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Undirected graphical models

• A set of nodes joined by undirected edges.
• The graph makes conditional independencies explicit:  If two 

nodes are not linked, and we condition on every other node in the 
graph, then those two nodes are conditionally independent.

Conditionally independent, because 
are not connected by a line in the 
undirected graphical model
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Undirected graphical models:  cliques

• Clique:  a fully connected set of nodes

• A maximal clique is a clique that can’t include more nodes of the 
graph w/o losing the clique property.

Maximal clique

not a clique

Non-maximal clique

clique
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Undirected graphical models:  
probability factorization

• Hammersley-Clifford theorem addresses the pdf factorization 
implied by a graph:  A distribution has the Markov structure 
implied by an undirected graph iff it can be represented in the 
factored form

€ 

Px =
1
Z

Ψxc
c∈ξ
∏

set of maximal cliques

Potential functions 
of states of 
variables in 
maximal clique

Normalizing constant
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connecting 
nodes  

set of      nodes 

Graphical Models
Markov Random Fields
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Graphical Models
Markov Random Fields

Nodes             are associated with hidden variables

Potential functions may depend on observations
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Markov Random Fields (MRF)

• Oftentimes MRF’s have a regular, grid-like 
structure (but they don’t need to).
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MRF nodes as pixels

Winkler, 1995, p. 32
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MRF nodes as patches

image patches

Φ(xi, yi)

Ψ(xi, xj)

image

scene

scene patches
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Network joint probability

scene
image

Scene-scene
compatibility

function
neighboring
scene nodes

local 
observations

Image-scene
compatibility

function
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Energy formulation

10

scene
image

Scene-scene
compatibility

function
neighboring
scene nodes

local 
observations

Image-scene
compatibility

function

€ 

L(x,y) = k + β(xi,x j )
(i, j )
∑ + α(xi,yi)∑E
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In order to use MRFs:

11

Monday, March 7, 2011



22

In order to use MRFs:

• Given observations y, and the parameters of 
the MRF, how infer the hidden variables, x?
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22

In order to use MRFs:

• Given observations y, and the parameters of 
the MRF, how infer the hidden variables, x?

• How learn the parameters of the MRF?
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Markov Random Fields (MRF’s)

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)
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Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)
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• Gibbs sampling: 
– A way to generate random samples from a (potentially 

very complicated) probability distribution.
– Fix all dimensions except one.  Draw from the resulting 

1-d conditional distribution.  Repeat for all dimensions, 
and repeat many times.

– Take an average of a subset of those samples to 
estimate the posterior mean.  (Wait for a “burn in” 
period before including samples.  And then subsample 
Gibbs sampler outputs to find independent draws of the 
joint probability).

Gibbs Sampling

Reference:  Geman and Geman, IEEE PAMI 1984.
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Sampling from a 1-d function
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Sampling from a 1-d function
1. Discretize the density 

function
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Sampling from a 1-d function
1. Discretize the density 

function

2. Compute distribution function 
from density function
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Sampling from a 1-d function
1. Discretize the density 

function

2. Compute distribution function 
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Sampling from a 1-d function
1. Discretize the density 

function

2. Compute distribution function 
from density function

3. Sampling

draw α ~ U(0,1);
for k = 1 to n
   if 
       break;
                  ;
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Gibbs Sampling

Slide by Ce Liu 16
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• Gibbs sampling: 
– A way to generate random samples from a (potentially 

very complicated) probability distribution.
– Fix all dimensions except one.  Draw from the resulting 

1-d conditional distribution.  Repeat for all dimensions, 
and repeat many times

• Simulated annealing:
– A schedule for modifying the probability distribution so 

that, at “zero temperature”, you draw samples only 
from the MAP solution.

Gibbs Sampling and Simulated Annealing

Reference:  Geman and Geman, IEEE PAMI 1984.
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Gibbs sampling and simulated 
annealing
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Simulated annealing as you gradually lower 
the “temperature” of the probability 
distribution ultimately giving zero 
probability to all but the MAP estimate.

Gibbs sampling and simulated 
annealing
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Simulated annealing as you gradually lower 
the “temperature” of the probability 
distribution ultimately giving zero 
probability to all but the MAP estimate.

What’s good about it:  finds global MAP 
solution.

Gibbs sampling and simulated 
annealing
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Simulated annealing as you gradually lower 
the “temperature” of the probability 
distribution ultimately giving zero 
probability to all but the MAP estimate.

What’s good about it:  finds global MAP 
solution.

What’s bad about it:  takes forever.  Gibbs 
sampling is in the inner loop…

Gibbs sampling and simulated 
annealing
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Gibbs sampling and simulated 
annealing
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So you can find the mean value (MMSE 
estimate) of a variable by doing Gibbs 
sampling and averaging over the values that 
come out of your sampler.

Gibbs sampling and simulated 
annealing
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So you can find the mean value (MMSE 
estimate) of a variable by doing Gibbs 
sampling and averaging over the values that 
come out of your sampler.

You can find the MAP estimate of a variable 
by doing Gibbs sampling and gradually 
lowering the temperature parameter to zero.

Gibbs sampling and simulated 
annealing
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• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts

• Application example--stereo
– Variational methods

• Application example—blind deconvolution

• Learning MRF parameters.
– Iterative proportional fitting (IPF)

Outline of MRF section
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Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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• For each node:

Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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• For each node:
– Condition on all the neighbors

Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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• For each node:
– Condition on all the neighbors
– Find the mode

Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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• For each node:
– Condition on all the neighbors
– Find the mode
– Repeat.

Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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• For each node:
– Condition on all the neighbors
– Find the mode
– Repeat.

• Compare with Gibbs sampling…

Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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• For each node:
– Condition on all the neighbors
– Find the mode
– Repeat.

• Compare with Gibbs sampling…
• Very small region over which it’s a local 

maximum

Iterated conditional modes

Described in:  Winkler, 1995.  Introduced by Besag in 1986.
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Winkler, 1995
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• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Loopy belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)

Outline of MRF section
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Derivation of belief propagation

x1 x2

y1 y2 y3

x3

€ 

P(x1 | y1,y2,y3) = k sum
x 2

 sum
x 3

 P(x1,x2,x3,y1,y2,y3)
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The posterior factorizes

x1 x2

y1 y2 y3

x3
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Propagation rules

y1

x1

y2

x2

y3

x3

y1 y2 y3
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Propagation rules

y1

x1

y2

x2

y3

x3

y1 y2 y3
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Propagation rules

y1
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Propagation rules
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Propagation rules

y1

x1

y2

x2

y3

x3

y1 y2 y3
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Belief propagation messages

jii =j

To send a message:  Multiply together all the incoming 
messages, except from the node you’re sending to,
then multiply by the compatibility matrix and marginalize 
over the sender’s states. 

A message:  can be thought of as a set of weights on 
each of your possible states
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Beliefs

j

To find a node’s beliefs:  Multiply together all the 
messages coming in to that node.
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Max-product belief propagation

x1 x2

y1 y2 y3

x3
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Max-product belief propagation

x1 x2

y1 y2 y3

x3

31

message update 
equation for sum-
product algo
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Max-product belief propagation

x1 x2

y1 y2 y3

x3

31

€ 

x1MAP = argmax
x1

 max
x2

 max
x2

 P(x1,x2,x3,y1,y2,y3)

message update 
equation for sum-
product algo

Monday, March 7, 2011



Max-product belief propagation

x1 x2

y1 y2 y3

x3

31

€ 

x1MAP = argmax
x1

 max
x2

 max
x2

 P(x1,x2,x3,y1,y2,y3)

message update 
equation for sum-
product algo

€ 

Mi
j (xi) = max

x j
 ψ ij (xi,x j ) M j

k (x j )
k∈N ( j )\ i
∏message update 

equation for max-
product algo.
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• “Do the right thing” Bayesian algorithm.
• For Gaussian random variables over time:  

Kalman filter.
• For hidden Markov models: forward/

backward algorithm (and MAP variant is 
Viterbi).

Optimal solution in a chain or tree:
Belief Propagation

32
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Belief, and message update rules are just 
local operations, and can be run whether 

or not the network has loops

jii =

j
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Justification for running belief propagation in networks with loops

• Experimental results:
– Comparison of methods

– Error-correcting codes

– Vision applications

• Theoretical results:
– For Gaussian processes, means are correct.

– Large neighborhood local maximum for MAP.

– Equivalent to Bethe approx. in statistical physics.

– Tree-weighted reparameterization

Weiss and Freeman, 2000
Yedidia, Freeman, and Weiss, 2000

Freeman and Pasztor, 1999;
Frey, 2000

Kschischang and Frey, 1998;
McEliece et al., 1998

Weiss and Freeman, 1999

Wainwright, Willsky, Jaakkola, 2001

Szeliski et al. 2008

34
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testMRF.m

Show program comparing some 
methods on a simple MRF
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• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)

Outline of MRF section
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Super-resolution

• Image:  low resolution image
• Scene:  high resolution image

im
ag

e
sc

en
e

ultimate goal...
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Polygon-based 
graphics 
images are 
resolution 
independent 38
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Polygon-based 
graphics 
images are 
resolution 
independent

Pixel-based images 
are not resolution 

independent
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Polygon-based 
graphics 
images are 
resolution 
independent

Pixel-based images 
are not resolution 

independent

Pixel replication

Cubic splineCubic spline, 
sharpened
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Polygon-based 
graphics 
images are 
resolution 
independent

Pixel-based images 
are not resolution 

independent

Pixel replication

Cubic splineCubic spline, 
sharpened

Training-based 
super-resolution
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3 approaches to perceptual 
sharpening

(1)  Sharpening;  boost existing high 
frequencies.

(2)  Use multiple frames to obtain 
higher sampling rate in a still frame.

(3)  Estimate high frequencies not 
present in image, although implicitly 
defined.

In this talk, we focus on (3), which 
we’ll call “super-resolution”.

spatial frequency

am
pl

itu
de

spatial frequency
am

pl
itu

de
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•  Schultz and Stevenson, 1994
•  Pentland and Horowitz, 1993
• fractal image compression (Polvere, 1998; Iterated Systems)
• astronomical image processing (eg. Gull and Daniell, 1978;  

“pixons” http://casswww.ucsd.edu/puetter.html)
• Follow-on:  Jianchao Yang, John Wright, Thomas S. Huang, 

Yi Ma: Image super-resolution as sparse representation of raw 
image patches. CVPR 2008

Super-resolution: other approaches

40
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Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:  
“giraffes” and “urban skyline”.
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Do a first interpolation

Zoomed low-resolution

Low-resolution

42
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Zoomed low-resolution

Low-resolution

Full frequency original
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Full freq. original
RepresentationZoomed low-freq.
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True high freqs
Low-band input

(contrast normalized, 
PCA fitted)

Full freq. original
RepresentationZoomed low-freq.

(to minimize the complexity of the relationships we have to learn,
we remove the lowest frequencies from the input image, 

and normalize the local contrast level).
45
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Training data samples (magnified)

......

Gather ~100,000 patches

low freqs.

high freqs.
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True high freqs.Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.
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Input low freqs.

Training data samples (magnified)

......

Nearest neighbor estimate

low freqs.

high freqs.

Estimated high freqs.
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Example:  input image patch, and closest 
matches from database

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database
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Assume overlapped regions, d, of hi-res. 
patches differ by Gaussian observation noise:

Scene-scene compatibility function, Ψ
(xi, xj) 

d

Uniqueness constraint,
not smoothness.
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Image-scene compatibility 
function, Φ(xi, yi)

 Assume Gaussian noise takes you from 
observed image patch to synthetic sample:

y

x
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 Markov network

image patches

Φ(xi, yi)

Ψ(xi, xj)
scene patches
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Belief Propagation
Input
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Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.
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Iter. 1

Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.
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Iter. 3

Iter. 1

Belief Propagation
Input

Iter. 0

After a few iterations of belief propagation, the 
algorithm selects spatially consistent high resolution 

interpretations for each low-resolution patch of the 
input image.
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Zooming 2 octaves

85 x 51 input

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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Max. likelihood zoom to 340x204

Zooming 2 octaves

85 x 51 input

Cubic spline zoom to 340x204

We apply the super-resolution 
algorithm recursively, zooming 

up 2 powers of 2, or a factor of 4 
in each dimension.
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True
200x232

Original
50x58

(cubic spline implies 
thin plate prior)

Now we examine the effect of the prior 
assumptions made about images on the 

high resolution reconstruction.
First, cubic spline interpolation.
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Cubic spline
True

200x232

Original
50x58

(cubic spline implies 
thin plate prior)
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True

Original
50x58

Training images

Next, train the Markov network 
algorithm on a world of random noise 

images.
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Markov
network True

Original
50x58

The algorithm learns that, in such a 
world, we add random noise when zoom 

to a higher resolution.

Training images
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True

Original
50x58

Training images

Next, train on a world of vertically 
oriented rectangles.
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Markov
network True

Original
50x58

The Markov network algorithm 
hallucinates those vertical rectangles that 

it was trained on.

Training images
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True

Original
50x58

Training images

Now train on a generic collection of 
images.
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Markov
network True

Original
50x58

The algorithm makes a reasonable guess 
at the high resolution image, based on its 

training images.

Training images
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Generic training images

Next, train on a generic 
set of training images.  

Using the same camera 
as for the test image, but 

a random collection of 
photographs.
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Cubic 
Spline

Original
70x70

Markov
net, 
training:
generic

True
280x280
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Kodak Imaging Science Technology Lab test.

3 test images, 640x480, to be
zoomed up by 4 in each 
dimension.

8 judges, making 2-alternative, 
forced-choice comparisons.
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Algorithms compared

• Bicubic Interpolation
• Mitra's Directional Filter
• Fuzzy Logic Filter
•Vector Quantization
• VISTA
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Bicubic spline Altamira VISTA
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Bicubic spline Altamira VISTA
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User preference test results

“The observer data indicates that six of the observers ranked
Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms….

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms.  However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original
scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”
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Training images
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Training images
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Training images
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Training image

74

Monday, March 7, 2011



Processed image
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code available online

76
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Motion application
image patches

image

scene

scene patches
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• Aperture problem
• Resolution through propagation of 

information
• Figure/ground discrimination

What behavior should we see in a 
motion algorithm?

78

Monday, March 7, 2011



The aperture problem
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
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The aperture problem
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
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The aperture problem
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The aperture problem
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motion program demo
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Motion estimation results 
(maxima of scene probability distributions displayed)

Initial guesses only 
show motion at edges.

Iterations 0 and 1

Inference:

Image data
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Motion estimation results 

Figure/ground still 
unresolved here.

(maxima of scene probability distributions displayed)

Iterations 2 and 3
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Motion estimation results 

Final result compares well with vector 
quantized true (uniform) velocities.

(maxima of scene probability distributions displayed)

Iterations 4 and 5
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• Stereo
• Motion estimation
• Labelling shading and reflectance
• Segmentation
• Many others…

Vision applications of MRF’s 
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihoodPosterior Joint

86

Monday, March 7, 2011



Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihoodPosterior Joint
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihoodPosterior Joint

1. Generative approach models joint 
 Markov random field (MRF)

2. Discriminative approach models posterior directly
   Conditional random field (CRF) 86
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I (pixels)
Image Plane

i

j

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj Unary Potential
  φi(I|hi,θi)

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj Unary Potential
  φi(I|hi,θi)

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

MRF PriorLikelihood

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj Unary Potential
  φi(I|hi,θi)

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

MRF PriorLikelihood

 Generative Markov Random Field 

Prior has no 
dependency on I87
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

Discriminative approach
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

Discriminative approach

I (pixels)
Image Plane

i

j

hi

hj
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

• Dependency on I allows introduction 
of pairwise terms that make use of 
image.

• For example, neighboring labels 
should be similar only if pixel colors 
are 
similar  Contrast term

Discriminative approach

I (pixels)
Image Plane

i

j

hi

hj
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

• Dependency on I allows introduction 
of pairwise terms that make use of 
image.

• For example, neighboring labels 
should be similar only if pixel colors 
are 
similar  Contrast term

Discriminative approach

I (pixels)
Image Plane

i

j

hi

hj

e.g Kumar and Hebert 
2003
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OBJCUT

Ω (shape 
parameter)

Kumar, Torr & Zisserman 2005

PairwiseUnary

• Ω is a shape prior on the labels from a 
Layered Pictorial Structure (LPS) model

• Segmentation by:

- Match LPS model to image (get 
number of samples, each with a 
different pose

-Marginalize over the samples
 using a single graph cut 
[Boykov & Jolly, 2001]

Label 
smoothness

ContrastDistance 
from Ω 

Color 
Likelihood  
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I (pixels)
Image Plane

i

j

hi

hj

Figure from 
Kumar et al., 

CVPR 2005

OBJCUT

Ω (shape 
parameter)

Kumar, Torr & Zisserman 2005

PairwiseUnary

• Ω is a shape prior on the labels from a 
Layered Pictorial Structure (LPS) model

• Segmentation by:

- Match LPS model to image (get 
number of samples, each with a 
different pose

-Marginalize over the samples
 using a single graph cut 
[Boykov & Jolly, 2001]

Label 
smoothness

ContrastDistance 
from Ω 

Color 
Likelihood  
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OBJCUT:
Shape prior - Ω - Layered Pictorial Structures (LPS)

• Generative model
• Composition of parts + spatial layout

Layer 2

Layer 1

Parts in Layer 2 can occlude parts in Layer 1

Spatial Layout
(Pairwise Configuration)

Kumar, et al. 2004, 
2005
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In the absence of a clear boundary between object and 
background

SegmentationImage

OBJCUT: Results
Using LPS Model for Cow

91
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Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)

92

Monday, March 7, 2011



True joint 
probability

93

Monday, March 7, 2011



True joint 
probability

Observed 
marginal 
distributions
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Initial guess at joint probability
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IPF update equation, for maximum likelihood 
estimate of clique potentials

Scale the previous iteration’s estimate for the joint 
probability by the ratio of the true to the predicted 
marginals.

Gives gradient ascent in the likelihood of the joint 
probability, given the observations of the marginals.

See:  Michael Jordan’s book on graphical models
95
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Convergence to correct marginals by IPF algorithm
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Convergence of to correct marginals by IPF algorithm
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IPF results for this example: 
comparison of joint probabilities

Initial guess Final maximum
entropy estimate

True joint 
probability
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• Can show that for the ML estimate of the clique 
potentials, φc(xc), the empirical marginals equal 
the model marginals,

• Because the model marginals are proportional to 
the clique potentials, we have the IPF update rule 
for φc(xc), which scales the model marginals to 
equal the observed marginals:

• Performs coordinate ascent in the likelihood of the 
MRF parameters, given the observed data.

Application to MRF parameter estimation

Reference:  unpublished notes by Michael Jordan, and by Roweis: http://
www.cs.toronto.edu/~roweis/csc412-2004/notes/lec11x.pdf
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Learning MRF parameters, labeled data

Iterative proportional fitting lets you make a maximum 
likelihood estimate a joint distribution from observations 
of various marginal distributions.

Applied to learning MRF clique potentials: 
 (1) measure the pairwise marginal statistics (histogram 

state co-occurrences in labeled training data).  
 (2) guess the clique potentials (use measured marginals to 

start).  
 (3)  do inference to calculate the model’s marginals for 

every node pair.
 (4) scale each clique potential for each state pair by the 

empirical over model marginal
100
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