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Depth Perception:

The inverse problem




Monocular cues to depth

 Absolute depth cues: (assuming known
camera parameters) these cues provide
iInformation about the absolute depth

between the observer and elements of the
scene

 Relative depth cues: provide relative
Information about depth between elements

In the scene (this point Is twice as far at
that point, ...)



Relative depth cues

Simple and powerful cue, but hard to make it work in practice...



Atmospheric perspective

« Based on the effect of air
on the color and visual
acuity of objects at
various distances from
the observer.

e Conseqguences:
— Distant objects appear
bluer

— Distant objects have lower
contrast.




Atmospheric perspective

http://encarta.msn.com/medias_761571997/Perception_(psychology).html



Claude Lorrain (artist)

French, 1600 - 1682
Landscape with Ruins, Pastoral Figures, and Trees, 1643/1655


http://www.nga.gov/cgi-bin/tsearch?artistid=1145
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Slide by Steve Marschner http://www.cs.cornell.edu/courses/cs569/2008sp/schedule.stm



Shadows

video



Shadows

http://vision.psych.umn.edu/users/kersten/kersten-lab/shadows.html



Linear perspective



Linear Perspective

Based on the apparent convergence of
parallel lines to common vanishing
points with increasing distance from
the observer.

(Gibson : “perspective order”)

In Gibson’s term, perspective is a
characteristic of the visual field rather
than the visual world. It approximates
how we see (the retinal image) rather
tharlmdwhat we see, the objectsin the
world.

Perspective : a representationthat is
specific to one individual, in one
position in space and one moment in
time (a powerful immediacy).

Is perspective a universal fact of the visual
retinal image ? Or is perspective
something that is learned ?

Simple and powerful cue, and easy to make it work in practice...



Linear Perspective

Ponzo’s illusion



Linear Perspective
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Linear Perspective

Muller-Lyer
1889



Linear Perspective

Muller-Lyer
1889



The two Towers of Pisa

Frederick Kingdom, Ali Yoonessi and Elena Gheorghiu of McGill Vision Research unit.



The strength of linear perspective
, P
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3D percept is driven by the scene, which imposes its ruling to the objects



Manhattan assumption

Application of the statistics of edges:
Manhattan World

Many scenes of man-made
environments are laid out on a
3-D “Manhattan™ grid.

This 3-D structure imposes
statistical regularities on the edges,
and hence the image gradients, in
the image.

These regularities allow us to infer
the viewer orientation relative to the
Manhattan grid and to detect targets
unaligned to the grid.

J. Coughlan and A.L. Yuille. "Manhattan World: Orientation and Outlier )
Detection by Bayesian Inference.” Neural Computation. May 2003. Slide by James Coughlan



Bayesian Model of Manhattan World

Evidence for line edges -- X, y, z or random lines -- provided
by the image gradient. Prior on occurrence of these edges.
Image gradient magnitude provides evidence

for presence or absence of edges, using P, and P
distributions.

on

Image gradient direction provides information about edge
orientations.

Hidden assignment variables: at each pixel, 1s there an x, y,
z or random line, or no edge at all?

If we knew this assignment at each pixel, and the camera
orientation ‘', we could predict likely values of image

gradient magnitude and direction, £, = (£, ¢.)
Slide by James Coughlan



Evidence over all pixels: Bayes net of full Bayesian model
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Box represents entire image, with an image gradient vector and

assignment variable at each pixel location 4,

Structure of net graphically illustrates assumption of conditional
independence across pixels.

Slide by James Coughlan



Experimental Results

Estimate of most probable
camera orientation given
image, rendered in terms of
the corresponding orienta-
tions of x and y lines (drawn
n black).

Note how the x lines align
with the sides of buildings
that are visible and facing
left. The y lines align with
the other visible sides
facing right.

Slide by James Coughlan
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Outlier detection

Input image:
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Slide by James Coughlan
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The importance of the horizon line



Distance from the horizon line

This flower appears smaller and nearer
1o the horizon; therefore it is farther

This flower appears larger and further
from the horizon; therefore it is closer

 Based on the tendency of
objects to appear nearer the
horizon line with greater
distance to the horizon.

* Objects approach the horizon
line with greater distance from
the viewer. The base of a
nearer column will appear
lower against its background
floor and further from the
horizon line. Conversely, the
base of a more distant column
will appear higher against the
same floor, and thus nearer to
the horizon line.




Moon illusion




Relative height

The object closer to the horizon Is perceived
as farther away, and the object further
from the horizon Is perceived as closer

If you know camera parameters: height of
the camera, then we know real depth



At which elevation has been taken this picture?
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Comparing heights

Vanishing
Point

Y v \,




Measuring height




Computing vanishing points (from lines)

Intersect p,q,; with p,Q,

v=1{(p1 X q1) X (p2 X q2)
Least squares version

« Better to use more than two lines and compute the “closest” point of
Intersection

« See notes by Bob Callins for one good way of doing this:
— http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt



http://www-2.cs.cmu.edu/afs/cs/user/rcollins/www/home.html
http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

C H

/round plane

9

Compute H from image measurements
 Need more than vanishing points to do this



Tv,

Measuring height
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Measuring height

vanishing line (horizon)

What if the point on the ground plane b, is not known?
» Here the guy is standing on the box
— « Use one side of the box to help find b, as shown above ™~

X NN N



What If v, IS not infinity?




The cross ratio

A Projective Invariant

« Something that does not change under projective transformations
(including perspective projection)

The cross-ratio of 4 collinear points

™
Ps_PlHD‘l_PZ p—|
Ps_Pz‘ P,— P I Zl

|P.— Py [P, — P,

Can permute the point ordering |P, =P, | [P, —Ps|

o 41 = 24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry




Measuring height

. [T-B|l-Rl _H
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Tv,

Measuring height
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Measuring heights In real photos

Problem: How tall is
this person?




Assessing geometric accuracy

Problem:
Are the heights of the two groups of people
consistent with each other?

N i Tese st el Measuring relative heights
Flagellazione di Cristo,

c.1460, Urbino



Single-View Metrology

Complete 3D reconstructions from
single views



Example: The Virtual Trinity

Masaccio, Trinita’ Complete 3D reconstruction
1426, Florence



Example: The Virtual Flagellation

Piero della Francesca,
Flagellazione di Cristo,
c.1460, Urbino

Complete 3D reconstruction



Example: The Virtual St. Jerome

Henry V Steenwick,
St.Jerome In His Study,
1630, The Netherlands

Complete 3D reconstruction



Example: The Virtual Music Lesson

J. Vermeer,
The Music Lesson, Complete 3D reconstruction
1665, London



Example: A Virtual Museum @ Microsoft
A dive into the paintings third dimension

s..-"--- The museum

Diving into the
paintings

#<-8 The Trinity

14 8 "y Flagellation
= == || P. della Francesca

| StJerome
' H. W steinwick




References mﬁw

Antonio Criminisi

Accurate Visual Reconstruction
from Single and Multiple
Uncalibrated Images

(Springer-Verlag)

ISBN: 1-85233-468-1
look for 1t on amazon.com !

www.research.microsoft.com/~—antcrim



Texture Gradient



Texture Gradient

s

% N\

FIGURE 8.27 FIGURE 8.28
Texture gradients provide information about depth. (Frank
Siteman/Stock, Boston.)

© Frank Sitman/Stock Boston

Texture discontinuity signals the pre
COrTET.

A Witkin. Recovering Surface Shape and Orientation from Texture (1981)
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' Shape from Texture from a Multi-Scale Perspective. Tony Lindeberg and Jonas Garding. ICCV 93




Texture Gradient

 Filter outputs

e Textons



[EEE THANSACTIONS ON PATTERN ANALYS1S AND MACHING INTELLIGENCE, YOI,

17, N, 4 APRIL 1905

Shape from Texture Using
Local Spectral Moments

Boaz J. Super, Member, IEEE, and Alan C. Bovik, Senior Member, I1EEE

Abstract—We present a non-leature-based solution to the
problem of computing the shape of curved surfaces from texture
information. First, the use of local spatial-frequency spectra and
their moments to describe texture is discussed and motivated. A
new, more accurate method for measuring the local spatial-
frequency moments of an image texture using Gabor elementary
functions and their derivatives is presented. Also described is a
technique for separating shading from texture information, which
makes the shape-from-texture algorithm robust to the shading
effects found in real imagery. Second, a detailed model for the
projection of local spectra and spectral moments of any surface
reflectance patterns (not just textures) is developed. Third, the
conditions under which the projection model can be solved for the
orientation of the surface at each point are explored. Unlike ear-
lier non-feature-based, curved surface shape-from-texture ap-
proaches, the assumption that the surface texture is isotropic is
not required; surface texture homogeneity can be assumed in-
stead. The algorithm’s ability to operate on anisotropic and non-
deterministic textures, and on both smooth- and rough-textured
surfaces, is demonstrated.

Index Items—Shape from texture, shape recovery, surface ori-
entation, moments, wavelet, spatial frequency, Gabor functions,
texture, projection.
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PLANAR SURFACE ORIENTATION FROM TEXTURE

SPATIAL FREQUENCIES

BOAZ J. SUPER*t and ALAN C. BOVIK



Assumptions:

 Smooth closed surface
Homogeneous texture
(sometimes, isotropic texture)



Texture description
Use filter outputs to measure local spatial frequency.

B

(a) (b)

Frg. 2o(a) Cylmder with sinusowdal graung wexture, (b) Horzontal compenent of image spatial frequency on center cross-section of (:)

o
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I
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Texture projection
Assume orthographic projection.

Fig. 5. Top row: real part of Gabor filter with radial r'rcqul:rn‘_yunf 12 ¢y-
cles/image, and a texture patch. Bottom row: |ﬁ:luk-[1flﬁ_|ﬂttlur}f~ -J-i Emtmr filter
and texture patch onto a plane with orientation (g.7) = (607, 457).



Slant and tilt




Box 1. Summary of algorithm

1. Convolve the image with Gabor functions and
their partial derivatives, and smooth the filter
output amplitudes (to reduce noise) by convoly-
ing them with a Gaussian.

2. Select the Gabor filter b, with the largest ampli-
tude output at each point.

3. Compute the (signed) instantaneous frequency
u;{x;) at each point using equation (6).

4. Sample (o, t)-space, backprojecting u,(x,) to com-
pute u(x;) using equation (20). Compute the
variance ¥V, . of uy(x,). Coarse-to-fine sampling in
multiple stages may be used.

. Output the values of (s, 7) for which V ,is a
minimum.

h




Recovering shape and irradiance maps from rich dense texton fields

Anthony Lobay and D.A. Forsyth
CVPR 04

F'Y

Figure 3: On the left, a view of a model in a spotted dress. In the center left, a textured view of the reconstruction obtained
using our method. This reconstruction used 1200 texton instances, in 8 clusters. Note the relatively fine detail that was
obtained by the reconstruction, including the two main folds in the skirt (indicated with arrews). Typically, rendering
texture on top of the view produces a better looking surface, so we show the surface without texturing on the center right;
arrows indicate the reconstructed folds in the geometry. Notice that the fold in the skirt is well represented. The smoothing
term is generally good at resolving normal ambiguities, but patches of surface that are not well connected to the main
body can be subjected to a concave-convex ambiguity, as has happened to part of the skirt’s bodice here. On the right, the

irradiance map estimated using our method.



Texture description

Non-occluded textons, and approximated as flat.

* T AT E R R

AR LE R




The two pieces of the solution

If we knew the transformations

« \We can find the textons

 We can find the local
Intensity contrast

By minimization of:

2
Si || My — I ||

A

contrast

If we knew the texton
and contrast

Recover the transformation
by transforming the texton
to match each local patch.



Expectation Maximization (EM): a solution to
chicken-and-egg problems

— . - - i #-J
o < = - P

64



Model fitting example
Fitting two lines to observed data

65



Fitting two lines: on the one

X e Linel

Line 2

hand...

If we knew
which points
went with which
lines, we'd be
back at the
single line-
fitting problem,
twice.

66



Maximum likelihood estimation for the
slope of a single line

model: Y = aX 4+ w .
where w~ N(u=0,0 = 1). S

Data likelihood for point n: { 2

P(Xn, Ynla) = cexp[—(Yn — aXn)?/2]

Maximum likelihood estimate:
G = argmaxp(Y1,...,Yala) = argmg,xz —d(Yn;a)*/2

where  d(Yn;a) = |Yn — aXy|

Zn YﬂXﬂ
>on Xa

67

gives regression formula a =



Fitting two lines, on the other hand...

We could figure
out the probability
that any point
came from either
line if we just
knew the two
equations for the
two lines.

68



MLE with hidden/latent variables:
Expectation Maximisation

General problem:
y = (Y1,...,YN); 0 =(a1,a2); 2= (21,...,2N)

data parameters hidden variables

For MLE, want to maximise the log likelihood

-

6 = arg maxy log p(y|0)
arg maxg log >, p(y, 2|0)

The sum over z
Inside the log gives a
complicated
expression for the ML
solution.

69



Maximizing the log likelihood of the data

if you knew the z, labels for each sample n:

6 =argmax, > 8(z, =1)log p(y, |z, =1.6) + &z, = 2)log p(y, |z, = 2.6)

70



Maximizing the log likelihood of the data

if you knew the z, labels for each sample n:

6 =argmax, > 8(z, =1)log p(y, |z, =1.6) + &z, = 2)log p(y, |z, = 2.6)

In the EM algorithm, we replace those known labels with their
expectation under the current algorithm parameters. So

Elo(z, =1)]=p(z, =1]Y,6,,)
Call that quantity — _ (n)

oc p(y | 7 = i’eold) OCe—(yn—aixn)2/2

71



Maximizing gives

And then for the estimate of the line parameters, we have

é: argmineZ%(n)(yn - alxn)2 T az(n)(yn o aZXn)2

and maximising that gives

é _ Zn ai(n)ynxn
. Znai(n)xﬁ

72



with

and

Regression becomes:

EM fitting to two lines

gi (n) oC e_(yn_aixn )2 /2
“E-step”
o, (n) +a,(n) =1 T
repeat
N X
é_ _ Znal( )yn n “M'Step”

| Zn ai(n)xrzl

73



Experiments: EM fitting to two lines

(from a tutorial by Yair Weiss, http://www.cs.huji.ac.il/~yweiss/tutorials.html)
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EM iterations

Find interest points
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Shading

e Based on 3 dimensional E

modeling of objects in
light, shade and
shadows.

Perception of depth through shading alone is always
subject to the concave/convex inversion. The pattern
shown can be perceived as stairsteps receding
towards the top and lighted from above, or as an
overhanging structure lighted from below.



Reflectance map

R(p.q)

Al

4
~

e

Horn, 1986 - The ref g P i of
Figure 10-7. The bidirectional reflectance distribution function is the ratio of ‘gf“"e 1_0'135_ 1‘3er ?it_aﬂﬁs map is a piOt of brig tnesz_asta l'unct;-:mt }?
the radiance of the surface patch as viewed from the direction (fe,@e) to the ::;eag? ;rif;’:ni;:g;m ::1? f:xc;susnc(i);:npz?nat;z:rgzrilm?r?ixiztig:[? itel::e ffzic:ﬁrsnturﬁ
irradiance resulting from illumination from the direction (#;, ¢;). Gt 0! b At ot e e DT b of) Ry oo ois s tholdil

(p,q9) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.

L@,.4.)
LO,.9,)

BRDF = f(0,,¢,,0,,¢,) =



Linear shape from shading

Lambertian point source

1+ p.p+q,.
R(p.q) =k L2

N+ P+ 1+ p7 + ¢

1t order Taylor
series about 6R(p, C])
p=q=0 ~ Ky +

. OR(p,q)
8p p=0,g=0 86} p=0.,9=0

=k,(1+p,p+q.9)

A close form solution can be obtained using the Fourier transform (Pentland 88)

0 .
%Z(-’Ea y)e— Fz(w1,ws)(—iwr) Pentland 88



IEEE TRANSACTIONS ON PATTERN AMALYSIS AND MACHINE INTELLIGENCE, VOL.21, NO.8, AUGUST 1899
Shape from Shading: A Survey i
Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah amad g i H 5 H H FH
Ground truth e e ! =
e

Linear shape
from shading




Learning based methods

* User recognition to learn structure of the world from
labeled examples

Slides by Efros



Label Geometric Classes

o Goal: learn labeling of image into 7 Geometric Classes:
e Support (ground)
 Vertical

— Planar: facing Left (é),PCenter ( ), Right (=)

— Non-planar: Solid (X), Porous or wiry (O)
o Sky

Slides by Efros



What cues to use?
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Dataset very general

*

15

-
28 awras

R £ 5 o

Slides by Efros



The General Case (outdoors)

 Typical outdoor photograph off the Web

— Got 300 images using Google Image Search
keyboards: “outdoor”, “scenery”, “urban’, etc.

e Certainly not random samples from world
— 100% horizontal horizon

— 97% pixels belong to 3 classes -- ground, sky,
vertical (gravity)

— Camera axis usually parallel to ground plane
o Still very general dataset!

Slides by Efros



Let’'s use many weak cues

 Material

 Image Location

* Perspective

SURFACE CUES

Location and Shape

L1.
L2.
L3.
L4.
L
Lé.

Lh

Location: normalized x and vy, mean

Location: norm. x and y, 10t* and 90" petl

Location: norm. y wrt estimated horizon, 10*", 90" petl

Location: whether segment is above, below, or straddles estimated horizon
Shape: number of superpixels in segment

Shape: normalized area in image

Color

Cl1.
C2.
C3.
C4.

RGB values: mean

HSV values: C1 in HSV space
Hue: histogram (5 bins)
Saturation: histogram (3 bins)

Texture

T1.
T2.

LM filters: mean abs response (15 filters)
LM filters: hist. of maximum responses (15 bins)

Perspective

Pl.
P2.
P3.
P4.
Ps.
pé.
P7.
Ps.
P9.

P10.
P11.
P12.
P13.

P14

Long Lines: (num line pixels)/sqrt(area)

Long Lines: % of nearly parallel pairs of lines

Line Intersections: hist. over 8 orientations, entropy

Line Intersections: % right of center

Line Intersections: % above center

Line Intersections: % far from center at 8 orientations

Line Intersections: % very far from center at 8 orientations

Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)

Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)

Vanishing Points: percent of total line pixels with vertical VP membership

Vanishing Points: x-pos of horizontal VP - segment center (0 if none)

Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center

Vanishing Points: segment bounds wrt horizontal VP

. Gradient: x. y center of gradient mag. wrt. image centgg . 4
I1ITU




Need Spatial Support

| 50x50 Patch
50x50 Patch

Color Texture Perspective Color Texture Perspective

Slides by Efros



Image Segmentation

 Naive ldea #1: segment the image

— Chicken & Egg problem

 Naive ldea #2: multiple segmentations
C 3 e

— Decide later which segments are good siiges by Efros



Estimating surfaces from segments

Sk,

 We want to know:
— Is this a good (coherent) segment? FsEa
P(good segment | data) :1 .. _.

""\E-f.',‘_ S S

— If so, what Is the surface label?

P(label | good segment, data)

e Learn these likelihoods from
training iImages
— we use Boosted Decision Trees

Slides by Efros



Boosted Decision Trees

Ye

No
Many Long
Lines?
Yes No

Very High
Vanishing
Point?

Yes

Ground Vertical Sky

e

Slides by Efros



Labeling Segments

For each segment:

- Get P(good segment | data) P(label | good segment, data)

Slides by Efros



Image Labeling

Labeled Segmentations

Labeled Pixels
Slides by Efros



Support Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid



Labeling Results

Input Image Ground Truth Our Result
Slides by Efros




Labeling Results

Lgt -

A

Input Image Ground Truth Our Result
Slides by Efros



Labeling Results

Input Image Ground Truth Our Result
Slides by Efros



Labeling Results

Input Image Ground Truth Our Result
Slides by Efros



Labeling Results

Input Image Ground Truth Our Result
Slides by Efros



Labeling Results

Input Image Ground Truth Our Result
Slides by Efros



Labeling Results

AUG 162001 -

@ Tony Northrup, www.northrup.org;

Input Image Ground Truth Our Result
Slides by Efros




Some Failures

Input Image Ground Truth Our Result
Slides by Efros



Catastrophic Failures
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Automatic Photo Popup

Labeled Image Fit Ground-Vertical  Form Segments Cut and Fold
Boundary with Line into Polylines
Segments

[Hoiem Efros Hebert 2005]
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