Motion Estimation (I)

Ce Liu
celiu@microsoft.com
Microsoft Research New England
We live in a moving world

- Perceiving, understanding and predicting motion is an important part of our daily lives
Motion estimation: a core problem of computer vision

• Related topics:
 – Image correspondence, image registration, image matching, image alignment, ...

• Applications
 – Video enhancement: stabilization, denoising, super resolution
 – 3D reconstruction: structure from motion (SFM)
 – Video segmentation
 – Tracking/recognition
 – Advanced video editing
Contents (today)

• Motion perception
• Motion representation
• Parametric motion: Lucas-Kanade
• Dense optical flow: Horn-Schunck
• Robust estimation
• Applications (1)
Readings

• Rick’s book: Chapter 8

• Ce Liu’s PhD thesis (Appendix A & B)

• S. Baker and I. Matthews. Lucas-Kanade 20 years on: a unifying framework. IJCV 2004

• Horn-Schunck (wikipedia)

• A. Bruhn, J. Weickert, C. Schnorr. Lucas/Kanade meets Horn/Schunk: combining local and global optical flow methods. IJCV 2005
Contents

• Motion perception
• Motion representation
• Parametric motion: Lucas-Kanade
• Dense optical flow: Horn-Schunck
• Robust estimation
• Applications (1)
Seeing motion from a static picture?

http://www.ritsumei.ac.jp/~akitaoka/index-e.html
More examples
How is this possible?

• The true mechanism is to be revealed
• FMRI data suggest that illusion is related to some component of eye movements
• We don’t expect computer vision to “see” motion from these stimuli, yet
What do you see?
In fact, ...
The cause of motion

• Three factors in imaging process
 – Light
 – Object
 – Camera

• Varying either of them causes motion
 – Static camera, moving objects (surveillance)
 – Moving camera, static scene (3D capture)
 – Moving camera, moving scene (sports, movie)
 – Static camera, moving objects, moving light (time lapse)
Motion scenarios (priors)

- Static camera, moving scene
- Moving camera, static scene
- Moving camera, moving scene
- Static camera, moving scene, moving light
We still don’t touch these areas
Not challenging enough?
Motion analysis: human vs. computer

- Challenges of motion estimation
 - Geometry: shapeless objects
 - Reflectance: transparency, shadow, reflection
 - Lighting: fast moving light sources
 - Sensor: motion blur, noise

- Key: motion representation
 - Ideally, solve the inverse rendering problem for a video sequence
 - Intractable!
 - Practically, we make strong assumptions
 - Geometry: rigid or slow deforming objects
 - Reflectance: opaque, Lambertian surface
 - Lighting: fixed or slow changing
 - Sensor: no motion blur, low-noise
Contents

• Motion perception

• **Motion representation**

• Parametric motion: Lucas-Kanade

• Dense optical flow: Horn-Schunck

• Robust estimation

• Applications (1)
Parametric motion

- **Mapping:** \((x_1, y_1) \rightarrow (x_2, y_2)\)
 - \((x_1, y_1)\): point in frame 1
 - \((x_2, y_2)\): corresponding point in frame 2

- **Global parametric motion:** \((x_2, y_2) = f(x_1, y_1; \theta)\)

- **Forms of parametric motion**
 - **Translation:**
 \[
 \begin{bmatrix}
 x_2 \\
 y_2
 \end{bmatrix} =
 \begin{bmatrix}
 x_1 + a \\
 y_1 + b
 \end{bmatrix}
 \]
 - **Similarity:**
 \[
 \begin{bmatrix}
 x_2 \\
 y_2
 \end{bmatrix} = s \begin{bmatrix}
 \cos(\alpha) & \sin(\alpha) \\
 -\sin(\alpha) & \cos(\alpha)
 \end{bmatrix} \begin{bmatrix}
 x_1 + a \\
 y_1 + b
 \end{bmatrix}
 \]
 - **Affine:**
 \[
 \begin{bmatrix}
 x_2 \\
 y_2
 \end{bmatrix} = \begin{bmatrix}
 ax_1 + by_1 + c \\
 dx_1 + ey_1 + f
 \end{bmatrix}
 \]
 - **Homography:**
 \[
 \begin{bmatrix}
 x_2 \\
 y_2
 \end{bmatrix} = \frac{1}{z} \begin{bmatrix}
 ax_1 + by_1 + c \\
 dx_1 + ey_1 + f
 \end{bmatrix}, z = gx_1 + hy_1 + i
Parametric motion forms

- Translation
- Similarity
- Affine
- Homography
Optical flow field

- Parametric motion is limited and cannot describe the motion of arbitrary videos
- Optical flow field: assign a flow vector \((u(x, y), v(x, y))\) to each pixel \((x, y)\)
- Projection from 3D world to 2D
Optical flow field visualization

• Too messy to plot flow vector for every pixel
• Map flow vectors to color
 – Magnitude: saturation
 – Orientation: hue

Input two frames Ground-truth flow field Visualization code
[Baker et al. 2007]
Matching criterion

- Brightness constancy assumption

 \[I_1(x, y) = I_2(x + u, y + v) + n \]

 \[n \sim N(0, \sigma^2) \]

- Noise \(n \)

- Matching criteria
 - What’s invariant between two images?
 - Brightness, gradients, phase, other features...
 - Distance metric (L2, robust functions)

 \[E(u, v) = \sum_{x,y} (I_1(x, y) - I_2(x + u, y + v))^2 \]
 - Correlation, normalized cross correlation (NCC)
Contents

• Motion perception
• Motion representation
• **Parametric motion: Lucas-Kanade**
• Dense optical flow: Horn-Schunck
• Robust estimation
• Applications (1)
Lucas-Kanade: problem setup

- Given two images $I_1(x, y)$ and $I_2(x, y)$, estimate a parametric motion that transforms I_1 to I_2
- Let $x = (x, y)^T$ be a column vector indexing pixel coordinate
- Two typical transforms
 - Translation: $W(x; p) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix}$
 - Affine: $W(x; p) = \begin{bmatrix} p_1 x + p_3 y + p_5 \\ p_2 x + p_4 y + p_6 \end{bmatrix} = \begin{bmatrix} p_1 & p_3 & p_5 \\ p_2 & p_4 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
- Goal of the Lucas-Kanade algorithm
 $$p^* = \arg \min_p \sum_x \left[I_2(W(x; p)) - I_1(x) \right]^2$$
An incremental algorithm

- Difficult to directly optimize the objective function
 \[p^* = \arg \min_p \sum_x \left[I_2(W(x; p)) - I_1(x) \right]^2 \]

- Instead, we try to optimize each step
 \[\Delta p^* = \arg \min_{\Delta p} \sum_x \left[I_2(W(x; p + \Delta p)) - I_1(x) \right]^2 \]

- The transform parameter is updated:
 \[p \leftarrow p + \Delta p^* \]
Taylor expansion

- The term $I_2(W(x; p + \Delta p))$ is highly nonlinear
- Taylor expansion:

$$I_2(W(x; p + \Delta p)) \approx I_2(W(x; p)) + \nabla I_2 \frac{\partial W}{\partial p} \Delta p$$

- $\frac{\partial W}{\partial p}$: Jacobian of the warp

- If $W(x; p) = (W_x(x; p), W_y(x; p))^T$, then

$$\frac{\partial W}{\partial p} = \begin{bmatrix}
\frac{\partial W_x}{\partial p_1} & \ldots & \frac{\partial W_x}{\partial p_n} \\
\frac{\partial W_y}{\partial p_1} & \ldots & \frac{\partial W_y}{\partial p_n}
\end{bmatrix}$$
Jacobian matrix

- For affine transform: $W(x; p) = \begin{bmatrix} p_1 & p_3 & p_5 \\ p_2 & p_4 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

 The Jacobian is $\frac{\partial W}{\partial p} = \begin{bmatrix} x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1 \end{bmatrix}$

- For translation: $W(x; p) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix}$

 The Jacobian is $\frac{\partial W}{\partial p} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Taylor expansion

- $\nabla I_2 = [I_x \ I_y]$ is the gradient of image I_2 evaluated at $W(x; p)$: compute the gradients in the coordinate of I_2 and warp back to the coordinate of I_1

- For affine transform $\frac{\partial W}{\partial p} = \begin{bmatrix} x & 0 & y & 0 & 1 & 0 \\ 0 & x & 0 & y & 0 & 1 \end{bmatrix}$
 $$\nabla I_2 \frac{\partial W}{\partial p} = [I_x x \ I_y x \ I_x y \ I_y y \ I_x \ I_y]$$

- Let matrix $B = [I_x X \ I_y X \ I_x Y \ I_y Y \ I_x \ I_y] \in \mathbb{R}^{n \times 6}$, I_x and X are both column vectors. $I_x X$ is element-wise vector multiplication.
Gauss-Newton

• With Taylor expansion, the objective function becomes

$$\Delta p^* = \arg \min_{\Delta p} \sum_x \left[I_2(W(x; p)) + \nabla I_2 \frac{\partial W}{\partial p} \Delta p - I_1(x) \right]^2$$

Or in a vector form:

$$\Delta p^* = \arg \min_{\Delta p} (I_t + B\Delta p)^T (I_t + B\Delta p)$$

Where

$$B = \begin{bmatrix} I_x X & I_y X & I_x Y & I_y Y & I_x I_y & I_x & I_y \end{bmatrix} \in \mathbb{R}^{n \times 6}$$

$$I_t = I_2(W(p)) - I_1$$

• Solution:

$$\Delta p^* = -(B^T B)^{-1} B^T I_t$$

Hessian matrix
How it works
How it works
How it works
How it works

Step 1

Image

Image Gradient X

Image Gradient Y

Step 2

Warp Parameters

Step 3

Warped Gradients

Template

\(T(x) \)

Warped

\(f(W(x; p)) \)

Error

\(T(x) - f(W(x; p)) \)
How it works
How it works

Compute matrix

$$B = \begin{bmatrix} \nabla I_2 & \frac{\partial W}{\partial p} \end{bmatrix}$$
How it works

Compute inverse Hessian: \((\mathbf{B}^T\mathbf{B})^{-1}\)

\[
\mathbf{B} = \left[\nabla I_2 \frac{\partial W}{\partial p} \right]
\]
How it works

Compute: $B^T I_t$

$$B = \begin{bmatrix} \nabla I_2 \frac{\partial W}{\partial p} \end{bmatrix}$$
How it works

Solve linear system:
$$\Delta p^* = - (B^T B)^{-1} B^T I_t$$

$$B = \begin{bmatrix} \nabla I_2 \frac{\partial W}{\partial p} \end{bmatrix}$$
How it works

\[p \leftarrow p + \Delta p^* \]
Translation

• Jacobian: \(\frac{\delta W}{\delta p} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

• \(\nabla I_2 \frac{\delta W}{\delta p} = [I_x \ I_y] \)

• \(\mathbf{B} = [I_x \ I_y] \in \mathbb{R}^{n \times 2} \)

• Solution:

\[
\Delta p^* = -(\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{I}_t \\
= - \begin{bmatrix} I_x^T I_x & I_x^T I_y \\ I_x^T I_y & I_y^T I_y \end{bmatrix}^{-1} \begin{bmatrix} I_x^T I_t \\ I_y^T I_x \end{bmatrix}
\]
Coarse-to-fine refinement

- Lucas-Kanade is a greedy algorithm that converges to local minimum
- Initialization is crucial: if initialized with zero, then the underlying motion must be small
- If underlying transform is significant, then coarse-to-fine is a must

Smooth & down-sampling

\[(u_2, v_2) \times 2\]
\[(u_1, v_1) \times 2\]
\[(u, v)\]
Variations

• Variations of Lucas Kanade:
 – Additive algorithm [Lucas-Kanade, 81]
 – Compositional algorithm [Shum & Szeliski, 98]
 – Inverse compositional algorithm [Baker & Matthews, 01]
 – Inverse additive algorithm [Hager & Belhumeur, 98]

• Although inverse algorithms run faster (avoiding re-computing Hessian), they have the same complexity for robust error functions!
From parametric motion to flow field

- Incremental flow update \((du, dv)\) for pixel \((x, y)\)

\[
I_2(x + u + du, y + v + dv) - I_1(x, y) \\
= I_2(x + u, y + v) + I_x(x + u, y + v)du + I_y(x + u, y + v)dv - I_1(x, y)
\]

\[
I_x du + I_y dv + I_t = 0
\]

- We obtain the following function within a patch

\[
\begin{bmatrix} du \\ dv \end{bmatrix} = - \begin{bmatrix} I_x^T I_x & I_x^T I_y \\ I_x^T I_y & I_y^T I_y \end{bmatrix}^{-1} \begin{bmatrix} I_x^T I_t \\ I_y^T I_x \end{bmatrix}
\]

- The flow vector of each pixel is updated independently

- Median filtering can be applied for spatial smoothness
Example

Input two frames

Coarse-to-fine LK

Flow visualization

Coarse-to-fine LK with median filtering
Contents

• Motion perception
• Motion representation
• Parametric motion: Lucas-Kanade
• **Dense optical flow: Horn-Schunck**
• Robust estimation
• Applications (1)
Motion ambiguities

• When will the Lucas-Kanade algorithm fail?

\[
\begin{bmatrix}
\frac{du}{dv}
\end{bmatrix} = -\begin{bmatrix}
I_x^T I_x & I_x^T I_y \\
I_y^T I_x & I_y^T I_y
\end{bmatrix}^{-1} \begin{bmatrix}
I_x^T I_t \\
I_y^T I_t
\end{bmatrix}
\]

• The inverse may not exist!!!

• How?
 – All the derivatives are zero: flat regions
 – X- and y-derivatives are linearly correlated: lines
Aperture problem

Corners Lines Flat regions
Dense optical flow with spatial regularity

- Local motion is inherently ambiguous
 - *Corners*: definite, no ambiguity (but can be misleading)
 - *Lines*: definite along the normal, ambiguous along the tangent
 - *Flat regions*: totally ambiguous

- Solution: imposing spatial smoothness to the flow field
 - Adjacent pixels should move together as much as possible

- Horn & Schunck equation
 \[
 (u, v) = \arg \min \int \int (I_x u + I_y v + I_t)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) \, dx \, dy
 \]

 - \(|\nabla u|^2 = (\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 = u_x^2 + u_y^2\)
 - \(\alpha\): smoothness coefficient
2D Euler Lagrange

• 2D Euler Lagrange: the functional

\[S = \iint_{\Omega} L(x, y, f, f_x, f_y) \, dx \, dy \]

is minimized only if \(f \) satisfies the partial differential equation (PDE)

\[\frac{\partial L}{\partial f} - \frac{\partial}{\partial x} \frac{\partial L}{\partial f_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial f_y} = 0 \]

• In Horn-Schunck

\[
\begin{align*}
 L(u, v, u_x, u_y, v_x, v_y) &= (I_x u + I_y v + I_t)^2 + \alpha (u_x^2 + u_y^2 + v_x^2 + v_y^2) \\
 \frac{\partial L}{\partial u} &= 2 (I_x u + I_y v + I_t) I_x \\
 \frac{\partial L}{\partial u_x} &= 2 \alpha u_x, \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} = 2 \alpha u_{xx}, \frac{\partial L}{\partial u_y} = 2 \alpha u_y, \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 2 \alpha u_{yy}
\end{align*}
\]
Linear PDE

- The Euler-Lagrange PDE for Horn-Schunck is

\[
\begin{cases}
 (I_x u + I_y v + I_t)I_x - \alpha (u_{xx} + u_{yy}) = 0 \\
 (I_x u + I_y v + I_t)I_y - \alpha (v_{xx} + v_{yy}) = 0
\end{cases}
\]

- \(u_{xx} + u_{yy} \) can be obtained by a Laplacian operator:

\[
\begin{bmatrix}
 0 & -1 & 0 \\
 -1 & 4 & -1 \\
 0 & -1 & 0
\end{bmatrix}
\]

- In the end, we solve the large linear system

\[
\begin{bmatrix}
 I_x^2 + \alpha L & I_x I_y \\
 I_x I_y & I_y^2 + \alpha L
\end{bmatrix}\begin{bmatrix}
 U \\
 V
\end{bmatrix} = - \begin{bmatrix}
 I_x I_t \\
 I_y I_t
\end{bmatrix}
\]
How to solve a large linear system $Ax=b$?

\[
\begin{bmatrix}
I_x^2 + \alpha L & I_x I_y \\
I_x I_y & I_y^2 + \alpha L
\end{bmatrix}
\begin{bmatrix}
U \\
V
\end{bmatrix} = -\begin{bmatrix}
I_x I_t \\
I_y I_t
\end{bmatrix}
\]

- With $\alpha > 0$, this system is positive definite!
- You can use your favorite iterative solver
 - Gauss-Seidel, successive over-relaxation (SOR)
 - (Pre-conditioned) conjugate gradient
- No need to wait for the solver to converge completely
Incremental Solution

• In the objective function

\[(u, v) = \arg \min \int \int (I_x u + I_y v + I_t)^2 + \alpha(|\nabla u|^2 + |\nabla v|^2) \, dx \, dy\]

The displacement \((u, v)\) has to be small for the Taylor expansion to be valid

• More practically, we can estimate the optimal incremental change

\[\int \int (I_x du + I_y dv + I_t)^2 + \alpha(|\nabla (u + du)|^2 + |\nabla (v + dv)|^2) \, dx \, dy\]

• The solution becomes

\[
\begin{bmatrix}
I_x^2 + \alpha L & I_x I_y \\
I_x I_y & I_y^2 + \alpha L
\end{bmatrix}
\begin{bmatrix}
dU \\
dV
\end{bmatrix}
= -\begin{bmatrix}
I_x I_t + \alpha LU \\
I_y I_t + \alpha LV
\end{bmatrix}
\]
Example

Input two frames

Flow visualization

Horn-Schunck

Coarse-to-fine LK

Coarse-to-fine LK with median filtering
Continuous Markov Random Fields

• Horn-Schunck started 30 years of research on continuous Markov random fields
 – Optical flow estimation
 – Image reconstruction, e.g. denoising, super resolution
 – Shape from shading, inverse rendering problems
 – Natural image priors

• Why continuous?
 – Image signals are differentiable
 – More complicated spatial relationships

• Fast solvers
 – Multi-grid
 – Preconditioned conjugate gradient
 – FFT + annealing
Contents

• Motion perception
• Motion representation
• Parametric motion: Lucas-Kanade
• Dense optical flow: Horn-Schunck
• Robust estimation
• Applications (1)
Spatial regularity

- Horn-Schunck is a Gaussian Markov random field (GMRF)

\[
\iiint (I_x u + I_y v + I_t)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) \, dx \, dy
\]

- Spatial over-smoothness is caused by the quadratic smoothness term
- Nevertheless, real optical flow fields are sparse!
Data term

• Horn-Schunck is a Gaussian Markov random field (GMRF)

\[\iint (I_x u + I_y v + I_t)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) \, dx \, dy \]

• Quadratic data term implies Gaussian white noise

• Nevertheless, the difference between two corresponded pixels is caused by
 – Noise (majority)
 – Occlusion
 – Compression error
 – Lighting change
 – ...

• The error function needs to account for these factors
Noise model

- Explicitly model the noise n
 \[I_2(x + u, y + v) = I_1(x, y) + n \]
- It can be a mixture of two Gaussians, *inlier* and *outlier*
 \[n \sim \lambda N(0, \sigma_i^2) + (1 - \lambda) N(0, \sigma_o^2) \]
More components in the mixture

- Consider a Gaussian mixture model
 \[n \sim \frac{1}{Z} \sum_{k=1}^{K} \xi^k N(0, (ks)^2) \]
- Varying the decaying rate \(\xi \), we obtain a variety of potential functions
Typical error functions

L2 norm
\[\rho(z) = z^2 \]

L1 norm
\[\rho(z) = |z| \]

Truncated L1 norm
\[\rho(z) = \min(|z|, \eta) \]

Lorentzian
\[\rho(z) = \log(1 + \gamma z^2) \]
Robust statistics

- Traditional L2 norm: only noise, no outlier
- Example: estimate the average of 0.95, 1.04, 0.91, 1.02, 1.10, 20.01
- Estimate with minimum error
 \[z^* = \arg \min_z \sum_i \rho(z - z_i) \]
 - L2 norm: \(z^* = 4.172 \)
 - L1 norm: \(z^* = 1.038 \)
 - Truncated L1: \(z^* = 1.0296 \)
 - Lorentzian: \(z^* = 1.0147 \)
The family of robust power functions

- Can we directly use L1 norm $\psi(z) = |z|$?
 - Derivative is not continuous
- Alternative forms
 - L1 norm: $\psi(z^2) = \sqrt{z^2 + \varepsilon^2}$
 - Sub L1: $\psi(z^2; \eta) = (z^2 + \varepsilon^2)^\eta$, $\eta < 0.5$
Modification to Horn-Schunck

Let \(x = (x, y, t) \), and \(w(x) = (u(x), v(x), 1) \) be the flow vector

Horn-Schunck (recall)

\[
\iint (I_x u + I_y v + I_t)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) \, dx \, dy
\]

Robust estimation

\[
\iint \psi(|I(x + w) - I(x)|^2) + \alpha \phi (|\nabla u|^2 + |\nabla v|^2) \, dx \, dy
\]

Robust estimation with Lucas-Kanade

\[
\iint g * \psi(|I(x + w) - I(x)|^2) + \alpha \phi (|\nabla u|^2 + |\nabla v|^2) \, dx \, dy
\]
A unifying framework

• The robust object function

$$\iint g \ast \psi(|I(x+w) - I(x)|^2) + \alpha \phi(|\nabla u|^2 + |\nabla v|^2) dxdy$$

 - Lucas-Kanade: $\alpha = 0, \psi(z^2) = z^2$
 - Robust Lucas-Kanade: $\alpha = 0, \psi(z^2) = \sqrt{z^2 + \varepsilon^2}$
 - Horn-Schunck: $g = 1, \psi(z^2) = z^2, \phi(z^2) = z^2$

• One can also learn the filters (other than gradients), and robust function $\psi(\cdot), \phi(\cdot)$ [Roth & Black 2005]
Derivation strategies

• Euler-Lagrange
 – Derive in continuous domain, discretize in the end
 – Nonlinear PDE’s
 – Outer and inner fixed point iterations
 – Limited to derivative filters; cannot generalize to arbitrary filters

• Energy minimization
 – Discretize first and derive in matrix form
 – Easy to understand and derive

• Variational optimization

• Iteratively reweighted least square (IRLS)

• Euler-Lagrange = Variational optimization = IRLS
Iteratively reweighted least square (IRLS)

- Let \(\phi(z) = (z^2 + \epsilon^2)^\eta \) be a robust function
- We want to minimize the objective function
 \[
 \Phi(Ax + b) = \sum_{i=1}^{n} \phi \left((a_i^T x + b_i)^2 \right)
 \]
 where \(x \in \mathbb{R}^d, A = [a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^{n\times d}, b \in \mathbb{R}^n \)
- By setting \(\frac{\partial \Phi}{\partial x} = 0 \), we can derive
 \[
 \frac{\partial \Phi}{\partial x} = \sum_{i=1}^{n} \phi' \left((a_i^T x + b_i)^2 \right) (a_i^T x + b_i)^2 a_i
 \]
 \[
 = \sum_{i=1}^{n} w_{ii} a_i^T x a_i + w_{ii} b_i a_i
 \]
 \[
 = \sum_{i=1}^{n} a_i^T w_{ii} x a_i + b_i w_{ii} a_i
 \]
 \[
 = A^T W Ax + A^T W b
 \]
 \(W = \text{diag}(\Phi'(Ax + b)) \)
Iteratively reweighted least square (IRLS)

• Derivative: \(\frac{\partial \Phi}{\partial x} = A^T W Ax + A^T W b = 0 \)

• Iterate between reweighting and least square

1. Initialize \(x = x_0 \)
2. Compute weight matrix \(W = \text{diag}(\Phi'(Ax + b)) \)
3. Solve the linear system \(A^T W Ax = -A^T W b \)
4. If \(x \) converges, return; otherwise, go to 2

• Convergence is guaranteed (local minima)
IRLS for robust optical flow

• Objective function
\[
\iint g \ast \psi(|I(x + w) - I(x)|^2) + \alpha \phi(|\nabla u|^2 + |\nabla v|^2) \, dx \, dy
\]

• Discretize, linearize and increment
\[
\sum_{x,y} g \ast \psi \left(|I_t + I_x du + I_y dv|^2 \right) + \alpha \phi(|\nabla (u + du)|^2 + |\nabla (v + dv)|^2)
\]

• IRLS (initialize \(du = dv = 0 \))
 – Reweight: \(\Psi'_{xx} = \text{diag}(g \ast \psi' I_x I_x), \Psi'_{xy} = \text{diag}(g \ast \psi' I_x I_y), \Psi'_{yy} = \text{diag}(g \ast \psi' I_y I_y), \Psi'_{xt} = \text{diag}(g \ast \psi' I_x I_t), \Psi'_{yt} = \text{diag}(g \ast \psi' I_y I_t) \),
 \[L = D^T_x \Phi' D_x + D^T_y \Phi' D_y \]
 – Least square:
\[
\begin{bmatrix}
\Psi'_{xx} + \alpha L & \Psi'_{xy} \\
\Psi'_{xy} & \Psi'_{yy} + \alpha L
\end{bmatrix}
\begin{bmatrix}
dU \\
dV
\end{bmatrix}
= -
\begin{bmatrix}
\Psi'_{xt} + \alpha L U \\
\Psi'_{yt} + \alpha L V
\end{bmatrix}
\]
Example

Input two frames

Robust optical flow

Horn-Schunck

Flow visualization

Coarse-to-fine LK with median filtering
Contents

• Motion perception
• Motion representation
• Parametric motion: Lucas-Kanade
• Dense optical flow: Horn-Schunck
• Robust estimation

• Applications (1)
Video stabilization
Video denoising
Video super resolution

Low-Res
Summary

• Lucas-Kanade
 – Parametric motion
 – Dense flow field (with median filtering)

• Horn-Schunck
 – Gaussian Markov random field
 – Euler-Lagrange

• Robust flow estimation
 – Robust function
 • Account for outliers in the data term
 • Encourage piecewise smoothness
 – IRLS (= nonlinear PDE = variational optimization)
Contents (next time)

- Feature matching
- Discrete optical flow
- Layer motion analysis
- Contour motion analysis
- Obtaining motion ground truth
- Applications (2)