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Motion application
image patches

image

scene

scene patches
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• Aperture problem
• Resolution through propagation of 

information
• Figure/ground discrimination

What behavior should we see in a 
motion algorithm?

3
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The aperture problem
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

4

Wednesday, March 9, 2011

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


The aperture problem
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

4

Wednesday, March 9, 2011

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


The aperture problem
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The aperture problem
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motion program demo
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Motion estimation results 
(maxima of scene probability distributions displayed)

Initial guesses only 
show motion at edges.

Iterations 0 and 1

Inference:

Image data
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Motion estimation results 

Figure/ground still 
unresolved here.

(maxima of scene probability distributions displayed)

Iterations 2 and 3
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Motion estimation results 

Final result compares well with vector 
quantized true (uniform) velocities.

(maxima of scene probability distributions displayed)

Iterations 4 and 5
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• Stereo
• Motion estimation
• Labelling shading and reflectance
• Segmentation
• Many others…

Vision applications of MRF’s 

10
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihoodPosterior Joint

11
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihoodPosterior Joint
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Random Fields for segmentation

I = Image pixels (observed)
h = foreground/background labels (hidden) – one label per pixel
θ = Parameters

PriorLikelihoodPosterior Joint

1. Generative approach models joint 
 Markov random field (MRF)

2. Discriminative approach models posterior directly
   Conditional random field (CRF) 11
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I (pixels)
Image Plane

i

j

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

 Generative Markov Random Field 

12
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj Unary Potential
  φi(I|hi,θi)

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj Unary Potential
  φi(I|hi,θi)

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

MRF PriorLikelihood

 Generative Markov Random Field 
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I (pixels)
Image Plane

i

j

h (labels)
∈
{foreground,b
ackground}

hi

hj Unary Potential
  φi(I|hi,θi)

Pairwise Potential (MRF)
  ψij(hi, hj|θij)

MRF PriorLikelihood

 Generative Markov Random Field 

Prior has no 
dependency on I12
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

Discriminative approach

13
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

Discriminative approach

I (pixels)
Image Plane

i

j

hi

hj
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

• Dependency on I allows introduction 
of pairwise terms that make use of 
image.

• For example, neighboring labels 
should be similar only if pixel colors 
are 
similar  Contrast term

Discriminative approach

I (pixels)
Image Plane

i

j

hi

hj
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Conditional Random Field
Lafferty, McCallum and Pereira 
2001

PairwiseUnary

• Dependency on I allows introduction 
of pairwise terms that make use of 
image.

• For example, neighboring labels 
should be similar only if pixel colors 
are 
similar  Contrast term

Discriminative approach

I (pixels)
Image Plane

i

j

hi

hj

e.g Kumar and Hebert 
2003
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OBJCUT

Ω (shape 
parameter)

Kumar, Torr & Zisserman 2005

PairwiseUnary

• Ω is a shape prior on the labels from a 
Layered Pictorial Structure (LPS) model

• Segmentation by:

- Match LPS model to image (get 
number of samples, each with a 
different pose

-Marginalize over the samples
 using a single graph cut 
[Boykov & Jolly, 2001]

Label 
smoothness

ContrastDistance 
from Ω 

Color 
Likelihood  

14
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I (pixels)
Image Plane

i

j

hi

hj

Figure from 
Kumar et al., 

CVPR 2005

OBJCUT

Ω (shape 
parameter)

Kumar, Torr & Zisserman 2005

PairwiseUnary

• Ω is a shape prior on the labels from a 
Layered Pictorial Structure (LPS) model

• Segmentation by:

- Match LPS model to image (get 
number of samples, each with a 
different pose

-Marginalize over the samples
 using a single graph cut 
[Boykov & Jolly, 2001]

Label 
smoothness

ContrastDistance 
from Ω 

Color 
Likelihood  
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OBJCUT:
Shape prior - Ω - Layered Pictorial Structures (LPS)

• Generative model
• Composition of parts + spatial layout

Layer 2

Layer 1

Parts in Layer 2 can occlude parts in Layer 1

Spatial Layout
(Pairwise Configuration)

Kumar, et al. 2004, 
2005
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In the absence of a clear boundary between object and 
background

SegmentationImage

OBJCUT: Results
Using LPS Model for Cow

16
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Outline of MRF section

• Inference in MRF’s.
– Gibbs sampling, simulated annealing
– Iterated conditional modes (ICM)
– Belief propagation

• Application example—super-resolution
– Graph cuts
– Variational methods

• Learning MRF parameters.
– Iterative proportional fitting (IPF)

17
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True joint 
probability

18
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True joint 
probability

Observed 
marginal 
distributions
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Wednesday, March 9, 2011



Initial guess at joint probability
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IPF update equation, for maximum likelihood 
estimate of joint probability

Scale the previous iteration’s estimate for the joint 
probability by the ratio of the true to the predicted 
marginals.

Gives gradient ascent in the likelihood of the joint 
probability, given the observations of the marginals.

See:  Michael Jordan’s book on graphical models
20
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Convergence to correct marginals by IPF algorithm
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Convergence of to correct marginals by IPF algorithm
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IPF results for this example: 
comparison of joint probabilities

Initial guess Final maximum
entropy estimate

True joint 
probability

23
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• Can show that for the ML estimate of the clique 
potentials, φc(xc), the empirical marginals equal 
the model marginals,

• Because the model marginals are proportional to 
the clique potentials, we have the IPF update rule 
for φc(xc), which scales the model marginals to 
equal the observed marginals:

• Performs coordinate ascent in the likelihood of the 
MRF parameters, given the observed data.

Application to MRF parameter estimation

Reference:  unpublished notes by Michael Jordan, and by Roweis: http://
www.cs.toronto.edu/~roweis/csc412-2004/notes/lec11x.pdf

24
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Learning MRF parameters, labeled data

Iterative proportional fitting lets you make a maximum 
likelihood estimate a joint distribution from observations 
of various marginal distributions.

Applied to learning MRF clique potentials: 
 (1) measure the pairwise marginal statistics (histogram 

state co-occurrences in labeled training data).  
 (2) guess the clique potentials (use measured marginals to 

start).  
 (3)  do inference to calculate the model’s marginals for 

every node pair.
 (4) scale each clique potential for each state pair by the 

empirical over model marginal
25
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Image formation

26
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The	  structure	  of	  ambient	  light
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The	  structure	  of	  ambient	  light
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The	  structure	  of	  ambient	  light
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The	  PlenopBc	  FuncBon
Adelson & Bergen, 91
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Measuring	  the	  PlenopBc	  funcBon	  

Why is there no picture appearing on the paper?
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Light rays from many different 
parts of the scene strike the same 
point on the paper.

Forsyth & Ponce
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Measuring	  the	  PlenopBc	  funcBon	  

The camera obscura
The pinhole camera
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The pinhole camera only allows rays from one point in the 
scene to strike each point of the paper.

Light rays from many different 
parts of the scene strike the same 
point on the paper.

Forsyth & Ponce
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pinhole	  camera	  demos

34
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Problem	  Set	  7

http://www.foundphotography.com/PhotoThoughts/archives/2005/04/pinhole_camera_2.html
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Problem	  Set	  7
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Effect	  of	  pinhole	  size

Wandell, Foundations of Vision, Sinauer, 1995
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Wandell, Foundations of Vision, Sinauer, 1995
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Playing	  with	  pinholes
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Two	  pinholes
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Anaglyph	  pinhole	  camera
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Anaglyph	  pinhole	  camera
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Anaglyph	  pinhole	  camera
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Synthesis of new views

Anaglyph 
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Problem	  set	  7

• Build	  the	  device

• Take	  some	  pictures	  and	  put	  them	  in	  the	  report

• Take	  anaglyph	  images	  	  

• Calibrate	  camera

• Recover	  depth	  for	  some	  points	  in	  the	  image
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Cameras, lenses, and calibration

• Camera models
• Projections
• Calibration
• Lenses
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Perspective projection
camera world

Cartesian coordinates:
We have, by similar triangles, that                       

(x, y, z) -> (f x/z, f y/z, -f)
Ignore the third coordinate, and get

€ 

(x,y,z)→ ( f x
z
, f y

z
)
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Perspective projection

y

camera world

Cartesian coordinates:
We have, by similar triangles, that                       

(x, y, z) -> (f x/z, f y/z, -f)
Ignore the third coordinate, and get

€ 

(x,y,z)→ ( f x
z
, f y

z
)
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Perspective projection

y
z

camera world

Cartesian coordinates:
We have, by similar triangles, that                       

(x, y, z) -> (f x/z, f y/z, -f)
Ignore the third coordinate, and get

€ 

(x,y,z)→ ( f x
z
, f y

z
)
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Perspective projection

y

y’

z

camera world

Cartesian coordinates:
We have, by similar triangles, that                       

(x, y, z) -> (f x/z, f y/z, -f)
Ignore the third coordinate, and get

€ 

(x,y,z)→ ( f x
z
, f y

z
)
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Perspective projection

y

y’

f

z

camera world

Cartesian coordinates:
We have, by similar triangles, that                       

(x, y, z) -> (f x/z, f y/z, -f)
Ignore the third coordinate, and get

€ 

(x,y,z)→ ( f x
z
, f y

z
)
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Perspective projection

y

y’

f

z

camera world

Cartesian coordinates:
We have, by similar triangles, that                       

(x, y, z) -> (f x/z, f y/z, -f)
Ignore the third coordinate, and get

€ 

(x,y,z)→ ( f x
z
, f y

z
)
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Common to draw film plane
in front  of the focal point.
Moving the film plane merely
scales the image.

Forsyth&Ponce
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• Points go to points
• Lines go to lines
• Planes go to whole image or half-planes.
• Polygons go to polygons
• Degenerate cases

– line through focal point to point
– plane through focal point to line

Geometric properties of projection
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Line in 3-space
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€ 

x'(t) =
fx
z

=
f (x0 + at)
z0 + ct

y'(t) =
fy
z

=
f (y0 + bt)
z0 + ct

Line in 3-space Perspective projection 
of that line
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€ 

x'(t) =
fx
z

=
f (x0 + at)
z0 + ct

y'(t) =
fy
z

=
f (y0 + bt)
z0 + ct

Line in 3-space Perspective projection 
of that line

In the limit as 
we have (for               ):
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€ 

x'(t) =
fx
z

=
f (x0 + at)
z0 + ct

y'(t) =
fy
z

=
f (y0 + bt)
z0 + ct

Line in 3-space Perspective projection 
of that line

€ 

x'(t)⎯ → ⎯ 
fa
c

y'(t)⎯ → ⎯ 
fb
c

In the limit as 
we have (for               ):
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€ 

x'(t) =
fx
z

=
f (x0 + at)
z0 + ct

y'(t) =
fy
z

=
f (y0 + bt)
z0 + ct

Line in 3-space Perspective projection 
of that line

€ 

x'(t)⎯ → ⎯ 
fa
c

y'(t)⎯ → ⎯ 
fb
c

This tells us that any set of parallel 
lines (same a, b, c parameters) project 
to the same point (called the 
vanishing point).

In the limit as 
we have (for               ):
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Vanishing point

y

z

camera
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y

z
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z
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Vanishing point

y
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Vanishing point

y

z

camera
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Vanishing point

y

z

camera
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http://www.ider.herts.ac.uk/school/courseware/
graphics/two_point_perspective.html
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Vanishing points

• Each set of parallel lines 
(=direction) meets at a 
different point
– The vanishing point for this 

direction

• Sets of parallel lines on 
the same plane lead to 
collinear vanishing points.   
– The line is called the 

horizon for that plane
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What if you photograph a brick wall 
head-on?

x

y
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What if you photograph a brick wall 
head-on?

x

y
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Brick wall line in 3-space
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€ 

x'(t) =
f ⋅ (x0 + at)

z0

y'(t) =
f ⋅ y0
z0

Brick wall line in 3-space Perspective projection of that line
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€ 

x'(t) =
f ⋅ (x0 + at)

z0

y'(t) =
f ⋅ y0
z0

Brick wall line in 3-space Perspective projection of that line

All bricks have same z0.  Those in same row have same y0

Thus, a brick wall, photographed head-on, gets rendered as set of parallel 
lines in the image plane.
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Other projection models:  Orthographic 
projection
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Other projection models:  
Weak perspective

• Issue
– perspective effects, but not 

over the scale of individual 
objects

– collect points into a group 
at about the same depth, 
then divide each point by 
the depth of its group

– Adv: easy
– Disadv: only approximate
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(1) Perspective: 

(2) Weak perspective:

(3) Orthographic:

Three camera projections

3-d point     2-d image position
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Homogeneous coordinates
Is the perspective projection a linear transformation?

Slide by Steve Seitz
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Homogeneous coordinates
Is the perspective projection a linear transformation?

no—division by z is nonlinear

Slide by Steve Seitz
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Homogeneous coordinates
Is the perspective projection a linear transformation?

Trick:  add one more coordinate:

homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting from homogeneous coordinates

no—division by z is nonlinear

Slide by Steve Seitz
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Perspective Projection
• Projection is a matrix multiply using homogeneous 

coordinates:

This is known as perspective projection
• The matrix is the projection matrix

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Orthographic Projection
Special case of perspective projection

• Distance from the COP to the PP is infinite

• Also called “parallel projection”
• What’s the projection matrix?

Image World

Slide by Steve Seitz

         
          ?
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Orthographic Projection
Special case of perspective projection

• Distance from the COP to the PP is infinite

• Also called “parallel projection”
• What’s the projection matrix?

Image World
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Orthographic Projection
Special case of perspective projection

• Distance from the COP to the PP is infinite

• Also called “parallel projection”
• What’s the projection matrix?

Image World

Slide by Steve Seitz
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Camera calibration

Use the camera to tell you things about the 
world:
– Relationship between coordinates in the world 

and coordinates in the image:  geometric 
camera calibration, see Szeliski, section 5.2, 
5.3 for references

– (Relationship between intensities in the world 
and intensities in the image: photometric image 
formation, see Szeliski, sect. 2.2.)

Wednesday, March 9, 2011



Measuring height

RH

v
r

b

t

H

b0

t0
vv v

vanishing line (horizon)

One reason to calibrate a camera
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Another reason to calibrate a camera

baseline

optical 
center 
(left)

optical 
center 
(right)

Foca

World 

Depth of image 
point 

image 
point 
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Translation and rotation

€ 

A px

€ 

A py

€ 

A pz

  

€ 

A
B t 

  

€ 

 p 
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Translation and rotation

  

€ 

B  p =A
BR A p +A

B t 
€ 

A px

€ 

A py

€ 

A pz

  

€ 

A
B t 

  

€ 

 p 
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Translation and rotation

  

€ 

B  p =A
BR A p +A

B t 
€ 

A px

€ 

A py

€ 

A pz

  

€ 

A
B t 

“as described in the 
coordinates of frame B”

  

€ 

 p 
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Translation and rotation

Let’s write

as a single matrix equation:

  

€ 

B  p =A
BR A p +A

B t 
€ 

A px

€ 

A py

€ 

A pz

  

€ 

A
B t 

“as described in the 
coordinates of frame B”

  

€ 

 p 
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Translation and rotation

Let’s write

as a single matrix equation:

  

€ 

B  p =A
BR A p +A

B t 

€ 

B px
B py
B pz
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=

− − −

− A
BR −

− − −

|

A
B t
|

0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

A px
A py
A pz
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

€ 

A px

€ 

A py

€ 

A pz

  

€ 

A
B t 

“as described in the 
coordinates of frame B”

  

€ 

 p 
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Translation and rotation, written in each set of coordinates

Non-homogeneous coordinates

  

€ 

B  p =A
BR A p +A

B t 
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Translation and rotation, written in each set of coordinates

Non-homogeneous coordinates

  

€ 

B  p =A
BR A p +A

B t 

  

€ 

A
BC =

− − −

− A
B R −

− − −

|

A
B  t 
|

0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  

€ 

B  p =A
BC A p 

Homogeneous coordinates

where
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Intrinsic parameters:  from idealized 
world coordinates to pixel values

Forsyth&Ponce

Perspective projection
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Intrinsic parameters

But “pixels” are in some 
arbitrary spatial units
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Intrinsic parameters

Maybe pixels are not 
square
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Intrinsic parameters

We don’t know the origin 
of our camera pixel 
coordinates
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Intrinsic parameters

May be skew between 
camera pixel axes
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Intrinsic parameters

May be skew between 
camera pixel axes
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Intrinsic parameters

May be skew between 
camera pixel axes
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Intrinsic parameters, homogeneous coordinates
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Intrinsic parameters, homogeneous coordinates

Using homogenous coordinates,
we can write this as:
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Intrinsic parameters, homogeneous coordinates

€ 

u
v
1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

=

α −α cot(θ) u0
0 β

sin(θ)
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0 0 1
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⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

Using homogenous coordinates,
we can write this as:

Wednesday, March 9, 2011



Intrinsic parameters, homogeneous coordinates

€ 

u
v
1

⎛ 
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⎜ ⎜ 
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⎟ 

x
y
z
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
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⎟ 
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⎟ 

Using homogenous coordinates,
we can write this as:

or:
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€ 

 p     =            K              C p 

Intrinsic parameters, homogeneous coordinates

€ 

u
v
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Using homogenous coordinates,
we can write this as:

or:
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€ 

 p     =            K              C p 

Intrinsic parameters, homogeneous coordinates
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u
v
1

⎛ 
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⎜ 
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⎞ 
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⎟ 
⎟ ⎟ 

=

α −α cot(θ) u0
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⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
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⎜ 
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⎜ 
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⎞ 
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⎟ 
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⎟ 
⎟ 

Using homogenous coordinates,
we can write this as:

or:

In camera-based coords
In pixels
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Extrinsic parameters:  translation 
and rotation of camera frame
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Extrinsic parameters:  translation 
and rotation of camera frame

  

€ 

C  p =W
CR W p +W

C t Non-homogeneous 
coordinates
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Extrinsic parameters:  translation 
and rotation of camera frame

  

€ 

C  p =W
CR W p +W

C t Non-homogeneous 
coordinates

Homogeneous 
coordinates

  

€ 

C  p 
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 
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⎟ 
⎟ 

=

− − −

− W
C R −

− − −

|

W
C  t 
|

0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
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⎟ 
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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 p   =   K  C p 
Intrinsic

Extrinsic
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⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Extrinsic
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World coordinates
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Other ways to write the same equation

€ 

u
v
1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

=

. m1
T . .

. m2
T . .

. m3
T . .

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

W px
W py
W pz
1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  

€ 

 p = M  W p 

pixel coordinates

world coordinates

Conversion back from homogeneous 
coordinates leads to:

  

€ 

u =
m1

T  P 
m3

T  P 

v =
m2

T  P 
m3

T  P 
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Calibration target

http://www.kinetic.bc.ca/CompVision/opti-CAL.html

Find the position, ui and vi, in pixels, 
of each calibration object feature point.
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Camera calibration
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Camera calibration
From before, we had these equations 
relating image positions,
u,v, to points at 3-d positions P (in 
homogeneous coordinates):
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Camera calibration

So for each feature point, i, we have:

From before, we had these equations 
relating image positions,
u,v, to points at 3-d positions P (in 
homogeneous coordinates):
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Camera calibration

Stack all these measurements of  i=1…n points 

into a big matrix:
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Camera calibration

Stack all these measurements of  i=1…n points 

into a big matrix:
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Showing all the elements:

In vector form: Camera calibration
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We want to solve for the unit vector m (the stacked one)
that minimizes

Q                                  m = 0

The minimum eigenvector of the matrix QTQ gives us that
(see Forsyth&Ponce, 3.1), because it is the unit vector x that 
minimizes xT QTQ  x.

Camera calibration
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Once you have the M matrix, can recover the 
intrinsic and extrinsic parameters.

Camera calibration
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Why do we need lenses?
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The reason for lenses:  light 
gathering ability

Hidden assumption in 
using a lens:  the BRDF 
of the surfaces you look 
at will be well-behaved
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Animal	  Eyes

Animal Eyes. Land & Nilsson. Oxford Univ. Press
Wednesday, March 9, 2011



Derivation of Snell’s law

n2

n1

€ 

λ1 =
c

ω n1

€ 

λ1 = Lsin(α1)

€ 

L

Wavelength of light waves 
scales inversely with n.  
This requires that plane 
waves bend, according to

€ 

n1 sin(α1) = n2 sin(α2)€ 

α1

€ 

α1

€ 

α2

€ 

α2

€ 

n1 sin(α1) =
c
ω L

= n2 sin(α2)
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Refraction:  Snell’s law

For small angles, 
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Spherical lens
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Forsyth and Ponce
Wednesday, March 9, 2011



First order optics

f

D/2
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Paraxial refraction equation

Relates distance from sphere 
and sphere radius to bending 
angles of light ray, for lens with 
one spherical surface.
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Paraxial refraction equation

Relates distance from sphere 
and sphere radius to bending 
angles of light ray, for lens with 
one spherical surface.
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Paraxial refraction equation

Relates distance from sphere 
and sphere radius to bending 
angles of light ray, for lens with 
one spherical surface.
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Deriving the lensmaker’s formula
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The thin lens, first order optics

Forsyth&Ponce

The lensmaker’s equation:
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What camera projection model 
applies for a thin lens?
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What camera projection model 
applies for a thin lens?

The perspective projection of a pinhole camera.  But note 
that many more of the rays leaving from P arrive at P’
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Lens demonstration

• Verify:  
– Focusing property
– Lens maker’s equation
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More accurate models of real 
lenses

• Finite lens thickness
• Higher order approximation to
• Chromatic aberration
• Vignetting
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Thick lens

Forsyth&Ponce
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Third order optics

f

D/2
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Paraxial refraction equation, 
3rd order optics

Forsyth&Ponce
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Spherical aberration (from 3rd 
order optics

Longitudinal spherical aberration

Tr
an

sv
er

se
 sp

he
ric

al
 a

be
rr

at
io

n

Forsyth&Ponce
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Other 3rd order effects

• Coma, astigmatism, field curvature, 
distortion.

no distortion pincushion 
distortion

barrel 
distortion

Forsyth&Ponce
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Lens systems

Forsyth&Ponce

Lens systems can be designed to correct for 
aberrations described by 3rd order optics
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Vignetting

Forsyth&Ponce
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Chromatic aberration

(desirable for prisms, bad for lenses)
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Other (possibly annoying) 
phenomena

• Chromatic aberration
– Light at different wavelengths follows different paths; 

hence, some wavelengths are defocussed
– Machines: coat the lens
– Humans: live with it 

• Scattering at the lens surface
– Some light entering the lens system is reflected off each 

surface it encounters (Fresnel’s law gives details)
– Machines: coat the lens, interior
– Humans: live with it (various scattering phenomena are 

visible in the human eye)
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Summary

• Want to make images
• Pinhole camera models the geometry of 

perspective projection
• Lenses make it work in practice
• Models for lenses

– Thin lens, spherical surfaces, first order 
optics 

– Thick lens, higher-order optics, vignetting.
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