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Last time 

• Motion perception 

• Motion representation 

• Parametric motion: 
Lucas-Kanade 

• Dense optical flow: 
Horn-Schunck 
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Who are they? 

Berthold K. P. Horn  Takeo Kanade  
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Content 

• Robust optical flow estimation 

• Applications 

• Feature matching 

• Discrete optical flow 

• Layer motion analysis 

• Other representations 
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Spatial regularity 

• Horn-Schunck is a Gaussian Markov 
random field (GMRF) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Spatial over-smoothness is caused by the 
quadratic smoothness term 

• Nevertheless, real optical flow fields are 
sparse! 

𝑢 𝑢𝑥 𝑢𝑦 

𝑣 𝑣𝑥 𝑣𝑦 
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Data term 

• Horn-Schunck is a Gaussian Markov random field (GMRF) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Quadratic data term implies Gaussian white noise 

• Nevertheless, the difference between two corresponded 
pixels is caused by 
– Noise (majority) 

– Occlusion 

– Compression error 

– Lighting change 

– … 

• The error function needs to account for these factors 
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Robust statistics 

• Traditional L2 norm: only noise, no outlier 

• Example: estimate the average of 
                     0.95, 1.04, 0.91, 1.02, 1.10, 20.01 

• Estimate with minimum error 

 𝑧∗ = argmin
𝑧
 𝜌 𝑧 − 𝑧𝑖𝑖  

– L2 norm: 𝑧∗ = 4.172 

– L1 norm: 𝑧∗ = 1.038 

– Truncated L1: 𝑧∗ = 1.0296 

– Lorentzian: 𝑧∗ = 1.0147 
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𝜌 𝑧 = |𝑧| 
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Truncated L1 norm 
𝜌 𝑧 = min ( 𝑧 , 𝜂) 
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Lorentzian 
𝜌 𝑧 = log (1 + 𝛾𝑧2) 

8 



The family of robust power functions 

• Can we directly use L1 norm 𝜓 𝑧 = 𝑧 ? 
– Derivative is not continuous 

• Alternative forms 

– L1 norm: 𝜓 𝑧2 = 𝑧2 + 𝜀2 

– Sub L1: 𝜓 𝑧2; 𝜂 = 𝑧2 + 𝜀2 𝜂, 𝜂 < 0.5 
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Modification to Horn-Schunck 

• Let x = (𝑥, 𝑦, 𝑡), and w x = 𝑢 x , 𝑣 x , 1  be the flow vector 

• Horn-Schunck (recall) 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡
2
+ 𝛼 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Robust estimation 

 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Robust estimation with Lucas-Kanade 

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 
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A unifying framework 

• The robust object function 

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

– Lucas-Kanade: 𝛼 = 0, 𝜓 𝑧2 = 𝑧2 

– Robust Lucas-Kanade: 𝛼 = 0, 𝜓 𝑧2 = 𝑧2 + 𝜀2 

– Horn-Schunck: 𝑔 = 1, 𝜓 𝑧2 = 𝑧2, 𝜙 𝑧2 = 𝑧2 

• One can also learn the filters (other than gradients), and 
robust function 𝜓 ⋅ , 𝜙(⋅) [Roth & Black 2005]  
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Derivation strategies  

• Euler-Lagrange  
– Derive in continuous domain, discretize in the end 

– Nonlinear PDE’s 

– Outer and inner fixed point iterations 

– Limited to derivative filters; cannot generalize to arbitrary filters 

• Energy minimization 
– Discretize first and derive in matrix form 

– Easy to understand and derive 

• Variational optimization 

• Iteratively reweighted least square (IRLS) 

• Euler-Lagrange = Variational optimization = IRLS 
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Iteratively reweighted least square (IRLS)  

• Let 𝜙 𝑧 = 𝑧2 + 𝜀2 𝜂 be a robust function 

• We want to minimize the objective function 

Φ 𝐀𝑥 + 𝑏 = 𝜙 𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑛

𝑖=1

 

     where 𝑥 ∈ ℝ𝑑 , 𝐴 = 𝑎1 𝑎2⋯𝑎𝑛
𝑇 ∈ ℝ𝑛×𝑑 , 𝑏 ∈ ℝ𝑛 

• By setting 
𝜕Φ

𝜕𝑥
= 0, we can derive 

𝜕Φ

𝜕𝑥
= 𝜙′

𝑛

𝑖=1
𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑎𝑖
𝑇𝑥 + 𝑏𝑖

2
𝑎𝑖 

= 𝑤𝑖𝑖𝑎𝑖
𝑇𝑥𝑎𝑖 + 𝑤𝑖𝑖𝑏𝑖𝑎𝑖

𝑛

𝑖=1
 

= 𝑎𝑖
𝑇𝑤𝑖𝑖𝑥𝑎𝑖 + 𝑏𝑖𝑤𝑖𝑖𝑎𝑖

𝑛

𝑖=1
 

= 𝐀𝑇𝐖𝐀𝑥 + 𝐀𝑇𝐖𝑏 

𝑤𝑖𝑖 = 𝜙
′ 𝑎𝑖

𝑇𝑥 + 𝑏𝑖
2

 

𝐖 = diag Φ′(𝐀𝑥 + 𝑏)  

13 



Iteratively reweighted least square (IRLS)  

• Derivative: 
𝜕Φ

𝜕𝑥
= 𝐀𝑇𝐖𝐀𝑥 + 𝐀𝑇𝐖𝑏 = 0 

• Iterate between reweighting and least square 

 

 

 

 

 

 

 

• Convergence is guaranteed (local minima) 

1. Initialize 𝑥 = 𝑥0 

2. Compute weight matrix 𝐖 = diag Φ′(𝐀𝑥 + 𝑏)  

3. Solve the linear system 𝐀𝑇𝐖𝐀𝑥 = −𝐀𝑇𝐖𝑏 

4. If 𝑥 converges, return; otherwise, go to 2 
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IRLS for robust optical flow 

• Objective function 

 𝑔 ∗ 𝜓 𝐼 x + w − 𝐼 x 2 + 𝛼𝜙 𝛻𝑢 2 + 𝛻𝑣 2 𝑑𝑥𝑑𝑦 

• Discretize, linearize and increment 

 𝑔 ∗ 𝜓 𝐼𝑡 + 𝐼𝑥𝑑𝑢 + 𝐼𝑦𝑑𝑣
2

𝑥,𝑦

+ 𝛼𝜙 𝛻 𝑢 + 𝑑𝑢 2 + 𝛻 𝑣 + 𝑑𝑣 2   

• IRLS (initialize 𝑑𝑢 = 𝑑𝑣 = 0) 
– Reweight: 

 

 

– Least square:  

𝚿𝑥𝑥
′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑥 , 𝚿𝑥𝑦

′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑦 , 

𝚿𝑦𝑦
′ = diag 𝑔 ∗ 𝜓′𝐈𝑦𝐈𝑦 , 𝚿𝑥𝑡

′ = diag 𝑔 ∗ 𝜓′𝐈𝑥𝐈𝑡 , 

𝚿𝑦𝑡
′ = diag 𝑔 ∗ 𝜓′𝐈𝑦𝐈𝑡 , 𝐋 = 𝐃𝑥

𝑇𝚽′𝐃𝑥 + 𝐃𝑦
𝑇𝚽′𝐃𝑦 

𝚿𝑥𝑥
′ + 𝛼𝐋 𝚿𝑥𝑦

′

𝚿𝑥𝑦
′ 𝚿𝑦𝑦

′ + 𝛼𝐋
𝑑𝑈
𝑑𝑉
= −
𝚿𝑥𝑡
′ + 𝛼𝐋𝑈

𝚿𝑦𝑡
′ + 𝛼𝐋𝑉
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Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Input two frames  

Horn-Schunck 

Robust optical flow 
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Content 

• Robust optical flow estimation 

• Applications 

• Feature matching 

• Discrete optical flow 

• Layer motion analysis 

• Other representations 
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Video stabilization 
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Video denoising 
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Video super resolution 
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Content 

• Robust optical flow estimation 

• Applications 

• Feature matching 

• Discrete optical flow 

• Layer motion analysis 

• Contour motion analysis 

• Obtaining motion ground truth 
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Block matching 

• Both Horn-Schunck and Lucas-Kanade are sub-pixel 
accuracy algorithms 

• But in practice we may not need sub-pixel accuracy 

• MPEG: 16 × 16 block matching using MMSE 

• H264: variable block size and quarter-pixel precision 
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Tracking reliable features 

• Idea: no need to work on ambiguous region pixels (flat 
regions & line structures) 

• Instead, we can track features and then propagate the 
tracking to ambiguous pixels 

• Good features to track [Shi & Tomashi 94] 

 

 

• Block matching + Lucas-Kanade refinement 

𝑑𝑢
𝑑𝑣
= −
𝐈𝑥
𝑇𝐈𝑥 𝐈𝑥

𝑇𝐈𝑦

𝐈𝑥
𝑇𝐈𝑦 𝐈𝑦

𝑇𝐈𝑦

−1
𝐈𝑥
𝑇𝐈𝑡
𝐈𝑦
𝑇𝐈𝑡
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Feature detection & tracking 
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From sparse to dense 

• Interpolation: given values {𝑑𝑖} at { 𝑥𝑖 , 𝑦𝑖 }, reconstruct a 
smooth plane 𝑓(𝑥, 𝑦) 

• Membrane model (first order smoothness) 

  𝑤𝑖 𝑓 𝑥𝑖 , 𝑦𝑖 − 𝑑𝑖
2 + 𝛼 𝑓𝑥

2 + 𝑓𝑦
2 𝑑𝑥𝑑𝑦

𝑖

 

• Thin plate model (second order smoothness) 

  𝑤𝑖 𝑓 𝑥𝑖 , 𝑦𝑖 − 𝑑𝑖
2 + 𝛼 𝑓𝑥𝑥

2 + 𝑓𝑥𝑦
2 + 𝑓𝑦𝑦

2 𝑑𝑥𝑑𝑦

𝑖
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Membrane vs. thin plate 
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Dense flow field from sparse tracking 
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Pros and Cons of Feature Matching 

• Pros 
– Efficient (a few feature points vs. all pixels)  

– Reliable (with advanced feature descriptors)  

• Cons 
– Independent tracking (tracking can be unreliable)  

– Not all information is used (may not capture weak features)  

• How to improve 
– Track every pixel with uncertainty  

– Integrate spatial regularity (neighboring pixels go together)  
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Content 

• Robust optical flow estimation 

• Applications 

• Feature matching 

• Discrete optical flow 

• Layer motion analysis 

• Other representations 
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Discrete optical flow 

• The objective function is similar to that of continuous flow  

• x = (𝑥, 𝑦) is pixel coordinate, w = (𝑢, 𝑣) is flow vector 

𝐸 w = min ( 𝐼1 x − 𝐼2 x + w x , 𝑡)

x

+ 

 𝜂( 𝑢 x + 𝑣 x )

x

+ 

 min 𝛼 𝑢 x1 − 𝑢 x2 , 𝑑 + min 𝛼 𝑣 x1 − 𝑣 x2 , 𝑑

x1,x2 ∈𝜀

 

 
• Truncated L1 norms: 

– Account for outliers in the data term 

– Encourage piecewise smoothness in the smoothness term 

Data term 

Small displacement 

Spatial regularity 
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Decoupled smoothness 

Smoothness  
O(L4) 

Smoothness: O(L2) 

Smoothness: O(L2) 

Data term: O(L2) Data term: O(L2) 

Coupled smoothness 

Decoupled smoothness 
Smoothness: O(L) 

Smoothness: O(L) 
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Combinatorial optimization on graph 

𝐸 w = min ( 𝐼1 x − 𝐼2 x + w x , 𝑡)

x

+ 

 𝜂( 𝑢 x + 𝑣 x )

x

+ 

 min 𝛼 𝑢 x1 − 𝑢 x2 , 𝑑 + min 𝛼 𝑣 x1 − 𝑣 x2 , 𝑑

x1,x2 ∈𝜀

 

 

• Optimization strategies 
– Belief propagation 

– Graph cuts 

– MCMC (simulated annealing) 
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Dual-layer belief propagation 

[Shekhovtsov et al. CVPR 07] 

Horizontal flow u 

Vertical flow v 

u 

v 

w = (𝑢, 𝑣) 

Data term 

min ( 𝐼1 x − 𝐼2 x + w , 𝑡)  

Smoothness term on u 

min 𝛼 𝑢 x1 − 𝑢 x2 , 𝑑  

Smoothness term on v 

min 𝛼 𝑣 x1 − 𝑣 x2 , 𝑑  

Regularization term on u 𝜂|𝑢 x | 

Regularization term on v 𝜂|𝑣 x | 
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Dual-layer belief propagation 

u 

v 

Message 𝑀𝑗
𝑘: given 

all the information 
at node 𝑘, predict 
the distribution at 
node 𝑗 

Update within 𝑢 plane 

𝑘 𝑗 
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Dual-layer belief propagation 

u 

v 

Update within 𝑣 plane 
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Dual-layer belief propagation 

u 

v 

Update from 𝑢 plane to 𝑣 plane 

𝑘 𝑗 
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Dual-layer belief propagation 

u 

v 

Update from 𝑣 plane to 𝑢 plane 
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Example 

Flow visualization  

Coarse-to-fine LK with median filtering  

Input two frames  

Robust optical flow 

Discrete optical flow 
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Layer representation 

• Optical flow field is able to model 
complicated motion  

• Different angle: a video sequence 
can be a composite of several 
moving layers  

• Layers have been widely used  

– Adobe Photoshop 

– Adobe After Effect 

• Compositing is straightforward, 
but inference is hard 

Wang & Adelson, 1994  
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Wang & Adelson, 1994 

• Strategy 
– Obtaining dense optical flow field  

– Divide a frame into non-overlapping regions and fit affine motion 
for each region  

– Cluster affine motions by k-means clustering  

– Region assignment by hypothesis testing  

– Region splitter: disconnected regions are separated  
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Results 

Optical flow field Clustering to affine regions Clustering with error metric 

Three layers with affine motion superimposed 

Reconstructed background layer 

Flower garden 
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Weiss & Adelson, 1996 

• Chicken & egg problem 
– Good motion → good segmentation 

– Good segmentation → good motion 

• We don’t have either of them, so iterate! 

• Perceptually organized expectation & maximization 
(POEM) 
– E-step: estimate the motion parameter of each layer 

– M-step: estimate the likelihood that a pixel belongs to each of the 
layers (segmentation) 
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Liu et. al. 2005 

• Reliable layer segmentation for motion magnification 

• Layer segmentation pipeline 

Feature point 

tracking 

Trajectory  

clustering 

Dense optical  

flow interpolation 

Layer  

segmentation 
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Normalized Complex Correlation 

• The similarity metric should be 
independent of phase and 
magnitude 

• Normalized complex correlation 






tt

t

tCtCtCtC

tCtC
CCS

)()()()(

|)()(|
),(

2211

2

21

21

Feature point 

tracking 

Trajectory  

clustering 

Dense optical  

flow interpolation 

Layer  

segmentation 
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Spectral Clustering 

Affinity matrix Clustering Reordering of affinity matrix 

Two clusters Trajectory 

T
ra

je
c
to

ry
 

Feature point 

tracking 

Trajectory  

clustering 

Dense optical  

flow interpolation 

Layer  

segmentation 
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Clustering Results 

Feature point 

tracking 

Trajectory  

clustering 

Dense optical  

flow interpolation 

Layer  

segmentation 
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Flow vectors of 

clustered sparse 

feature points 

Dense optical flow 

field of cluster 1 

(leaves) 

Dense optical flow 

field of cluster 2 

(swing) 

From Sparse Feature Points to Dense Optical 
Flow Field 

Cluster 1: leaves 

Cluster 2: swing 

• Interpolate dense optical flow 
field using locally weighted 
linear regression  

Feature point 

tracking 

Trajectory  

clustering 

Dense optical  

flow interpolation 

Layer  

segmentation 
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Motion Layer Assignment 

• Assign each pixel to a motion cluster layer, using four cues: 

– Motion likelihood—consistency of pixel’s intensity if it moves with 

the motion of a given layer (dense optical flow field) 

– Color likelihood—consistency of the color in a layer 

– Spatial connectivity—adjacent pixels favored to belong the same 

group 

– Temporal coherence—label assignment stays constant over time 

• Energy minimization using graph cuts 

 

Feature point 

tracking 

Trajectory  

clustering 

Dense optical  

flow interpolation 

Layer  

segmentation 
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How good is optical flow? 

• The AAE (average angular error) race on the Yosemite 
sequence for over 15 years 

#I. Austvoll. Lecture Notes in Computer Science, 2005 
*Brox et al. ECCV, 2004. 

51 

Yosemite sequence State-of-the-art optical flow* 

Improvement#  



Middlebury flow database 

Baker et. al. A Database and Evaluation Methodology for Optical Flow. ICCV 2007  52 



Middlebury flow database 
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Measuring motion for real-life videos 

• Challenging because of occlusion, shadow, reflection, 
motion blur, sensor noise and compression artifacts 

 

 

 

 

 
 

• Accurately measuring motion also has great impact in 
scientific measurement and graphics applications 

• Humans are experts in perceiving motion. Can we use 
human expertise to annotate motion? 

[Video courtesy: Antonio Torralba] 
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Human-assisted motion annotation 

• Our approach: an interactive system to combine human 
perception and the state-of-the-art computer vision 
algorithms to annotate motion 

• Use layers as the interface for user interaction 
– Decompose a video sequence into layers 

– Motion analysis for each layer 
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Demo: interactive layer segmentation 
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Demo: interactive motion labeling 
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Motion database of natural scenes 

Color map 

Bruhn et al. Lucas/Kanade meets Horn/Schunck: combining local and global optical flow methods. IJCV, 2005 
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Optical flow is far from being solved 

AAE=8.99° 

AAE=5.24° 
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AAE=1.94° 

Frame Ground-truth motion Optical flow 
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Particle video 

61 

P. Sand and S. Teller. Particle Video: Long-Range Motion Estimation using Point Trajectories. CVPR 2006 



Particle video 



Seemingly Simple Examples 

Kanizsa square 

From real video 



Output from the State-of-the-Art  
Optical Flow Algorithm 

T. Brox et al. High accuracy optical flow estimation based on a theory for warping. ECCV 2004 

Optical flow field 
Kanizsa square 



Output from the State-of-the-Art  
Optical Flow Algorithm 

T. Brox et al. High accuracy optical flow estimation based on a theory for warping. ECCV 2004 

Optical flow field 

Dancer 



Optical flow representation: aperture problem 

Corners Lines Flat regions 

Spurious junctions Boundary ownership Illusory boundaries 66 



Optical flow representation: aperture problem 

Corners Lines Flat regions 

Spurious junctions Boundary ownership Illusory boundaries 

We need motion representation beyond pixel level! 
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Challenge: Textureless Objects under Occlusion 

• Corners are not always trustworthy 
(junctions) 

• Flat regions do not always move smoothly 
(discontinuous at illusory boundaries) 

• How about boundaries? 

– Easy to detect and track for textureless 
objects 

– Able to handle junctions with illusory 
boundaries 

 



Frame 1 



Frame 2 



Extracted boundary fragments 



Optical flow from Lucas-Kanade algorithm 



Estimated motion by our system, after grouping 



Boundary grouping and illusory boundaries (frame 1) 



Boundary grouping and illusory boundaries (frame 2) 



Rotating Chair 



Frame 1 



Frame 2 



Extracted boundary fragments 



Estimated flow field from Brox et al. 



Estimated motion by our system, after grouping 



Boundary grouping and illusory boundaries (frame 1) 



Boundary grouping and illusory boundaries (frame 2) 


