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We live in a moving world 

• Perceiving, understanding and predicting motion is an 
important part of our daily lives 

 

 

 

 

 

 

 
 



Motion estimation: a core problem of 
computer vision 

• Related topics:  
– Image correspondence, image registration, image matching, image 

alignment, … 

• Applications 

– Video enhancement: stabilization, denoising, super resolution 

– 3D reconstruction: structure from motion (SFM) 

– Video segmentation 

– Tracking/recognition 

– Advanced video editing 

 



Contents (today) 

• Motion perception 

• Motion representation 

• Parametric motion: Lucas-Kanade 

• Dense optical flow: Horn-Schunck 

• Robust estimation 

• Applications (1) 



Readings 

• Rick’s book: Chapter 8 

• Ce Liu’s PhD thesis (Appendix A & B) 

• S. Baker and I. Matthews. Lucas-Kanade 20 years on: a 
unifying framework. IJCV 2004  

• Horn-Schunck (wikipedia)  

• A. Bruhn, J. Weickert, C. Schnorr. Lucas/Kanade meets 
Horn/Schunk: combining local and global optical flow 
methods. IJCV 2005  
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Seeing motion from a static picture? 

http://www.ritsumei.ac.jp/~akitaoka/index-e.html 



More examples 



How is this possible? 

• The true mechanism is to be 
revealed 

• FMRI data suggest that  illusion 
is related to some component of 
eye movements 

• We don’t expect computer vision 
to “see” motion from these 
stimuli, yet 



What do you see? 



In fact, … 



The cause of motion 

• Three factors in imaging process 
– Light 

– Object 

– Camera  

• Varying either of them causes motion 
– Static camera, moving objects (surveillance) 

– Moving camera, static scene (3D capture) 

– Moving camera, moving scene (sports, movie) 

– Static camera, moving objects, moving light (time lapse) 



Motion scenarios (priors) 

Static camera, moving scene Moving camera, static scene 

Moving camera, moving scene Static camera, moving scene, moving light 



We still don’t touch these areas 



Not challenging enough? 



Motion analysis: human vs. computer 

• Challenges of motion estimation 
– Geometry: shapeless objects 

– Reflectance: transparency, shadow, reflection 

– Lighting: fast moving light sources 

– Sensor: motion blur, noise 

• Key: motion representation 
– Ideally, solve the inverse rendering problem for a video sequence 

• Intractable! 

– Practically, we make strong assumptions 

• Geometry: rigid or slow deforming objects 

• Reflectance: opaque, Lambertian surface 

• Lighting: fixed or slow changing 

• Sensor: no motion blur, low-noise 
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Parametric motion 

• Mapping: 𝑥1, 𝑦1 → (𝑥2, 𝑦2) 
– (𝑥1, 𝑦1): point in frame 1 

– (𝑥2, 𝑦2): corresponding point in frame 2 

• Global parametric motion: 𝑥2, 𝑦2 = 𝑓(𝑥1, 𝑦1; 𝜃) 

• Forms of parametric motion 

– Translation: 
𝑥2
𝑦2

=
𝑥1 + 𝑎
𝑦1 + 𝑏

 

– Similarity: 
𝑥2
𝑦2

= 𝑠
cos 𝛼 sin 𝛼
− sin 𝛼 cos 𝛼

𝑥1 + 𝑎
𝑦1 + 𝑏

 

– Affine: 
𝑥2
𝑦2

=
𝑎𝑥1 + 𝑏𝑦1 + 𝑐
𝑑𝑥1 + 𝑒𝑦1 + 𝑓

 

– Homography: 
𝑥2
𝑦2

=
1

𝑧

𝑎𝑥1 + 𝑏𝑦1 + 𝑐
𝑑𝑥1 + 𝑒𝑦1 + 𝑓

, 𝑧 = 𝑔𝑥1 + ℎ𝑦1 + 𝑖 



Parametric motion forms 

Translation 

Homography 



Optical flow field 

• Parametric motion is limited and cannot describe the 
motion of arbitrary videos 

• Optical flow field: assign a flow vector 𝑢 𝑥, 𝑦 , 𝑣 𝑥, 𝑦  to 

each pixel (𝑥, 𝑦) 

• Projection from 3D world to 2D 



Optical flow field visualization 

• Too messy to plot flow vector for every pixel 

• Map flow vectors to color 

– Magnitude: saturation 

– Orientation: hue 

Ground-truth flow field Visualization code 

[Baker et al. 2007] 

Input two frames  



Matching criterion 

• Brightness constancy assumption 

 𝐼1 𝑥, 𝑦 = 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 + 𝑛 

 𝑛 ∼ 𝑁 0, 𝜎2   

• Noise 𝑛 

• Matching criteria 
– What’s invariant between two images? 

• Brightness, gradients, phase, other features… 

– Distance metric (L2, robust functions) 

     𝐸 𝑢, 𝑣 =  𝐼1 𝑥, 𝑦 − 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 2
𝑥,𝑦  

– Correlation, normalized cross correlation (NCC) 
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Lucas-Kanade: problem setup 

• Given two images 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦), estimate a parametric 
motion that transforms 𝐼1 to 𝐼2 

• Let 𝐱 = 𝑥, 𝑦 𝑇  be a column vector indexing pixel coordinate 

• Two typical transforms 

– Translation: 𝑊 x; p =
𝑥 + 𝑝1
𝑦 + 𝑝2

 

– Affine: 𝑊 x;p =
𝑝1𝑥 + 𝑝3𝑦 + 𝑝5
𝑝2𝑥 + 𝑝4𝑦 + 𝑝6

=
𝑝1 𝑝3 𝑝5
𝑝2 𝑝4 𝑝6

𝑥
𝑦
1

 

• Goal of the Lucas-Kanade algorithm 

p∗ = argmin
p

 𝐼2 𝑊 x; p − 𝐼1 x
2

x

 



An incremental algorithm 

• Difficult to directly optimize the objective function 

p∗ = argmin
p

 𝐼2 𝑊 x; p − 𝐼1 x
2

x

 

• Instead, we try to optimize each step 

Δp∗ = argmin
Δp

 𝐼2 𝑊 x; p + Δp − 𝐼1 x
2

x

 

• The transform parameter is updated: 

    p ← p + Δp∗ 

 



Taylor expansion 

• The term 𝐼2 𝑊 x; p + Δp  is highly nonlinear 

• Taylor expansion: 

𝐼2 𝑊 x; p + Δp ≈ 𝐼2 𝑊 𝑥; 𝑝 + 𝛻𝐼2
𝜕𝑊

𝜕p
Δp 

•
𝜕𝑊

𝜕p
 : Jacobian of the warp 

• If 𝑊 x; p = 𝑊𝑥 x; p ,𝑊𝑦 x; p
𝑇
 , then 

𝜕𝑊

𝜕p
=

𝜕𝑊𝑥

𝜕𝑝1
…

𝜕𝑊𝑥

𝜕𝑝𝑛
𝜕𝑊𝑦

𝜕𝑝1
…

𝜕𝑊𝑦

𝜕𝑝𝑛

 

 



Jacobian matrix 

• For affine transform: 𝑊 x; p =
𝑝1 𝑝3 𝑝5
𝑝2 𝑝4 𝑝6

𝑥
𝑦
1

 

      The Jacobian is  
𝜕𝑊

𝜕p
=

𝑥 0
0 𝑥

     
𝑦 0
0 𝑦

     
1 0
0 1

 

• For translation : 𝑊 x; p =
𝑥 + 𝑝1
𝑦 + 𝑝2

 

      The Jacobian is  
𝜕𝑊

𝜕p
=

1 0
0 1

  

 



Taylor expansion 

• 𝛻𝐼2 = [𝐼𝑥 𝐼𝑦] is the gradient of image 𝐼2 evaluated at 

𝑊(x; p): compute the gradients in the coordinate of 𝐼2 and 
warp back to the coordinate of 𝐼1 

• For affine transform 
𝜕𝑊

𝜕p
=

𝑥 0
0 𝑥

     
𝑦 0
0 𝑦

     
1 0
0 1

 

𝛻𝐼2
𝜕𝑊

𝜕p
= 𝐼𝑥𝑥 𝐼𝑦𝑥 𝐼𝑥𝑦     𝐼𝑦𝑦 𝐼𝑥 𝐼𝑦  

• Let matrix 𝐁 = 𝐈𝑥𝐗  𝐈𝑦𝐗  𝐈𝑥𝐘  𝐈𝑦𝐘  𝐈𝑥 𝐈𝑦 ∈ ℝ𝑛×6, 𝐈𝑥 and 

𝐗 are both column vectors. 𝐈𝑥𝐗 is element-wise vector 
multiplication.  

 

 



Gauss-Newton 

• With Taylor expansion, the objective function becomes 

Δp∗ = argmin
Δp

 𝐼2 𝑊 𝑥; 𝑝 + 𝛻𝐼2
𝜕𝑊

𝜕p
Δp − 𝐼1 x

2

x

 

      Or in a vector form: 

Δp∗ = argmin
Δp

𝐈𝑡 + 𝐁Δp 𝑇 𝐈𝑡 + 𝐁Δp  

       Where 𝐁 = 𝐈𝑥𝐗  𝐈𝑦𝐗  𝐈𝑥𝐘  𝐈𝑦𝐘  𝐈𝑥 𝐈𝑦 ∈ ℝ𝑛×6 

                     𝐈𝑡 = 𝐈2 𝐖 p − 𝐈1 

• Solution: 

Δp∗ = − 𝐁𝑇𝐁 −1𝐁𝑇𝐈𝑡 

Hessian matrix 



How it works 



How it works 



How it works 



How it works 



How it works 



How it works 

Compute matrix 

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p
 



How it works 

Compute inverse 
Hessian:  𝐁𝑇𝐁 −1 

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p
 



How it works 

Compute: 𝐁𝑇𝐈𝑡 

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p
 



How it works 

Solve linear system: 
Δp∗ = − 𝐁𝑇𝐁 −1𝐁𝑇𝐈𝑡 

𝐁 = 𝛻𝐼2
𝜕𝑊

𝜕p
 



How it works 

p ← p + Δp∗ 



Translation 

• Jacobian: 
𝛿𝑊

𝛿𝑝
=

1 0
0 1

 

• 𝛻𝐼2
𝛿𝑊

𝛿𝑝
= [𝐼𝑥  𝐼𝑦] 

• 𝐁 = 𝐼𝑥  𝐼𝑦 ∈ ℝ𝑛×2    

• Solution: 

Δp∗ = − 𝐁𝑇𝐁 −1𝐁𝑇𝐈𝑡 

= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

 

 

 



Coarse-to-fine refinement 

• Lucas-Kanade is a greedy algorithm that converges to local 
minimum  

• Initialization is crucial: if initialized with zero, then the 
underlying motion must be small  

• If underlying transform is significant, then coarse-to-fine is 
a must  

 

Smooth & 
down-
sampling 

(𝑢2, 𝑣2) 

(𝑢1, 𝑣1) 

(𝑢, 𝑣) 

× 2 

× 2 



Variations  

• Variations of Lucas Kanade:  
– Additive algorithm [Lucas-Kanade, 81]  

– Compositional algorithm [Shum & Szeliski, 98]  

– Inverse compositional algorithm [Baker & Matthews, 01]  

– Inverse additive algorithm [Hager & Belhumeur, 98]  

• Although inverse algorithms run faster (avoiding re-
computing Hessian), they have the same complexity for 
robust error functions!  

 



From parametric motion to flow field  

• Incremental flow update 𝑑𝑢, 𝑑𝑣  for pixel (𝑥, 𝑦) 

        𝐼2 𝑥 + 𝑢 + 𝑑𝑢, 𝑦 + 𝑣 + 𝑑𝑣 − 𝐼1(𝑥, 𝑦) 
= 𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 + 𝐼𝑥 𝑥 + 𝑢, 𝑦 + 𝑣 𝑑𝑢 + 𝐼𝑦 𝑥 + 𝑢, 𝑦 + 𝑣 𝑑𝑣 − 𝐼1 𝑥, 𝑦  

𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣 + 𝐼𝑡 = 0 

• We obtain the following function within a patch 

𝑑𝑢
𝑑𝑣

= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

 

• The flow vector of each pixel is updated independently  

• Median filtering can be applied for spatial smoothness  

 



Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Coarse-to-fine LK  Input two frames  
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Motion ambiguities 

• When will the Lucas-Kanade algorithm fail? 

𝑑𝑢
𝑑𝑣

= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑥

 

 

• The inverse may not exist!!! 

• How? 
– All the derivatives are zero: flat regions 

– X- and y-derivatives are linearly correlated: lines 



Aperture problem 

Corners Lines Flat regions 



Dense optical flow with spatial regularity 

• Local motion is inherently ambiguous 
– Corners: definite, no ambiguity (but can be misleading) 

– Lines: definite along the normal, ambiguous along the tangent  

– Flat regions: totally ambiguous  

• Solution: imposing spatial smoothness to the flow field  
– Adjacent pixels should move together as much as possible  

• Horn & Schunck equation 

𝑢, 𝑣 = argmin 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

– 𝛻𝑢 2 =
𝜕𝑢

𝜕𝑥

2
+

𝜕𝑢

𝜕𝑦

2
= 𝑢𝑥

2 + 𝑢𝑦
2  

– 𝛼: smoothness coefficient 



2D Euler Lagrange 

• 2D Euler Lagrange: the functional 

𝑆 =  𝐿 𝑥, 𝑦, 𝑓, 𝑓𝑥 , 𝑓𝑦 𝑑𝑥𝑑𝑦
Ω

 

is minimized only if 𝑓 satisfies the partial differential 
equation (PDE) 

𝜕𝐿

𝜕𝑓
−

𝜕

𝜕𝑥
 
𝜕𝐿

𝜕𝑓𝑥
−

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑓𝑦
= 0 

• In Horn-Schunck 

– 𝐿 𝑢, 𝑣, 𝑢𝑥, 𝑢𝑦, 𝑣𝑥, 𝑣𝑦 = 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝑢𝑥

2 + 𝑢𝑦
2 + 𝑣𝑥

2 + 𝑣𝑦
2  

–
𝜕𝐿

𝜕𝑢
= 2 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 𝐼𝑥  

–
𝜕𝐿

𝜕𝑢𝑥
= 2𝛼𝑢𝑥,

𝜕

𝜕𝑥

𝜕𝐿

𝜕𝑢𝑥
= 2𝛼𝑢𝑥𝑥,

𝜕𝐿

𝜕𝑢𝑦
= 2𝛼𝑢𝑦,

𝜕

𝜕𝑦

𝜕𝐿

𝜕𝑢𝑦
= 2𝛼𝑢𝑦𝑦 

 



Linear PDE 

• The Euler-Lagrange PDE for Horn-Schunck is 

 
𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 𝐼𝑥 − 𝛼 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 𝐼𝑦 − 𝛼 𝑣𝑥𝑥 + 𝑣𝑦𝑦 = 0
  

• 𝑢𝑥𝑥 + 𝑢𝑦𝑦 can be obtained by a Laplacian operator: 

0 −1 0
−1 4 −1
0 −1 0

 

• In the end, we solve the large linear system 

𝐈𝑥
2 + 𝛼𝐋 𝐈𝑥𝐈𝑦

𝐈𝑥𝐈𝑦 𝐈𝑦
2 + 𝛼𝐋

𝑈
𝑉

= −
𝐈𝑥𝐈𝐭
𝐈𝑦𝐈𝐭

 



How to solve a large linear system Ax=b? 

𝐈𝑥
2 + 𝛼𝐋 𝐈𝑥𝐈𝑦

𝐈𝑥𝐈𝑦 𝐈𝑦
2 + 𝛼𝐋

𝑈
𝑉

= −
𝐈𝑥𝐈𝐭
𝐈𝑦𝐈𝐭

 

 

• With 𝛼 > 0, this system is positive definite! 

• You can use your favorite iterative solver 
– Gauss-Seidel, successive over-relaxation (SOR) 

– (Pre-conditioned) conjugate gradient 

• No need to wait for the solver to converge completely 



Incremental Solution 

• In the objective function 

𝑢, 𝑣 = argmin 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

The displacement (𝑢, 𝑣) has to be small for the Taylor 
expansion to be valid 

• More practically, we can estimate the optimal incremental 
change 

 𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻(𝑢 + 𝑑𝑢) 2 + 𝛻(𝑣 + 𝑑𝑣) 2 𝑑𝑥𝑑𝑦 

• The solution becomes 

𝐈𝑥
2 + 𝛼𝐋 𝐈𝑥𝐈𝑦

𝐈𝑥𝐈𝑦 𝐈𝑦
2 + 𝛼𝐋

𝑑𝑈
𝑑𝑉

= −
𝐈𝑥𝐈𝑡 + 𝛼𝐋𝑈
𝐈𝑦𝐈𝑡 + 𝛼𝐋𝑉  



Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Coarse-to-fine LK  

Input two frames  

Horn-Schunck 



Continuous Markov Random Fields  

• Horn-Schunck started 30 years of research on continuous 
Markov random fields  
– Optical flow estimation  

– Image reconstruction, e.g. denoising, super resolution  

– Shape from shading, inverse rendering problems  

– Natural image priors  

• Why continuous? 
– Image signals are differentiable 

– More complicated spatial relationships  

• Fast solvers 
– Multi-grid 

– Preconditioned conjugate gradient 

– FFT + annealing 
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Spatial regularity 

• Horn-Schunck is a Gaussian Markov 
random field (GMRF) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Spatial over-smoothness is caused by the 
quadratic smoothness term 

• Nevertheless, real optical flow fields are 
sparse! 

𝑢 𝑢𝑥 𝑢𝑦 

𝑣 𝑣𝑥 𝑣𝑦 



Data term 

• Horn-Schunck is a Gaussian Markov random field (GMRF) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Quadratic data term implies Gaussian white noise 

• Nevertheless, the difference between two corresponded 
pixels is caused by 
– Noise (majority) 

– Occlusion 

– Compression error 

– Lighting change 

– … 

• The error function needs to account for these factors 

 



Noise model 

• Explicitly model the noise 𝑛 

𝐼2 𝑥 + 𝑢, 𝑦 + 𝑣 = 𝐼1 𝑥, 𝑦 + 𝑛 

• It can be a mixture of two Gaussians, inlier and outlier 

𝑛 ~ 𝜆𝑁 0, 𝜎𝑖
2 + 1 − 𝜆 𝑁(0, 𝜎𝑜

2) 
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More components in the mixture 

• Consider a Gaussian mixture model 

𝑛~
1

𝑍
 𝜉𝑘𝑁(0, 𝑘𝑠 2)

𝐾

𝑘=1

 

• Varying the decaying rate 𝜉, we obtain a variety of potential 
functions 

-4 -3 -2 -1 0 1 2 3 4
-5

0

5

10

15

20

25

30

-4 -3 -2 -1 0 1 2 3 4
-2

0

2

4

6

8

10

12

𝜉 = 0.1 𝜉 = 0.9 



Typical error functions 
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Robust statistics 

• Traditional L2 norm: only noise, no outlier 

• Example: estimate the average of 
                     0.95, 1.04, 0.91, 1.02, 1.10, 20.01 

• Estimate with minimum error 

 𝑧∗ = argmin
𝑧

 𝜌 𝑧 − 𝑧𝑖𝑖  

– L2 norm: 𝑧∗ = 4.172 

– L1 norm: 𝑧∗ = 1.038 

– Truncated L1: 𝑧∗ = 1.0296 

– Lorentzian: 𝑧∗ = 1.0147 
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The family of robust power functions 

• Can we directly use L1 norm 𝜓 𝑧 = 𝑧 ? 
– Derivative is not continuous 

• Alternative forms 

– L1 norm: 𝜓 𝑧2 = 𝑧2 + 𝜀2 

– Sub L1: 𝜓 𝑧2; 𝜂 = 𝑧2 + 𝜀2 𝜂, 𝜂 < 0.5 
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Modification to Horn-Schunck 

• Let x = (𝑥, 𝑦, 𝑡), and w x = 𝑢 x , 𝑣 x , 1  be the flow vector 

• Horn-Schunck (recall) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Robust estimation 

 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Robust estimation with Lucas-Kanade 

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

 



A unifying framework 

• The robust object function 

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

– Lucas-Kanade: 𝛼 = 0, 𝜓 𝑧2 = 𝑧2 

– Robust Lucas-Kanade: 𝛼 = 0, 𝜓 𝑧2 = 𝑧2 + 𝜀2 

– Horn-Schunck: 𝑔 = 1, 𝜓 𝑧2 = 𝑧2, 𝜙 𝑧2 = 𝑧2 

• One can also learn the filters (other than gradients), and 
robust function 𝜓 ⋅ , 𝜙(⋅) [Roth & Black 2005]  

 



Derivation strategies  

• Euler-Lagrange  
– Derive in continuous domain, discretize in the end 

– Nonlinear PDE’s 

– Outer and inner fixed point iterations 

– Limited to derivative filters; cannot generalize to arbitrary filters 

• Energy minimization 
– Discretize first and derive in matrix form 

– Easy to understand and derive 

• Variational optimization 

• Iteratively reweighted least square (IRLS) 

• Euler-Lagrange = Variational optimization = IRLS 
 



Iteratively reweighted least square (IRLS)  

• Let 𝜙 𝑧 = 𝑧2 + 𝜀2 𝜂 be a robust function 

• We want to minimize the objective function 

Φ 𝐀𝑥 + 𝑏 =  𝜙 𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑛

𝑖=1

 

     where 𝑥 ∈ ℝ𝑑 , 𝐴 = 𝑎1 𝑎2⋯𝑎𝑛
𝑇 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑛 

• By setting 
𝜕Φ

𝜕𝑥
= 0, we can derive 

𝜕Φ

𝜕𝑥
=  𝜙′

𝑛

𝑖=1
𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑎𝑖 

=  𝑤𝑖𝑖𝑎𝑖
𝑇𝑥𝑎𝑖 + 𝑤𝑖𝑖𝑏𝑖𝑎𝑖

𝑛

𝑖=1
 

=  𝑎𝑖
𝑇𝑤𝑖𝑖𝑥𝑎𝑖 + 𝑏𝑖𝑤𝑖𝑖𝑎𝑖

𝑛

𝑖=1
 

= 𝐀𝑇𝐖𝐀𝑥 + 𝐀𝑇𝐖𝑏 

𝑤𝑖𝑖 = 𝜙′ 𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
 

𝐖 = diag Φ′(𝐀𝑥 + 𝑏)  



Iteratively reweighted least square (IRLS)  

• Derivative: 
𝜕Φ

𝜕𝑥
= 𝐀𝑇𝐖𝐀𝑥 + 𝐀𝑇𝐖𝑏 = 0 

• Iterate between reweighting and least square 

 

 

 

 

 

 

 

• Convergence is guaranteed (local minima) 

1. Initialize 𝑥 = 𝑥0 

2. Compute weight matrix 𝐖 = diag Φ′(𝐀𝑥 + 𝑏)  

3. Solve the linear system 𝐀𝑇𝐖𝐀𝑥 = −𝐀𝑇𝐖𝑏 

4. If 𝑥 converges, return; otherwise, go to 2 



IRLS for robust optical flow 

• Objective function 

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Discretize, linearize and increment 

 𝑔 ∗ 𝜓 𝐼𝑡 + 𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣
2

𝑥,𝑦

+ 𝛼𝜙 𝛻 𝑢 + 𝑑𝑢 2 + 𝛻 𝑣 + 𝑑𝑣 2   

• IRLS (initialize 𝑑𝑢 = 𝑑𝑣 = 0) 
– Reweight: 

 

 

– Least square:  

𝚿𝑥𝑥
′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑥 , 𝚿𝑥𝑦

′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑦 , 

𝚿𝑦𝑦
′ = diag 𝑔 ∗ 𝜓′𝐈𝑦𝐈𝑦 , 𝚿𝑥𝑡

′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑡 , 

𝚿𝑦𝑡
′ = diag 𝑔 ∗ 𝜓′𝐈𝑦𝐈𝑡 , 𝐋 = 𝐃𝑥

𝑇𝚽′𝐃𝑥 + 𝐃𝑦
𝑇𝚽′𝐃𝑦 

𝚿𝑥𝑥
′ + 𝛼𝐋 𝚿𝑥𝑦

′

𝚿𝑥𝑦
′ 𝚿𝑦𝑦

′ + 𝛼𝐋
𝑑𝑈
𝑑𝑉

= −
𝚿𝑥𝑡

′ + 𝛼𝐋𝑈

𝚿𝑦𝑡
′ + 𝛼𝐋𝑉

 



Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Input two frames  

Horn-Schunck 

Robust optical flow 



Contents 

• Motion perception 

• Motion representation 

• Parametric motion: Lucas-Kanade 

• Dense optical flow: Horn-Schunck 

• Robust estimation 

• Applications (1) 



Video stabilization 



Video denoising 



Video super resolution 



Summary 

• Lucas-Kanade 
– Parametric motion 

– Dense flow field (with median filtering) 

• Horn-Schunck 
– Gaussian Markov random field 

– Euler-Lagrange 

• Robust flow estimation 
– Robust function 

• Account for outliers in the data term 

• Encourage piecewise smoothness 

– IRLS (= nonlinear PDE = variational optimization) 

 



Contents (next time) 

• Feature matching 

• Discrete optical flow 

• Layer motion analysis 

• Contour motion analysis 

• Obtaining motion ground truth 

• Applications (2) 


