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Undirected graphical models

« Aset of nodes joined by undirected edges.

 The graph makes conditional independencies explicit: If two
nodes are not linked, and we condition on every other node in the
graph, then those two nodes are conditionally independent.

Conditionally independent, because
are not connected by a line in the
undirected graphical model
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Undirected graphical models: cliques

* Clique: a fully connected set of nodes

not a clique
clique

* A maximal clique is a clique that can’t include more nodes of the
graph w/o losing the clique property.

Non-maximal clique
Maximal clique
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Undirected graphical models:
probability factorization

 Hammersley-Clifford theorem addresses the pdf factorization
implied by a graph: A distribution has the Markov structure
implied by an undirected graph iff it can be represented in the

factored form
1
P.-—TTw
7/ ¢ Potential functions

cES of states of

Normalizing constant variables in

set of maximal cliques maximal clique
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Graphical Models

Markov Random Fields
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Graphical Models

Markov Random Fields
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Graphical Models

Markov Random Fields
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Markov Random Fields (MRF)

* Oftentimes MRF’s have a regular, grid-like
structure (but they don’t need to).
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MRF nodes as pixels

d
Winkler, 1995, p. 32

l“ig';. 2.9: Slll(ni".i’lill!'l
with the wrong prior. (a)
Original, (b) degraded
image. (c) MAP esti-
mate 3 1. (d) MAP
estimate O 0.3. (e)

7/

median filter
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MRF nodes as patches

image patches

) B

(I)(xl') yl) = "\
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Network joint probability

!

Peey) = L% ) Lo )

[
Scene Scene-scene Image-scene
image compatibility compatibility
function function
neighboring local
scene nodes observations
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Energy formulation

E (x, y) k+ Y Bx,.x )+ Ea(xl,y )

(1,))
scene Scene-scene
image compatibility
function
neighboring

scene nodes

Image-scene
compatibility
function

local

observations

10
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In order to use MRFs:

11 22
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In order to use MRFs:

* (G1ven observations y, and the parameters of
the MRF, how infer the hidden variables, x?

11 22
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In order to use MRFs:

* (G1ven observations y, and the parameters of
the MRF, how infer the hidden variables, x?

 How learn the parameters of the MRF?

11 22
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Markov Random Fields (MREF’s)

e Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Belief propagation
» Application example—super-resolution

* Learning MRF parameters.
— Iterative proportional fitting (IPF)

12
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Outline of MRF section

e Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Belief propagation
* Application example—super-resolution

— Graph cuts
— Variational methods

* Learning MRF parameters.
— Iterative proportional fitting (IPF)

13
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G1bbs Sampling

e Gibbs sampling:
— A way to generate random samples from a (potentially
very complicated) probability distribution.

— Fix all dimensions except one. Draw from the resulting
1-d conditional distribution. Repeat for all dimensions,
and repeat many times.

— Take an average of a subset of those samples to
estimate the posterior mean. (Wait for a “burn in”
period before including samples. And then subsample
Gibbs sampler outputs to find independent draws of the

joint probability).

14

Reference: Geman and Geman, IEEE PAMI 1984.
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Sampling from a 1-d function

15

Monday, March 7, 2011




1.

Sampling from a 1-d function

Discretize the density
function
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1.

Sampling from a 1-d function

Discretize the density
function

J(x)
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1.

Sampling from a 1-d function

Discretize the density
function
—>

J(x) J (k)
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1.

Sampling from a 1-d function

Discretize the density
function
—>

J(x) J (k)
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Sampling from a 1-d function

1. Daiscretize the density
function
—>

J(x) J (k)

2. Compute distribution function
from density function
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Sampling from a 1-d function

1. Daiscretize the density
function
—>

J(x) J (k)

f (k)
2. Compute distribution function

from density function
15
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Sampling from a 1-d function

1. Daiscretize the density

function
—>

f(x) S (k)
—>

S (k) F(k)

2. Compute distribution function

from density function
15
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Sampling from a 1-d function

1. Daiscretize the density

function

J(x)

f (k)

2. Compute distribution function

—>

J (k)

F(k)

from density function

3. Sampling

draw o ~ U(0,1);
fork=1ton

if F(k)=zo
break;

>
X=X, +Kkt

15

Monday, March 7, 2011




Slide by Ce Liu

G1bbs Sampling

16
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G1bbs Sampling
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G1bbs Sampling
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G1bbs Sampling
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G1bbs Sampling
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G1bbs Sampling
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G1bbs Sampling
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G1bbs Sampling
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G1bbs Sampling and Simulated Annealing

e Gibbs sampling:
— A way to generate random samples from a (potentially
very complicated) probability distribution.

— Fix all dimensions except one. Draw from the resulting
1-d conditional distribution. Repeat for all dimensions,
and repeat many times

e Simulated annealing:

— A schedule for modifying the probability distribution so
that, at “zero temperature”, you draw samples only
from the MAP solution.

Ple)= éexp(—E(;):)/k-"l’)

Reference: Geman and Geman, IEEE PAMI 1984.
Monday, March 7, 2011
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Gibbs sampling and simulated
annealing

18

Monday, March 7, 2011



Gibbs sampling and simulated
annealing

Simulated annealing as you gradually lower
the “temperature” of the probability
distribution ultimately giving zero
probability to all but the MAP estimate.
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Gibbs sampling and simulated
annealing

Simulated annealing as you gradually lower
the “temperature” of the probability
distribution ultimately giving zero
probability to all but the MAP estimate.

What’s good about it: finds global MAP
solution.

18
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Gibbs sampling and simulated
annealing

Simulated annealing as you gradually lower
the “temperature” of the probability
distribution ultimately giving zero
probability to all but the MAP estimate.

What’s good about it: finds global MAP
solution.

What’s bad about 1t: takes forever. Gibbs
sampling 1s 1n the mner loop...

18
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Gibbs sampling and simulated
annealing

19
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Gibbs sampling and simulated
annealing

So you can find the mean value (MMSE
estimate) of a variable by doing Gibbs
sampling and averaging over the values that
come out of your sampler.

19
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Gibbs sampling and simulated
annealing

So you can find the mean value (MMSE
estimate) of a variable by doing Gibbs
sampling and averaging over the values that
come out of your sampler.

You can find the MAP estimate of a variable
by doing Gibbs sampling and gradually
lowering the temperature parameter to zero.

19
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Outline of MRF section

e Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Belief propagation
* Application example—super-resolution

— Graph cuts

« Application example--stereo

— Variational methods
» Application example—blind deconvolution

* Learning MRF parameters.
— Iterative proportional fitting (IPF)
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Iterated conditional modes

Described in: Winkler, 1995. Introduced by Besag in 1986.
21
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Iterated conditional modes

 For each node:

Described in: Winkler, 1995. Introduced by Besag in 1986.
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Iterated conditional modes

* For each node:
— Condition on all the neighbors

Described in: Winkler, 1995. Introduced by Besag in 1986.
21
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Iterated conditional modes

 For each node:

— Condition on all the neighbors
— Find the mode

Described in: Winkler, 1995. Introduced by Besag in 1986.
21
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Iterated conditional modes

 For each node:

— Condition on all the neighbors
— Find the mode
— Repeat.

Described in: Winkler, 1995. Introduced by Besag in 1986.
21
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Iterated conditional modes

 For each node:

— Condition on all the neighbors
— Find the mode
— Repeat.

* Compare with Gibbs sampling...

Described in: Winkler, 1995. Introduced by Besag in 1986.
21
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Iterated conditional modes

* For each node:
— Condition on all the neighbors
— Find the mode
— Repeat.

* Compare with Gibbs sampling...

* Very small region over which it’s a local
maximum

Described in: Winkler, 1995. Introduced by Besag in 1986.
21

Monday, March 7, 2011



d

Fig. 6.2. Various steps of ICM

Winkler, 1995

22
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Outline of MRF section

e Inference in MRF’s.
— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Loopy belief propagation
» Application example—super-resolution
— Graph cuts
— Variational methods

* Learning MRF parameters.
— Iterative proportional fitting (IPF)

23
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Derivation of belief propagation

®»® ® ©

D(x,, 1)) D(x,,,) D(x;,y;)

W(x,x,) W(x,,x;)

P(x 1y,y,,y;)=k Slxlm Slxlm P(x,,X,,X5,Y15Y55Y3)

X ymsp = Mean sum sum P(x,, x,, X5, ¥V, V5, V3)

X1 X9 X3

24

Monday, March 7, 2011



The posterior factorizes

X e = MEan sum sum P(x,,X,, X5, Vi, Vys V3)

X1 X9 X3

= mean sum sum P(x,, y,)

(I)(xzayz) qj(xlaxz)
D(x;,y;) W(x,,x3)

W(x;,x,) W(x,,x;)
25
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Propagation rules

X e = Mean sum sum P(x,,X,,X5, V5 Vys V3)

X1 X9 X3

X msp = Mean sum sum P(x,, y,)

(I)(xzayz) qj(xlaxz)

D(x;,y;) W(x,,x3)
X mse = mean @(x,, y;)

. © ©® ©

Sl)l;m D(xy, 1,) (X5 X0) sy o v
2

sum d(x., y.) U(x,,x) .. OO
X3
26
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Propagation rules

X se = mean @(x,, y;)

X1

Sl)];m (I)(xzayz) 1P(xlaxz)

SUII D(x;,y;) W(x,,x3)

Mlz(x1)=51)];m Y(x,x,) ©(x,,y,) M23(x2)

© ©® ©

D(x;,y,) D(x,,¥,) D(x;,y3)

W(x;,x,) W(x,,x;)
27
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X1
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Belief propagation messages

A message: can be thought of as a set of weights on
each of your possible states

To send a message: Multiply together all the incoming
messages, except from the node you’re sending to,

then multiply by the compatibility matrix and marginalize
over the sender’s states.

M7 )= Jytox) T M)

KEN ()\i

29
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Beliefs

To find a node’s beliefs: Multiply together all the
messages coming in to that node.

] bj(xj)= M;{(xj)

kKEN(J)

30
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Max-product belief propagation

®»® ® ©

D(x,, 1)) D(x,,,) D(x;,y;)

W(x,,x,) W(x,,x;)

X ymsp = Mean sum sum P(x,, x,, X5, Yy, Vs, V3)

31
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Max-product belief propagation

®»® ® ©

D(x,, 1)) D(x,,,) D(x;,y;)

: W(x,,x,) : WY(x,,x;) :

X ymsp = Mean sum sum P(x,, x,, X5, Yy, Vs, V3)

X %) X3
message update J _ ) k
equation for sumM (xl ) Ew 1] (xi ? xj ) Mj (xj )
product algo X; kEN (J)\i

31
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Max-product belief propagation

®»® ® ©

D(x;, ) D(x,,,) D(x;,y;)

: W(x,,x,) : WY(x,,x;) :

X ymsp = Mean sum sum P(x,, x,, X5, Yy, Vs, V3)

X %) X3
message update J _ ) k
equation for sumM (xl ) Ew 1] (xi ? xj ) Mj (xj )
product algo X; kEN (J)\i

X;ap =argmax max max P(x,,x,,X;,V,,Y,,V3)

X Xo Xo

31
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Max-product belief propagation

®»® ® ©

D(x;, ) D(x,,,) D(x;,y;)

: W(x,,x,) : WY(x,,x;) :

Xivmse = Ean sum sum P(x,,X,,X5, Vi, V5, Y3)

X X3
message update J
equation for sumM (.X' ) Ew 1j (xl > X ) M (.X )
product algo J\i

X;ap =argmax max max P(x,,x,,X;,V,,Y,,V3)

X Xo Xo

k
message update M/ (x.) = max ,(x,,x ) ‘ ‘M (x )
equation for max- X; j J - JNT
product algo. kEN(j)\i 31
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Optimal solution 1n a chain or tree:
Belief Propagation

* “Do the right thing” Bayesian algorithm.

 For Gaussian random variables over time:
Kalman filter.

* For hidden Markov models: forward/
backward algorithm (and MAP variant 1s
Viterbi).

32
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Belief, and message update rules are just
local operations, and can be run whether
or not the network has loops

J bj(xj)= Mf(xj)

* KENTT)

M7 ) = Jysx) TM )

JONI

ig e e

33
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Justification for running belief propagation in networks with loops

* Experimental results:

_ Commarison of methods Szeliski et al. 2008
Co parison o ethods http://vision.middlebury.edu/MREF/

— Error-correcting codes K schischang and Frey, 1998;
McEliece et al., 1998

— Vision applications Freeman and Pasztor, 1999;

, Frey, 2000
 Theoretical results: Y

— For Gaussian processes, means are correct.
Weiss and Freeman, 1999

— Large neighborhood local maximum for MAP.
Weiss and Freeman, 2000

_ Equivalent to Beth .in.statistical physi
qUIVATEIL 10 BEE PP tdidia. Freemat, and Weiss, 2000

— Tree-weighted reparameterization
Wainwright, Willsky, Jaakkola, 2001
34

Monday, March 7, 2011


http://vision.middlebury.edu/MRF/
http://vision.middlebury.edu/MRF/

Show program comparing some
methods on a ssmple MRF

testMRE.m

35
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Outline of MRF section

e Inference in MRF’s.

— Gibbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Belief propagation

» Application example—super-resolution

— Graph cuts

— Variational methods

* Learning MRF parameters.
— Iterative proportional fitting (IPF)

36
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Super-resolution

* Image: low resolution image

* Scene: high resolution 1image

Scene
- 13 3

ultimate goal...
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Polygon-based
graphics
images are
resolution
independent
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Pixel-based images
are not resolution
independent

Polygon-based
graphics
images are
resolution
independent
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Pixel-based images
are not resolution

independent

Polygon-based
graphics
images are
resolution
independent

Pixel replication
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Pixel-based images
are not resolution

independent

Polygon-based
graphics
images are
resolution
independent

Pixel replication

Cubic spline
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Pixel-based images
are not resolution
independent

Polygon-based
graphics
images are
resolution
independent

Pixel replication

Cubic spline,
sharpene
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Pixel-based images
are not resolution
independent

Pixel replication

Cubic spline,
sharpene

Training-based

Polygon-based super-resolution
graphics

1mages are

resolution

independent

38

Monday, March 7, 2011




3 approaches to perceptual

sharpening

(1) Sharpening; boost existing high

frequencies.
(2) Use multiple frames to obtain

higher sampling rate 1n a still frame

(3) Estimate high frequencies not

N\

spatial frequency

amplitude

f** :

present 1n 1mage, although implicitly

defined.

In this talk, we focus on (3), which
we’ll call “super-resolution”.

amplitude

—

spatial frequency

39
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Super-resolution: other approaches

Schultz and Stevenson, 1994
Pentland and Horowitz, 1993

 fractal image compression (Polvere, 1998; Iterated Systems)

 astronomical 1image processing (eg. Gull and Daniell, 1978;
“pixons” http://casswww.ucsd.edu/puetter.html)

* Follow-on: Jianchao Yang, John Wright, Thomas S. Huang,
Y1 Ma: Image super-resolution as sparse representation of raw
image patches. CVPR 2008

40
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http://casswww.ucsd.edu/puetter.html
http://casswww.ucsd.edu/puetter.html

Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.

o
..7
»
o
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Do a first interpolation

Zoomed low-resolution

Low-resolution

42
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- -

Zoomed low-resolution Full frequency origine:f

Low-resolution

43
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Representation

Zoomed low-freq.

Full freq. original

44
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Representation

Zoomed low-freq.

Full freq. original

. True high fregs
Low-band input \ & q
contrast normalized, to minimize the complexity of the relationships we have to learn,
plexity
PCA fitted) we remove the lowest frequencies from the inputfmage,

and normalize the local contrast level).
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Gather ~100,000 patches

~ENTHITEEEE

Training data samples (magnified)

high freqs

low fregs.

46
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Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

- high fregs.

= 3 BN B B B B
(XX - XX
I Iﬁll AEREEN .

Training data samples (magnified)
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Nearest neighbor estimate

Input low fregs.

Estimated high fregs.

@ EH B B B B BN highfregs.
=L EL T -1 P
ow fre
ds

Training data samples (magnified)
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Example: 1nput image patch, and closest
matches from database

Input patch ‘
CloSESt IMAGE amprymim wompmam imprssim wmgraman v mpnim otmpssn mmgiznm ot

f'

patches from database r E l"' F_' -_— |

LE ) W u > o W K N W P D Penge [<217,213 08 Ravge -1 6,2 9]
P'J Dwe .0 Owme

[

J'AI'-_

mw \.mwx | Aqtub—-

-"i-lul -"
--E-.-—,.-,- = T

aa-(ncw L R

Corresponding
high-resolution
patches from database

49
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T~ O  Image patch

e SO Underlying candidate

‘ ‘ scene patches. Each

x ‘ renders to the image
h

N N Rt

50
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Scene-scene compatibility function, W

(X5 X)) [

Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

. . N _|d1_d|2 20-2
ql(l’.zat)j]) — €XP J /

Uniqueness constraint,

not smoothness. )

Monday, March 7, 2011



Image-scene compatibility :._y

function, ®(x, y)) |
ta

Assume Gaussian noise takes you from A
observed 1mage patch to synthetic sample:

— |y —y(x; 2 /9452
O(z;,y;) = exp [Vi—v@) I/

52
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Markov network

1mage patches
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Belief Propagation

54

Input
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B elief Prop a g ation After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. 0

54
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Belief Propagation

After a few iterations of belief propagation, the
algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

54
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Belief Propagation

Monday, March 7, 2011

After a few iterations of belief propagation, the
algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.




Zooming 2 octaves

T e
’ We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

55
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Zooming 2 octaves

3

We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

55

Cubic spline zoom to 340x204
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Zooming 2 octaves

| —
e b G . - We apply the super-resolution

: - algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

B

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204
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Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

(cubic spline implies
thin plate prior)

Original
50x58

True
200x232

56
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Original (cubic spline implies

50x58 thin plate prior)
: : True
Cubic spline 200x232
57
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Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58

True

58
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The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58
Markov
True
network
59
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Original
50x58

Next, train on a world of vertically
oriented rectangles.

True

60
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The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original
50x58

Markov
network
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Original
50x58

Now train on a generic collection of
images.
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The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.

Original
50x58

Markov
network
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Generic training 1mages

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
a random collection of
photographs.

64
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Original
70x70

Markov
net,
training;:
generic
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Cubic
Spline

True

280x280




Kodak Imaging Science Technology Lab test.
30 !.° ‘(,."~_f,'{vs,4-‘ w

3 test images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.
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Algorithms compared

* Bicubic Interpolation

e Mitra's Directional Filter
* Fuzzy Logic Filter
*Vector Quantization

* VISTA
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Bicubic spline Altamira
» '.
< el P ""
~™ o
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Bicubic spline Altamira
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User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”
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Super-rasolution zoom

-

Training images |
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Super-resolution zoom

Source image patches m Y. 1

s W ‘. J -
Bandpass filtered and [ .
contrast nomalized .

: li'—'" Ah‘i"
Trus agh resolution pixels E !
High resciution pixels chosen _]'
by super-resolution f
Bandpass filtered and contrast | “‘l

normakzed best match patches | -
fram traning data )
Best match patches from | i
traning data 3

ot {

“
[

Training images
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Super-rasolution z0o0m

Source image patches

Bandpass filtered and
contrast normalized

Trus hagh resohtion puels

- :
n
o

High resciubion pxels chosen
by super-resolution

Bandpass hiltered and contrast
nomakized best match palches
from tranng data

Best match patches from
training data

Training images
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Training 1mage

ANl Il LU Srniieso . o oo
anelvacatedarul ingbythetes
Jztem, andsent i tdowntoanew
Finedastandardforweighing
zraproduct-bundl ingdeci=si
zo0f teaysthatthenewteature:
andperzonal identification:
azoft ' sview, butusersandth
adedw i thoonsumer innovat iol
~ePCindustryislookingforw.
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Processed 1image
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code available online
http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%?20Fields

%20for%20Super-Resolution.html

Lt N

)2 ) (€ () () (21 o i /pecpie csal.ma edu bl project pages/sresCode/ Markov Random Freids for Super-Resolymondt 7 v (0l e s ~
28 3 h e -\ AT N

m-mw a Meadlines B Cooghe Apple Yahoo! YouTube Wikipedia News = Popular = CGoogle Maps \lisevier L7 "_? s a3 b~

Markov Random Fieids for Sup.. © B MIT Human Resources | MITE @ | MIT Payroll - Dectromic Form .. © ) 31 Authgp ratohBae:

Markov Random Fields for Super-Resolution

| William T. Freeman | Ce Liu
Massachusetts Institute of Technology | Microsoft Research New England

[Download the package]

This is an implementation of the example-based super-resobution algorithm of [1]. Although the applications of MSFs have now extended beyond example-based super resolution and texture synthesis, it is still
of great value 1o revisit this problem, especially to share the source code and examplar images with the research community. We bope that this software package can help 1o understand Markov random ficlds
for low-level vision, and to create benchmark for super-resolution algorithms,

When you refer 10 this code in your paper, please cite the following book chapter:

W. T Freeman and C. Liv. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image
Processing, Chapter 10, MIT Press, 2011, To appear.

Algorithm

The core of the algorithm is based on [1]. We collect pairs of low-res and high-res image patches from a set of images as training. An input low-res image is decomposed 10 overlapping patches on a grid, and
the inference problem is to find the high-res patches from the training database for cach low-res patch, We use the kd-tree algorithen, which has been used for real-time texsure synthesis [2), 1o retrieve a set of
high-res, k-nearest neighbors for cach low-res patch. Lastly, we run a max-product belsef propagation (BP) algorithm 10 minimize an objective function that balances both local compatibility and spatial
smoothenss.

Examples

Several exampics of applying the example-based super resolution code in the package are shown below. These examplar images are also included in the package. Once you run the code, it should give you the
same result.

We first apply bicubic sampling %0 cnlarge the input image (2) by a factor of 4 (b), where image detaills are missing. If we use the nearest neighbor for cach low-res patch independently, we obtain high-res but
noasy results in (¢). To address this issue, we incorporating spatial smoothness into a Markov Random Ficlds formulation by enforcing the synthesized neighboring patches to agree on the overlapped arcas.
Max-product delief propagation is used 10 obtain high-res images in (d). The inferred high-froquency imsages are shown in (¢), and the original high-res are shown ia (f).

Xy AMSCRINCS o 7 v ok
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http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html
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Motion application

image patches

1mage

Y
7

SCCNC
77
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What behavior should we see 1n a
motion algorithm?

* Aperture problem

* Resolution through propagation of
information

* Figure/ground discrimination

78
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The aperture problem

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

79
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http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

The aperture problem

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
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http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
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The aperture problem
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The aperture problem
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motion program demo
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Inference: M ot1ion estimation results

(maxima of scene probability distributions displayed)

Image data

--------

........

................

...............

Iterations 0 and 1

Initial guesses only
show motion at edges. 82
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Motion estimation results

(maxima of scene probability distributions displayed)

.................
................
................
...................
............................
..........................................
...............................................
..................................................
........................................
------------------------------------------
-------------------------------------------
................................................
...............................................
----------------------------------------------
---------------------------------------------
...........................................
-------------------------------------------
........................................
.............................................
.................................................
..........................................

.....................................

........

........

Iterations 2 and 3

Figure/ground still
unresolved here.

83
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Motion estimation results

(maxima of scene probability distributions displayed)

...................................................
......................................................

......................................

.........................................

..........................................
................................................
..............................................
.............................................
..........................................

..................................................

..............................................

Iterations 4 and 5 I

Final result compares well with vector
quantized true (uniform) velocities.
84
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Vision applications of MRF’s

* Segmentation

85
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
0 = Parameters

p(h|1.6)

Posterior

86
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
0 = Parameters

p(h|1.0) < p(I,h|6) = p(1[1h,0)p(h]0)

' '
Posterior Joint Prior

86
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) — one label per pixel
0 = Parameters

p(h|1.0) < p(I,h|6) = p(1[1h,0)p(h]0)

Y Y

Posterior Joint Prior

1. Generative approach models joint
- Markov random field (MRF)

2. Discriminative approach models posterior directly
- Conditional random field (CRF) 86
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Generative Markov Random Field

p(h,110)=p(I|h,6)p(h|6)]

Image Plane 87

I (pixels)
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Generative Markov Random Field

p(h,110)=p(I|h,6)p(h|6)]

h (l1abels)

e

{foreground,b
ackground}

T
1

Image Plane 87

I (pixels)
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Generative Markov Random Field

p(h,110)=p(I|h,6)p(h|6)]

Pairwise Potential (MRF)
Yji(h;; hyl65)

h (l1abels)

e

{foreground,b
ackground}

i

Image Plane 87

I (pixels)
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Generative Markov Random Field

p(h,110)=p(I|h,6)p(h|6)]

Pairwise Potential (MRF)

h (l1abels)
- Yji(h;; hyl65)
{foreground,b
ackground} D
I (pixels) i
Image Plane 87
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Generative Markov Random Field

p(h,110)=p(I|h,6)p(h|6)]

| : _
=——|[ 0.2 17.0)] [w, (A1, 16,)
Z(0) H el Y
i N J U J T
Y A
MRF Prior
h (1abels) Pairwise Potential (MRF)
_ P;i(h;; hl6;)
{foreground,b
ackground} -
I (pixels) i
Image Plane 87
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Generative Markov Random Field

p(h,110)=p(I|h,6)p(h|6)]

" - -
= H¢z(1|hzaez)l_[wy(hzah]|ey)
Z(@) - N J / N -
Y Y. 4
MRF Prior
h (labels) Pairwise Potential (MRF)
- Yji(h;; hyl65)
{foreground,b
ackground} P R
I (pixels) i Prior has no
Image Plane dependency on I
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Conditional Random Field

Discriminative approach Lafferty, McCallum and Pereira
\ 2001
1 -
p(h|]’e)=Z(],6) nq) (h19]|6)1:[wy(hmhjal|8y)
- J
Unary Pairwise

88
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Conditional Random Field

Discriminative approach Lafferty, McCallum and Pereira
\ 2001
1
1| 1,0)= b, 116, h,h@@l
p(h|1,0) 200)| ﬂcb(, | )ﬂw ,)
Unary PalrW|se

I (pixels)
Image Plane 8
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Conditional Random Field

Lafferty, McCallum and Pereira

Discriminative approach

\ 2001
i -
p(h|16)= 0, 116)) w,,<hl,h@e,,>
zat L1/ 0T |
Unary PalrW|se

* Dependency on | allows introduction
of pairwise terms that make use of
image.

* For example, neighboring labels

should be similar only ifpixelcolors
are

similar 2 Contrast term

?;—W-

I (pixels)
Image Plane 8
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Conditional Random Field

Lafferty, McCallum and Pereira

Discriminative approach

\ 2001
1
P10 -2 | ﬂcp (1116, )];[u\»l,m,,h@,,)

Unary

* Dependency on | allows introduction
of pairwise terms that make use of
image.

* For example, neighboring labels
should be similar only ifpixelcolors
are

similar 2> Contrast term

PalrW|se

=

e.g Kumar and Hebert _
2003 I (pixels) - -

Image Plane 8
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OB JCUT Kumar, Torr & Zisserman 2005

Unary Pairwise
N AN
4 A 4 I
p(h|Q.1,0) < |[To/ (11,0, % (| Q) ng-(h,-,h,-|e,-,->xp;<1|hi,h,.,e,,->]
i ! ] [ ] ij [ ]
smoothness
i . Q (shape
* Q is a shape prior on the labels from a & _barameter)

Layered Pictorial Structure (LPS) model
- Segmentation by:

- Match LPS model to image (get
number of samples, each with a
different pose

-Marginalize over the samples
using a single graph cut
[Boykov & Jolly, 2001]
89
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OB JCUT Kumar, Torr & Zisserman 2005

Unary Pairwise

AN
4 A a

~

p(h|Q.1.0) o |TTo/ (17,0087 (1) TTw, .k 10,)% ;| h,h;.0,)
i I ij ]

Pistance Label

from Q smoothness

* Q is a shape prior on the labels from a
Layered Pictorial Structure (LPS) model

« Segmentation by:

- Match LPS model to image (get
number of samples, each with a
different pose

-Marginalize over the samples
using a single graph cut _
[Boykov & Jolly, 2001] I (pixels)

Figure from
Kumar et al.,
CVPR 2005
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OBJCUT:
Shape prior - £ - Layered Pictorial Structures (LPS)

 (Generative model

« Composition of parts + spatial layout

Layer 2 <

Spatial Layout
(Pairwise Configuration)

Layer 1 { y '

Parts in Layer 2 can occlude parts in Layer,1
Kumar, et al. 2004,

Monday, March 7, 2011



OBJCUT: Results
Using LPS Model for Cow

In the absence of a clear boundary between object and

background

Image

Segmentation
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Outline of MRF section

* Inference in MRF’s.
— Gi1bbs sampling, simulated annealing
— Iterated conditional modes (ICM)
— Belief propagation
* Application example—super-resolution

— Graph cuts
— Variational methods

* Learning MRF parameters.
— Iterative proportional fitting (IPF)

92
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True joint
probability

true joint probability

93
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true joint probability

True joint
probability

03}
025+
02t
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01
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h

m |
Observed
marginal
distributions
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Initial guess at joint probability

initial guess at joint probability
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IPF update equation, for maximum likelithood
estimate of clique potentials

P(z; observed
2 () T 1 R I,’(/)(H—l) = P(21,%2;..:, "'(/)(/) (IP)(J.,)({)

Scale the previous iteration’s estimate for the joint
probability by the ratio of the true to the predicted

marginals.

Gives gradient ascent in the likelihood of the joint
probability, given the observations of the marginals.

95
See: Michael Jordan’s book on graphical models
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Convergence to correct marginals by IPF algorithm

marg1 (b) versus estimates (1) and final difference (y)
0.35 I I I 1 I

03
0.25
021

015

0.1 H

0.05 il

0

_005 | | | | | | |
1 : : :
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Convergence of to correct marginals by IPF algorithm

marg2 (b) versus estimates (r) and final difference (y)
0.3

0.25

021

015 F

0.1F .

0.05 .

005 1 1 ! 1 ! ! !
1 185 2 25 3 ShE 4 45 975
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IPF results for this example:
comparison of joint probabilities

True joint
probability

#1: Range [IJ 00862 0.0742]
true joint (top) and ﬁbp estimate (bottom)

Final maximum
entropy estimate

Initial guess

#2: Range [0.0165, 0.0728]
Dims [3, 5]
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Application to MRF parameter estimation

* Can show that for the ML estimate of the clique
potentials, ¢ (X.), the empirical marginals equal

the model marginals,
plxe )= plxs)
* Because the model marginals are proportional to

the clique potentials, we have the IPF update rule
for ¢.(x.), which scales the model marginals to

equal the observed marginals

(t+1) . \J— (t) p(xc)
D¢ (22) = 13 “ (1) 0 (0)

 Performs coordinate ascent in the likelithood of the

MRF parameters, given the observed data.
Reference: unpublished notes by Michael Jordan, and by Roweis: httpyy
www.cs.toronto.edu/~roweis/csc412-2004/notes/lec1 1x.pdf
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Learning MRF parameters, labeled data

Iterative proportional fitting lets you make a maximum
likelihood estimate a joint distribution from observations
of various marginal distributions.

Applied to learning MRF clique potentials:

(1) measure the pairwise marginal statistics (histogram
state co-occurrences 1n labeled training data).

(2) guess the clique potentials (use measured marginals to
start).

(3) do inference to calculate the model’s marginals for
every node pair.

(4) scale each clique potential for each state pair by the
empirical over model marginal

100
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