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Camera calibration

Use the camera to tell you things about the 
world:
– Relationship between coordinates in the world 

and coordinates in the image:  geometric 
camera calibration, see Szeliski, chapter 6 (see 
ch. 11 on stereo)
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Another reason to calibrate a camera
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(1) Perspective: 

(2) Weak perspective:

(3) Orthographic:

Three camera projections

3-d point     2-d image position
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Is the perspective projection a linear transformation?

Slide by Steve Seitz
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Is the perspective projection a linear transformation?

no—division by z is nonlinear

Slide by Steve Seitz
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Homogeneous coordinates
Is the perspective projection a linear transformation?

no—division by z is nonlinear

Slide by Steve Seitz
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Homogeneous coordinates
Is the perspective projection a linear transformation?

Trick:  add one more coordinate:

homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting from homogeneous coordinates

no—division by z is nonlinear

Slide by Steve Seitz
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Perspective Projection
Euclidean coords

3d point2d projection
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2d projection

3d point
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3d point
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Homogeneous coords
2d projection

3d point

Perspective Projection

Perspective projection is a matrix multiply using 
homogeneous coordinates.  The matrix is called the 
projection matrix.

Euclidean coords
3d point2d projection
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Perspective Projection
How does scaling the projection matrix change the transformation?

Slide by Steve Seitz
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Orthographic Projection
Special case of perspective projection

• Distance from the COP to the PP is infinite

• Also called “parallel projection”
• What’s the projection matrix?

Image World

Slide by Steve Seitz

         
          ?
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Orthographic Projection
Special case of perspective projection

• Distance from the COP to the PP is infinite

• Also called “parallel projection”
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Orthographic Projection
Special case of perspective projection

• Distance from the COP to the PP is infinite

• Also called “parallel projection”
• What’s the projection matrix?

Image World

Slide by Steve Seitz
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Translation and rotation
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Translation and rotation
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Translation and rotation
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Translation and rotation

Let’s write

as a single matrix equation:
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Translation and rotation

Let’s write

as a single matrix equation:
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Translation and rotation, written in each set of coordinates

Non-homogeneous coordinates
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Translation and rotation, written in each set of coordinates

Non-homogeneous coordinates
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where
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Intrinsic parameters:  from idealized 
world coordinates to pixel values

Forsyth&Ponce

Perspective projection
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Intrinsic parameters

But “pixels” are in some 
arbitrary spatial units
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Intrinsic parameters

Maybe pixels are not 
square
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Intrinsic parameters

We don’t know the origin 
of our camera pixel 
coordinates
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Intrinsic parameters

May be skew between 
camera pixel axes
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Intrinsic parameters

May be skew between 
camera pixel axes
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Intrinsic parameters

May be skew between 
camera pixel axes
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Intrinsic parameters, homogeneous coordinates
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Intrinsic parameters, homogeneous coordinates

Using homogenous coordinates,
we can write this as:
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Intrinsic parameters, homogeneous coordinates
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Intrinsic parameters, homogeneous coordinates
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€ 

 p     =            K              C p 

Intrinsic parameters, homogeneous coordinates
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In camera-based coords
In pixels
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Extrinsic parameters:  translation 
and rotation of camera frame
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Extrinsic parameters:  translation 
and rotation of camera frame
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Extrinsic parameters:  translation 
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce

  

€ 

 p   =   K  C p 
Intrinsic

Extrinsic

  

€ 

C  p 
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=

− − −

− W
C R −

− − −

|

W
C  t 
|

0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

W  p 
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

World coordinates

Monday, March 14, 2011



Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce

  

€ 

 p   =   K  C p 
Intrinsic

Extrinsic

  

€ 

C  p 
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

=

− − −

− W
C R −

− − −

|

W
C  t 
|

0 0 0 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

W  p 
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

World coordinates
Camera 
coordinates

pixels

Monday, March 14, 2011



Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates

Forsyth&Ponce
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Other ways to write the same equation
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Other ways to write the same equation
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pixel coordinates

world coordinates

notational 
definition

Conversion of the 2-d position back from 
homogeneous coordinates leads to:

is a vector 
containing the 4 
elements of the ith 
row of the matrix M
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Calibration target

http://www.kinetic.bc.ca/CompVision/opti-CAL.html

Find the position, ui and vi, in pixels, 
of each calibration object feature point.
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Camera calibration
From before, we had these equations 
relating image positions,
u,v, to points at 3-d positions P (in 
homogeneous coordinates):
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Camera calibration
From before, we had these equations 
relating image positions,
u,v, to points at 3-d positions P (in 
homogeneous coordinates):

So for each feature point, i, we have:
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Camera calibration
Stack all these measurements of  i=1…n points 

into a big matrix (cluttering vector arrows omitted from P and m):
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Showing all the elements:

In vector form: Camera calibration
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We want to solve for the unit vector m (the stacked one)
that minimizes

Q                                  m = 0

The minimum eigenvector of the matrix QTQ gives us that
(see Forsyth&Ponce, 3.1), because it is the unit vector x that 
minimizes xT QTQ  x.

Camera calibration
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Once you have the M matrix, can recover the 
intrinsic and extrinsic parameters.

Camera calibration
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Stereo vision
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Stereo vision

~6cm
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Stereo vision

~6cm ~50cm
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Depth without objects
Random dot stereograms (Bela Julesz)
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Depth without objects
Random dot stereograms (Bela Julesz)
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Depth without objects
Random dot stereograms (Bela Julesz)

Julesz, 1971 
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Depth for familiar objects

(Gregory 1970; Hill and Bruce 1993, 1994; Papathomas and DeCarlo 1999)

http://www.youtube.com/watchv=G_Qwp2GdB1M

Monday, March 14, 2011

http://www.youtube.com/watch?v=G_Qwp2GdB1M
http://www.youtube.com/watch?v=G_Qwp2GdB1M


Depth for familiar objects

(Gregory 1970; Hill and Bruce 1993, 1994; Papathomas and DeCarlo 1999)

http://www.youtube.com/watchv=G_Qwp2GdB1M
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Stereo photography and stereo viewers

Invented by Sir Charles Wheatstone, 1838

Take two pictures of the same subject from two 
slightly different viewpoints and display so that each 
eye sees only one of the images.

Slide credit: Kristen Grauman
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Stereo photography and stereo viewers

Invented by Sir Charles Wheatstone, 1838 Image courtesy of fisher-price.com

Take two pictures of the same subject from two 
slightly different viewpoints and display so that each 
eye sees only one of the images.

Slide credit: Kristen Grauman
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Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923

Slide credit: Kristen Grauman
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Anaglyph	  pinhole	  camera
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Autostereograms

Images from magiceye.com

Exploit disparity as 
depth cue using 
single image.

(Single image random 
dot stereogram, 
Single image 
stereogram)

Slide credit: Kristen Grauman
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Es?ma?ng	  depth	  with	  stereo

scene point

optical 
center

image plane

Slide credit: Kristen Grauman
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Es?ma?ng	  depth	  with	  stereo

• Stereo:	  shape	  from	  dispari?es	  between	  two	  views

scene point

optical 
center

image plane

Slide credit: Kristen Grauman
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Es?ma?ng	  depth	  with	  stereo

• Stereo:	  shape	  from	  dispari?es	  between	  two	  views
• We’ll	  need	  to	  consider:

scene point

optical 
center

image plane

Slide credit: Kristen Grauman
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Es?ma?ng	  depth	  with	  stereo

• Stereo:	  shape	  from	  dispari?es	  between	  two	  views
• We’ll	  need	  to	  consider:
• Info	  on	  camera	  pose	  (“calibra?on”)

scene point

optical 
center

image plane

Slide credit: Kristen Grauman
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Es?ma?ng	  depth	  with	  stereo

• Stereo:	  shape	  from	  dispari?es	  between	  two	  views
• We’ll	  need	  to	  consider:
• Info	  on	  camera	  pose	  (“calibra?on”)

• Image	  point	  correspondences	  

scene point

optical 
center

image plane

Slide credit: Kristen Grauman
Monday, March 14, 2011



Stereo	  Topics

• Special,	  simple	  system,	  main	  idea

• More	  general	  camera	  condi?ons,	  epipolar	  constraints

– epipolar	  geometry

– epipolar	  algebra

• Image	  rec?fica?on

• Stereo	  matching	  (likelihood	  term)

• Stereo	  regulariza?on	  (prior	  term)

• Inference

– dynamic	  programming

– graph	  cuts

• Structured	  light

36
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Geometry for a simple stereo system

• First, assuming parallel optical axes, known camera 
parameters (i.e., calibrated cameras):

Slide credit: Kristen Grauman
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Slide credit: Kristen Grauman
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baseline
Slide credit: Kristen Grauman
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baseline

optical 
center 
(right)

Slide credit: Kristen Grauman
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baseline

optical 
center 
(left)

optical 
center 
(right)

Slide credit: Kristen Grauman
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baseline

optical 
center 
(left)

optical 
center 
(right)

Focal 
length

Slide credit: Kristen Grauman
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baseline

optical 
center 
(left)

optical 
center 
(right)

Focal 
length

World 
point

Slide credit: Kristen Grauman
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baseline

optical 
center 
(left)

optical 
center 
(right)

Focal 
length

World 
point

Depth of p

Slide credit: Kristen Grauman
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baseline

optical 
center 
(left)

optical 
center 
(right)

Focal 
length

World 
point

Depth of p
image point 
(right)

Slide credit: Kristen Grauman
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baseline

optical 
center 
(left)

optical 
center 
(right)

Focal 
length

World 
point

Depth of p
image point 
(left)

image point 
(right)

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
Monday, March 14, 2011



• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Similar triangles (pl, P, pr) 
and (Ol, P, Or):

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Similar triangles (pl, P, pr) 
and (Ol, P, Or):

    

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Similar triangles (pl, P, pr) 
and (Ol, P, Or):

    

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Similar triangles (pl, P, pr) 
and (Ol, P, Or):

    

Geometry for a simple stereo 
system

Slide credit: Kristen Grauman
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• Assume parallel optical axes, known camera parameters 
(i.e., calibrated cameras).  We can triangulate via:

Similar triangles (pl, P, pr) 
and (Ol, P, Or):

    

Geometry for a simple stereo 
system

disparity

Slide credit: Kristen Grauman
Monday, March 14, 2011



Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

Slide credit: Kristen Grauman
Monday, March 14, 2011



Stereo	  Topics

• Special,	  simple	  system,	  main	  idea

• More	  general	  camera	  condi6ons,	  epipolar	  constraints

– epipolar	  geometry

– epipolar	  algebra

• Image	  rec?fica?on

• Stereo	  matching	  (likelihood	  term)

• Stereo	  regulariza?on	  (prior	  term)

• Inference

– dynamic	  programming

– graph	  cuts

• Structured	  light

41
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General case, with calibrated cameras 
• The two cameras need not have parallel optical axes.

Slide credit: Kristen Grauman
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General case, with calibrated cameras 
• The two cameras need not have parallel optical axes.

Vs.

Slide credit: Kristen Grauman
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• Given p in left image, where can 
corresponding point p’ be?

Stereo correspondence constraints

Slide credit: Kristen Grauman
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Stereo correspondence constraints

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
Monday, March 14, 2011



Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

Slide credit: Kristen Grauman
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Geometry of two views constrains where the corresponding pixel for some image 
point in the first view must occur in the second view: 

Epipolar constraint

Slide credit: Kristen Grauman
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Geometry of two views constrains where the corresponding pixel for some image 
point in the first view must occur in the second view: 

• It must be on the line carved out by a plane connecting the world point 
and optical centers. 

Epipolar constraint

Slide credit: Kristen Grauman
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Geometry of two views constrains where the corresponding pixel for some image 
point in the first view must occur in the second view: 

• It must be on the line carved out by a plane connecting the world point 
and optical centers. 

Why is this useful?

Epipolar constraint

Slide credit: Kristen Grauman
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Epipolar constraint

This is useful because it reduces the correspondence 
problem to a 1D search along an epipolar line.

Image from Andrew Zisserman Slide credit: Kristen Grauman
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Epipolar geometry

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman
Monday, March 14, 2011
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• Epipolar Plane

Epipolar geometry

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman
Monday, March 14, 2011
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• Epipolar Plane

Epipole

Epipolar geometry

Epipole

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman
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• Epipolar Plane

Epipole

Epipolar Line

Epipolar geometry

Epipole

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman
Monday, March 14, 2011
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• Epipolar Plane

Epipole

Epipolar Line

Baseline

Epipolar geometry

Epipole

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Kristen Grauman
Monday, March 14, 2011
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• Baseline: line joining the camera centers
• Epipole: point of intersection of baseline with the image plane
• Epipolar plane: plane containing baseline and world point
• Epipolar line: intersection of epipolar plane with the image plane

• All epipolar lines intersect at the epipole
• An epipolar plane intersects the left and right image planes in epipolar lines

Epipolar geometry: terms

Slide credit: Kristen Grauman
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Example

Slide credit: Kristen Grauman
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Example: converging cameras

Figure from Hartley & Zisserman Slide credit: Kristen Grauman
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Example: converging cameras

Figure from Hartley & Zisserman Slide credit: Kristen Grauman
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Figure from Hartley & Zisserman

Example: parallel cameras

Slide credit: Kristen Grauman
Monday, March 14, 2011



Figure from Hartley & Zisserman

Example: parallel cameras

Where are the 
epipoles?

Slide credit: Kristen Grauman
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Figure from Hartley & Zisserman

Example: parallel cameras

Slide credit: Kristen Grauman
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Stereo	  Topics

• Special,	  simple	  system,	  main	  idea

• More	  general	  camera	  condi6ons,	  epipolar	  constraints

– epipolar	  geometry

– epipolar	  algebra

• Image	  rec?fica?on

• Stereo	  matching	  (likelihood	  term)

• Stereo	  regulariza?on	  (prior	  term)

• Inference

– dynamic	  programming

– graph	  cuts

• Structured	  light

52
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• So far, we have the explanation in terms of 
geometry.

• Now, how to express the epipolar constraints 
algebraically?

Slide credit: Kristen Grauman
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Stereo geometry, with calibrated cameras

Main idea

Slide credit: Kristen Grauman
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Stereo geometry, with calibrated cameras

Slide credit: Kristen Grauman
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Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to 
get to camera reference frame 2.

Slide credit: Kristen Grauman
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Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to 
get to camera reference frame 2.

Rotation: 3 x 3 matrix R; translation: 3 vector T.
Slide credit: Kristen Grauman
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Stereo geometry, with calibrated cameras

If the stereo rig is calibrated, we know :
how to rotate and translate camera reference frame 1 to 
get to camera reference frame 2.

Slide credit: Kristen Grauman
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From geometry to algebra

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Normal  to the plane

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0

Monday, March 14, 2011



From geometry to algebra

Normal  to the plane

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Normal  to the plane

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Normal  to the plane

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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From geometry to algebra

Normal  to the plane

Slide credit: Kristen Grauman

From unprimed to primed coordinate system

Cross with T’ on both sides

Simplify

Projecting onto X’, in the epipolar plane, gives 0
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Aside:  cross product

Slide credit: Kristen Grauman
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Aside:  cross product

Vector cross product takes two vectors 
and returns a third vector that’s 
perpendicular to both inputs.

So here, c is perpendicular to both a and 
b, which means the dot product = 0.

Slide credit: Kristen Grauman
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Matrix form of cross product

Slide credit: Kristen Grauman
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Matrix form of cross product

Can be expressed as a matrix multiplication.

Slide credit: Kristen Grauman
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Matrix form of cross product

Can be expressed as a matrix multiplication.

Slide credit: Kristen Grauman
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Matrix form of cross product

Can be expressed as a matrix multiplication.

Slide credit: Kristen Grauman
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x and x’ are scaled versions of X and X’
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x and x’ are scaled versions of X and X’

Monday, March 14, 2011



x and x’ are scaled versions of X and X’
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pts x and x’ in the image planes are scaled versions of X and X’.
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Let

pts x and x’ in the image planes are scaled versions of X and X’.
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Let

pts x and x’ in the image planes are scaled versions of X and X’.
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E is called the essential matrix, and it relates corresponding image 
points between both cameras, given the rotation and translation.

Let

pts x and x’ in the image planes are scaled versions of X and X’.
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E is called the essential matrix, and it relates corresponding image 
points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is 
constrained to lie on line defined by above.

Let

pts x and x’ in the image planes are scaled versions of X and X’.
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E is called the essential matrix, and it relates corresponding image 
points between both cameras, given the rotation and translation.

If we observe a point in one image, its position in the other image is 
constrained to lie on line defined by above.

Note: these points are in camera coordinate systems.

Let

pts x and x’ in the image planes are scaled versions of X and X’.
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0   0  0
0   0  d
0 –d  0

Essential matrix example: parallel 
cameras

For the parallel cameras, 
image of any point must 
lie on same horizontal 
line in each image plane.

Slide credit: Kristen Grauman
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image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)

Slide credit: Kristen Grauman
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image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)

What about when cameras’ optical axes are not 
parallel?

Slide credit: Kristen Grauman
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Stereo	  Topics

• Special,	  simple	  system,	  main	  idea

• More	  general	  camera	  condi?ons,	  epipolar	  constraints

– epipolar	  geometry

– epipolar	  algebra

• Image	  rec6fica6on

• Stereo	  matching	  (likelihood	  term)

• Stereo	  regulariza?on	  (prior	  term)

• Inference

– dynamic	  programming

– graph	  cuts

• Structured	  light
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Stereo image rectification

Adapted from Li Zhang

In practice, it is 
convenient if image 
scanlines (rows) are 
the epipolar lines.

Slide credit: Kristen Grauman
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Stereo image rectification

Reproject image planes onto a common
 plane parallel to the line between optical 

centers
Pixel motion is horizontal after this transformation
Two homographies (3x3 transforms), one for each 

input image reprojection
See Szeliski book, Sect. 2.1.5, Fig. 2.12, and 

“Mapping from one camera to another” p. 56
Adapted from Li Zhang

In practice, it is 
convenient if image 
scanlines (rows) are 
the epipolar lines.

Slide credit: Kristen Grauman
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Stereo image rectification: example

Source: Alyosha Efros
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Your basic stereo algorithm

Slide credit:  Rick Szeliski

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 68

Your basic stereo algorithm

For each epipolar line

Slide credit:  Rick Szeliski

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 68

Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image

Slide credit:  Rick Szeliski

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 68

Your basic stereo algorithm

For each epipolar line
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 For each pixel in the left image
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• pick pixel with minimum match cost
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For each epipolar line
 For each pixel in the left image

• compare with every pixel on same epipolar line in right image
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Slide credit:  Rick Szeliski

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 68

Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows

Slide credit:  Rick Szeliski
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Image block matching
How do we determine correspondences?

• block matching or SSD (sum squared differences)

d is the disparity (horizontal motion)

How big should the neighborhood be?

Slide credit:  Rick Szeliski
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Neighborhood size
Smaller neighborhood: more details
Larger neighborhood:  fewer isolated mistakes

        w = 3  w = 20

Slide credit:  Rick Szeliski
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Matching criteria

Slide credit:  Rick Szeliski
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Matching criteria
Raw pixel values (correlation)

Slide credit:  Rick Szeliski
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Matching criteria
Raw pixel values (correlation)
Band-pass filtered images [Jones & Malik 92]

Slide credit:  Rick Szeliski
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Matching criteria
Raw pixel values (correlation)
Band-pass filtered images [Jones & Malik 92]
“Corner” like features [Zhang, …]

Slide credit:  Rick Szeliski
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Matching criteria
Raw pixel values (correlation)
Band-pass filtered images [Jones & Malik 92]
“Corner” like features [Zhang, …]
Edges [many people…]
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Matching criteria
Raw pixel values (correlation)
Band-pass filtered images [Jones & Malik 92]
“Corner” like features [Zhang, …]
Edges [many people…]
Gradients [Seitz 89;  Scharstein 94]

Slide credit:  Rick Szeliski
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Matching criteria
Raw pixel values (correlation)
Band-pass filtered images [Jones & Malik 92]
“Corner” like features [Zhang, …]
Edges [many people…]
Gradients [Seitz 89;  Scharstein 94]
Rank statistics [Zabih & Woodfill 94]

Slide credit:  Rick Szeliski
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Local evidence framework
1. For every disparity, compute raw matching 

costs

Why use a robust function?
• occlusions, other outliers

Can also use alternative match criteria

Slide credit:  Rick Szeliski
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Local evidence framework
2. Aggregate costs spatially

• Here, we are using a box filter
(efficient moving average
implementation)

• Can also use weighted average,
[non-linear] diffusion…

Slide credit:  Rick Szeliski
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Local evidence framework
3. Choose winning disparity at each pixel

4. Interpolate to sub-pixel accuracy

d

E(d)

d*

Slide credit:  Rick Szeliski
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Local evidence framework
Advantages:

• gives detailed surface estimates
• fast algorithms based on moving averages
• sub-pixel disparity estimates and confidence

Limitations:
• narrow baseline ⇒ noisy estimates
• fails in textureless areas
• gets confused near occlusion boundaries

Slide credit:  Rick Szeliski
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Stereo	  Topics

• Special,	  simple	  system,	  main	  idea

• More	  general	  camera	  condi?ons,	  epipolar	  constraints

– epipolar	  geometry

– epipolar	  algebra

• Image	  rec?fica?on

• Stereo	  matching	  (likelihood	  term)

• Stereo	  regulariza6on	  (prior	  term)

• Inference

– dynamic	  programming

– graph	  cuts

• Structured	  light
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Energy minimization
1-D example:  approximating splines
 

zx,y

dx,y

Slide credit:  Rick Szeliski
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Energy minimization
1-D example:  approximating splines
 

zx,y

dx,y

Slide credit:  Rick Szeliski
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Dynamic programming
Evaluate best cumulative cost at each pixel

Slide credit:  Rick Szeliski
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Dynamic programming
1-D cost function

Slide credit:  Rick Szeliski
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Dynamic programming
Disparity space image and min. cost path

Slide credit:  Rick Szeliski
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Dynamic programming
Sample result

 (note horizontal
 streaks)

[Intille & Bobick]

Slide credit:  Rick Szeliski
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Stereo	  Topics

• Special,	  simple	  system,	  main	  idea
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Graph cuts
Solution technique for general 2D problem

Slide credit:  Rick Szeliski

http://www.cs.cornell.edu/~rdz/graphcuts.htmlgraph cuts home page:

Monday, March 14, 2011
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Graph cuts
α-β swap
α expansion
modify smoothness penalty based on edges
compute best possible match within integer 

disparity

Slide credit:  Rick Szeliski

http://www.cs.cornell.edu/~rdz/graphcuts.htmlgraph cuts home page:

Monday, March 14, 2011

http://www.cs.cornell.edu/~rdz/graphcuts.html
http://www.cs.cornell.edu/~rdz/graphcuts.html


CSE 576, Spring 2008 Stereo matching 86

Graph cuts
Two different kinds of moves:

Slide credit:  Rick Szeliski

http://www.cs.cornell.edu/~rdz/graphcuts.htmlgraph cuts home page:
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Bayesian inference
Formulate as statistical inference problem
Prior model   pP(d)
Measurement model pM(IL, IR| d)
Posterior model

pM(d | IL, IR) ∝ pP(d) pM(IL, IR| d)
Maximum a Posteriori (MAP estimate):
 maximize pM(d | IL, IR)

Slide credit:  Rick Szeliski
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Markov Random Field
Probability distribution on disparity field d(x,y)

Enforces smoothness or coherence on field

Slide credit:  Rick Szeliski
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Measurement model
Likelihood of intensity correspondence

Corresponds to Gaussian noise for quadratic ρ

Slide credit:  Rick Szeliski
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MAP estimate
Maximize posterior likelihood

Equivalent to regularization (energy 
minimization with smoothness constraints)

Slide credit:  Rick Szeliski
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Why Bayesian estimation?

Slide credit:  Rick Szeliski
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Why Bayesian estimation?
Principled way of determining cost function

Slide credit:  Rick Szeliski
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Principled way of determining cost function
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Admits a wide variety of optimization algorithms:

Slide credit:  Rick Szeliski

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 91
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Principled way of determining cost function
Explicit model of noise and prior knowledge
Admits a wide variety of optimization algorithms:

• gradient descent (local minimization)
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Slide credit:  Rick Szeliski

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 91

Why Bayesian estimation?
Principled way of determining cost function
Explicit model of noise and prior knowledge
Admits a wide variety of optimization algorithms:

• gradient descent (local minimization)
• stochastic optimization (Gibbs Sampler)
• mean-field optimization
• graph theoretic (actually deterministic) [Zabih]
• [loopy] belief propagation

Slide credit:  Rick Szeliski
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Why Bayesian estimation?
Principled way of determining cost function
Explicit model of noise and prior knowledge
Admits a wide variety of optimization algorithms:

• gradient descent (local minimization)
• stochastic optimization (Gibbs Sampler)
• mean-field optimization
• graph theoretic (actually deterministic) [Zabih]
• [loopy] belief propagation
• large stochastic flips [Swendsen-Wang]

Slide credit:  Rick Szeliski
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Depth Map Results

Input image   Sum Abs Diff

Mean field   Graph cuts
Slide credit:  Rick Szeliski
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Depth Map Results

Input image   Sum Abs Diff

Mean field   Graph cuts
Slide credit:  Rick Szeliski
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Stereo evaluation

Slide credit:  Rick Szeliski
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Stereo—best algorithms

Monday, March 14, 2011



CSE 576, Spring 2008 Stereo matching 94

Stereo—best algorithms
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Stereo	  Topics

• Special,	  simple	  system,	  main	  idea

• More	  general	  camera	  condi?ons,	  epipolar	  constraints

– epipolar	  geometry

– epipolar	  algebra

• Image	  rec?fica?on

• Stereo	  matching	  (likelihood	  term)

• Stereo	  regulariza?on	  (prior	  term)

• Inference

– dynamic	  programming

– graph	  cuts

• Structured	  light
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Active stereo with structured light

Project “structured” light patterns onto the object
• simplifies the correspondence problem

Li Zhang’s one-shot stereo

Slide credit:  Rick Szeliski

Li Zhang, Brian Curless, and Steven M. Seitz. Rapid Shape Acquisition Using Color 
Structured Light and Multi-pass Dynamic Programming. In Proceedings of the 1st 
International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT), 
Padova, Italy, June 19-21, 2002, pp. 24-36.
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Li Zhang, Brian Curless, and Steven M. Seitz
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