∗ = argmin
Δp

 𝐼2 𝑊 𝑥; 𝑝 + 𝛻𝐼2
𝜕𝑊

𝜕p
Δp − 𝐼1 x

2

x

 Or in a vector form:

Δp∗ = argmin
Δp

𝐈𝑡 + 𝐁Δp 𝑇 𝐈𝑡 + 𝐁Δp

 Where 𝐁 = 𝐈𝑥𝐗 𝐈𝑦𝐗 𝐈𝑥𝐘 𝐈𝑦𝐘 𝐈𝑥 𝐈𝑦 ∈ ℝ𝑛×6

 𝐈𝑡 = 𝐈2 𝐖 p − 𝐈1

• Solution:

Δp∗ = − 𝐁𝑇𝐁 −1𝐁𝑇𝐈𝑡

Hessian matrix

How it works

How it works

How it works

How it works

How it works

How it works

Compute matrix

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p

How it works

Compute inverse
Hessian: 𝐁𝑇𝐁 −1

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p

How it works

Compute: 𝐁𝑇𝐈𝑡

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p

How it works

Solve linear system:
Δp∗ = − 𝐁𝑇𝐁 −1𝐁𝑇𝐈𝑡

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p

How it works

p ← p + Δp∗

Translation

• Jacobian:
𝛿𝑊

𝛿𝑝
=

1 0
0 1

• 𝛻𝐼2
𝛿𝑊

𝛿𝑝
= [𝐼𝑥 𝐼𝑦]

• 𝐁 = 𝐼𝑥 𝐼𝑦 ∈ ℝ𝑛×2

• Solution:

Δp∗ = − 𝐁𝑇𝐁 −1𝐁𝑇𝐈𝑡

= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

Coarse-to-fine refinement

• Lucas-Kanade is a greedy algorithm that converges to local
minimum

• Initialization is crucial: if initialized with zero, then the
underlying motion must be small

• If underlying transform is significant, then coarse-to-fine is
a must

Smooth &
down-
sampling

(𝑢2, 𝑣2)

(𝑢1, 𝑣1)

(𝑢, 𝑣)

× 2

× 2

Variations

• Variations of Lucas Kanade:
– Additive algorithm [Lucas-Kanade, 81]

– Compositional algorithm [Shum & Szeliski, 98]

– Inverse compositional algorithm [Baker & Matthews, 01]

– Inverse additive algorithm [Hager & Belhumeur, 98]

• Although inverse algorithms run faster (avoiding re-
computing Hessian), they have the same complexity for
robust error functions!

From parametric motion to flow field

• Incremental flow update 𝑑𝑢, 𝑑𝑣 for pixel (𝑥, 𝑦)

 𝐼2 𝑥 + 𝑢 + 𝑑𝑢, 𝑦 + 𝑣 + 𝑑𝑣 − 𝐼1(𝑥, 𝑦)
= 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 + 𝐼𝑥 𝑥 + 𝑢, 𝑦 + 𝑣 𝑑𝑢 + 𝐼𝑦 𝑥 + 𝑢, 𝑦 + 𝑣 𝑑𝑣 − 𝐼1 𝑥, 𝑦

𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣 + 𝐼𝑡 = 0

• We obtain the following function within a patch

𝑑𝑢
𝑑𝑣

= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

• The flow vector of each pixel is updated independently

• Median filtering can be applied for spatial smoothness

Example

Flow visualization

Coarse-to-fine LK with median filtering

Coarse-to-fine LK Input two frames

Contents

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Motion ambiguities

• When will the Lucas-Kanade algorithm fail?

𝑑𝑢
𝑑𝑣

= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

• The inverse may not exist!!!

• How?
– All the derivatives are zero: flat regions

– X- and y-derivatives are linearly correlated: lines

Aperture problem

Corners Lines Flat regions

Dense optical flow with spatial regularity

• Local motion is inherently ambiguous
– Corners: definite, no ambiguity (but can be misleading)

– Lines: definite along the normal, ambiguous along the tangent

– Flat regions: totally ambiguous

• Solution: imposing spatial smoothness to the flow field
– Adjacent pixels should move together as much as possible

• Horn & Schunck equation

𝑢, 𝑣 = argmin 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

– 𝛻𝑢 2 =
𝜕𝑢

𝜕𝑥

2
+

𝜕𝑢

𝜕𝑦

2
= 𝑢𝑥

2 + 𝑢𝑦
2

– 𝛼: smoothness coefficient

2D Euler Lagrange

• 2D Euler Lagrange: the functional

𝑆 = 𝐿 𝑥, 𝑦, 𝑓, 𝑓𝑥 , 𝑓𝑦 𝑑𝑥𝑑𝑦
Ω

is minimized only if 𝑓 satisfies the partial differential
equation (PDE)

𝜕𝐿

𝜕𝑓
−

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑓𝑥
−

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑓𝑦
= 0

• In Horn-Schunck

– 𝐿 𝑢, 𝑣, 𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 = 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝑢𝑥

2 + 𝑢𝑦
2 + 𝑣𝑥

2 + 𝑣𝑦
2

–
𝜕𝐿

𝜕𝑢
= 2 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 𝐼𝑥

–
𝜕𝐿

𝜕𝑢𝑥
= 2𝛼𝑢𝑥,

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑢𝑥
= 2𝛼𝑢𝑥𝑥,

𝜕𝐿

𝜕𝑢𝑦
= 2𝛼𝑢𝑦,

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑢𝑦
= 2𝛼𝑢𝑦𝑦

Linear PDE

• The Euler-Lagrange PDE for Horn-Schunck is

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 𝐼𝑥 − 𝛼 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 𝐼𝑦 − 𝛼 𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0

• 𝑢𝑥𝑥 + 𝑢𝑦𝑦 can be obtained by a Laplacian operator:

0 −1 0
−1 4 −1
0 −1 0

• In the end, we solve the large linear system

𝐈𝑥
2 + 𝛼𝐋 𝐈𝑥𝐈𝑦

𝐈𝑥𝐈𝑦 𝐈𝑦
2 + 𝛼𝐋

𝑈
𝑉

= −
𝐈𝑥𝐈𝐭
𝐈𝑦𝐈𝐭

How to solve a large linear system Ax=b?

𝐈𝑥
2 + 𝛼𝐋 𝐈𝑥𝐈𝑦

𝐈𝑥𝐈𝑦 𝐈𝑦
2 + 𝛼𝐋

𝑈
𝑉

= −
𝐈𝑥𝐈𝐭
𝐈𝑦𝐈𝐭

• With 𝛼 > 0, this system is positive definite!

• You can use your favorite iterative solver
– Gauss-Seidel, successive over-relaxation (SOR)

– (Pre-conditioned) conjugate gradient

• No need to wait for the solver to converge completely

Incremental Solution

• In the objective function

𝑢, 𝑣 = argmin 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

The displacement (𝑢, 𝑣) has to be small for the Taylor
expansion to be valid

• More practically, we can estimate the optimal incremental
change

 𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻(𝑢 + 𝑑𝑢) 2 + 𝛻(𝑣 + 𝑑𝑣) 2 𝑑𝑥𝑑𝑦

• The solution becomes

𝐈𝑥
2 + 𝛼𝐋 𝐈𝑥𝐈𝑦

𝐈𝑥𝐈𝑦 𝐈𝑦
2 + 𝛼𝐋

𝑑𝑈
𝑑𝑉

= −
𝐈𝑥𝐈𝑡 + 𝛼𝐋𝑈
𝐈𝑦𝐈𝑡 + 𝛼𝐋𝑉

Example

Flow visualization

Coarse-to-fine LK with median filtering

Coarse-to-fine LK

Input two frames

Horn-Schunck

Continuous Markov Random Fields

• Horn-Schunck started 30 years of research on continuous
Markov random fields
– Optical flow estimation

– Image reconstruction, e.g. denoising, super resolution

– Shape from shading, inverse rendering problems

– Natural image priors

• Why continuous?
– Image signals are differentiable

– More complicated spatial relationships

• Fast solvers
– Multi-grid

– Preconditioned conjugate gradient

– FFT + annealing

Contents

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Spatial regularity

• Horn-Schunck is a Gaussian Markov
random field (GMRF)

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

• Spatial over-smoothness is caused by the
quadratic smoothness term

• Nevertheless, real optical flow fields are
sparse!

𝑢 𝑢𝑥 𝑢𝑦

𝑣 𝑣𝑥 𝑣𝑦

Data term

• Horn-Schunck is a Gaussian Markov random field (GMRF)

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

• Quadratic data term implies Gaussian white noise

• Nevertheless, the difference between two corresponded
pixels is caused by
– Noise (majority)

– Occlusion

– Compression error

– Lighting change

– …

• The error function needs to account for these factors

Noise model

• Explicitly model the noise 𝑛

𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 = 𝐼1 𝑥, 𝑦 + 𝑛

• It can be a mixture of two Gaussians, inlier and outlier

𝑛 ~ 𝜆𝑁 0, 𝜎𝑖
2 + 1 − 𝜆 𝑁(0, 𝜎𝑜

2)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

6

8

10

12

14

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

6

8

10

12

14

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4

6

8

10

12

14

Inlier Outlier Mixture (𝜆 = 0.9)

PDF

Potential

More components in the mixture

• Consider a Gaussian mixture model

𝑛~
1

𝑍
 𝜉𝑘𝑁(0, 𝑘𝑠 2)

𝐾

𝑘=1

• Varying the decaying rate 𝜉, we obtain a variety of potential
functions

-4 -3 -2 -1 0 1 2 3 4
-5

0

5

10

15

20

25

30

-4 -3 -2 -1 0 1 2 3 4
-2

0

2

4

6

8

10

12

𝜉 = 0.1 𝜉 = 0.9

Typical error functions

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

L2 norm
𝜌 𝑧 = 𝑧2

L1 norm
𝜌 𝑧 = |𝑧|

Truncated L1 norm
𝜌 𝑧 = min (𝑧 , 𝜂)

Lorentzian
𝜌 𝑧 = log (1 + 𝛾𝑧2)

Robust statistics

• Traditional L2 norm: only noise, no outlier

• Example: estimate the average of
 0.95, 1.04, 0.91, 1.02, 1.10, 20.01

• Estimate with minimum error

 𝑧∗ = argmin
𝑧

 𝜌 𝑧 − 𝑧𝑖𝑖

– L2 norm: 𝑧∗ = 4.172

– L1 norm: 𝑧∗ = 1.038

– Truncated L1: 𝑧∗ = 1.0296

– Lorentzian: 𝑧∗ = 1.0147

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

L2 norm
𝜌 𝑧 = 𝑧2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

L1 norm
𝜌 𝑧 = |𝑧|

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Truncated L1 norm
𝜌 𝑧 = min (𝑧 , 𝜂)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Lorentzian
𝜌 𝑧 = log (1 + 𝛾𝑧2)

The family of robust power functions

• Can we directly use L1 norm 𝜓 𝑧 = 𝑧 ?
– Derivative is not continuous

• Alternative forms

– L1 norm: 𝜓 𝑧2 = 𝑧2 + 𝜀2

– Sub L1: 𝜓 𝑧2; 𝜂 = 𝑧2 + 𝜀2 𝜂, 𝜂 < 0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

|𝑧|

𝑧2 + 𝜀2

𝜂 = 0.5
𝜂 = 0.4
𝜂 = 0.3
𝜂 = 0.2

Modification to Horn-Schunck

• Let x = (𝑥, 𝑦, 𝑡), and w x = 𝑢 x , 𝑣 x , 1 be the flow vector

• Horn-Schunck (recall)

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

• Robust estimation

 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

• Robust estimation with Lucas-Kanade

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

A unifying framework

• The robust object function

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

– Lucas-Kanade: 𝛼 = 0, 𝜓 𝑧2 = 𝑧2

– Robust Lucas-Kanade: 𝛼 = 0, 𝜓 𝑧2 = 𝑧2 + 𝜀2

– Horn-Schunck: 𝑔 = 1, 𝜓 𝑧2 = 𝑧2, 𝜙 𝑧2 = 𝑧2

• One can also learn the filters (other than gradients), and
robust function 𝜓 ⋅ , 𝜙(⋅) [Roth & Black 2005]

Derivation strategies

• Euler-Lagrange
– Derive in continuous domain, discretize in the end

– Nonlinear PDE’s

– Outer and inner fixed point iterations

– Limited to derivative filters; cannot generalize to arbitrary filters

• Energy minimization
– Discretize first and derive in matrix form

– Easy to understand and derive

• Variational optimization

• Iteratively reweighted least square (IRLS)

• Euler-Lagrange = Variational optimization = IRLS

Iteratively reweighted least square (IRLS)

• Let 𝜙 𝑧 = 𝑧2 + 𝜀2 𝜂 be a robust function

• We want to minimize the objective function

Φ 𝐀𝑥 + 𝑏 = 𝜙 𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑛

𝑖=1

 where 𝑥 ∈ ℝ𝑑 , 𝐴 = 𝑎1 𝑎2⋯𝑎𝑛
𝑇 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑛

• By setting
𝜕Φ

𝜕𝑥
= 0, we can derive

𝜕Φ

𝜕𝑥
= 𝜙′

𝑛

𝑖=1
𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑎𝑖

= 𝑤𝑖𝑖𝑎𝑖
𝑇𝑥𝑎𝑖 + 𝑤𝑖𝑖𝑏𝑖𝑎𝑖

𝑛

𝑖=1

= 𝑎𝑖
𝑇𝑤𝑖𝑖𝑥𝑎𝑖 + 𝑏𝑖𝑤𝑖𝑖𝑎𝑖

𝑛

𝑖=1

= 𝐀𝑇𝐖𝐀𝑥 + 𝐀𝑇𝐖𝑏

𝑤𝑖𝑖 = 𝜙′ 𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2

𝐖 = diag Φ′(𝐀𝑥 + 𝑏)

Iteratively reweighted least square (IRLS)

• Derivative:
𝜕Φ

𝜕𝑥
= 𝐀𝑇𝐖𝐀𝑥 + 𝐀𝑇𝐖𝑏 = 0

• Iterate between reweighting and least square

• Convergence is guaranteed (local minima)

1. Initialize 𝑥 = 𝑥0

2. Compute weight matrix 𝐖 = diag Φ′(𝐀𝑥 + 𝑏)

3. Solve the linear system 𝐀𝑇𝐖𝐀𝑥 = −𝐀𝑇𝐖𝑏

4. If 𝑥 converges, return; otherwise, go to 2

IRLS for robust optical flow

• Objective function

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦

• Discretize, linearize and increment

 𝑔 ∗ 𝜓 𝐼𝑡 + 𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣
2

𝑥,𝑦

+ 𝛼𝜙 𝛻 𝑢 + 𝑑𝑢 2 + 𝛻 𝑣 + 𝑑𝑣 2

• IRLS (initialize 𝑑𝑢 = 𝑑𝑣 = 0)
– Reweight:

– Least square:

𝚿𝑥𝑥
′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑥 , 𝚿𝑥𝑦

′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑦 ,

𝚿𝑦𝑦
′ = diag 𝑔 ∗ 𝜓′𝐈𝑦𝐈𝑦 , 𝚿𝑥𝑡

′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑡 ,

𝚿𝑦𝑡
′ = diag 𝑔 ∗ 𝜓′𝐈𝑦𝐈𝑡 , 𝐋 = 𝐃𝑥

𝑇𝚽′𝐃𝑥 + 𝐃𝑦
𝑇𝚽′𝐃𝑦

𝚿𝑥𝑥
′ + 𝛼𝐋 𝚿𝑥𝑦

′

𝚿𝑥𝑦
′ 𝚿𝑦𝑦

′ + 𝛼𝐋
𝑑𝑈
𝑑𝑉

= −
𝚿𝑥𝑡

′ + 𝛼𝐋𝑈

𝚿𝑦𝑡
′ + 𝛼𝐋𝑉

Example

Flow visualization

Coarse-to-fine LK with median filtering

Input two frames

Horn-Schunck

Robust optical flow

Contents

• Motion perception

• Motion representation

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)

Video stabilization

Video denoising

Video super resolution

Summary

• Lucas-Kanade
– Parametric motion

– Dense flow field (with median filtering)

• Horn-Schunck
– Gaussian Markov random field

– Euler-Lagrange

• Robust flow estimation
– Robust function

• Account for outliers in the data term

• Encourage piecewise smoothness

– IRLS (= nonlinear PDE = variational optimization)

Contents (next time)

• Feature matching

• Discrete optical flow

• Layer motion analysis

• Contour motion analysis

• Obtaining motion ground truth

• Applications (2)

