
Lecture 19 
 Structure from motion 



Estimating depth with stereo 

 

• Stereo: shape from disparities between two views 
• We’ll need to consider: 
• Info on camera pose (“calibration”) 
• Image point correspondences  

scene point 

optical 
center image plane 

Slide credit: Kristen Grauman 

~6cm 



The third view can be used for verification 

Beyond two-view stereo 

Slide credit: S. Lazebnik 



• Pick a reference image, and slide the corresponding 
window along the corresponding epipolar lines of all 
other images, using inverse depth relative to the first 
image as the search parameter 
 

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,”  IEEE Trans. on 
Pattern Analysis and Machine Intelligence,  15(4):353-363 (1993).  

Multiple-baseline stereo 

Slide credit: S. Lazebnik 

http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf


I1 I2 I10 

Multiple-baseline stereo results 

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,”  IEEE Trans. on 
Pattern Analysis and Machine Intelligence,  15(4):353-363 (1993).  

Slide credit: S. Lazebnik 

http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf


Volumetric Stereo / Voxel Coloring 

Discretized  
Scene Volume 

Input Images 
(Calibrated) 

Goal:  Assign RGB values to voxels in V 
photo-consistent with images 

Slide credit: S. Lazebnik 



Space Carving 

Space Carving Algorithm 

Image 1 Image N 

…... 

• Initialize to a volume V containing the true scene 

• Repeat until convergence 

• Choose a voxel on the outside of the volume 

• Carve if not photo-consistent 
• Project to visible input images 

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999 
Slide credit: S. Lazebnik 

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf


Space Carving Results:  African Violet 

Input Image (1 of 45)  Reconstruction 

Reconstruction Reconstruction Source: S. Seitz 



Space Carving Results:  Hand 

Input Image 
(1 of 100)  

Views of Reconstruction 
Slide credit: S. Lazebnik 



Reconstruction from Silhouettes 

Binary Images 

• The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all 
views 

Slide credit: S. Lazebnik 



Reconstruction from Silhouettes 

Binary Images 

Finding the silhouette-consistent shape (visual hull):   
• Backproject each silhouette 
• Intersect backprojected volumes 

• The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all 
views 

Slide credit: S. Lazebnik 



Volume intersection 

B. Baumgart, Geometric Modeling for Computer Vision, Stanford Artificial Intelligence 
Laboratory, Memo no. AIM-249, Stanford University, October 1974.  

Slide credit: S. Lazebnik 

http://www.baumgart.org/winged-edge/winged-edge.html


Carved visual hulls 

Yasutaka Furukawa and Jean Ponce, Carved Visual Hulls for Image-Based 
Modeling, ECCV 2006.  Slide credit: S. Lazebnik 

http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf


Structure from motion 
One camera, a moving object 

Multiple views of a static scene 
from different cameras 







Point light walker 
Gender and walking style: 
http://www.biomotionlab.ca/Demos/BMLwalker

.html 
 
Inversion and other animals: 
http://www.biomotionlab.ca/Demos/scrambled.

html 
 

http://www.biomotionlab.ca/Demos/BMLwalker.html
http://www.biomotionlab.ca/Demos/BMLwalker.html
http://www.biomotionlab.ca/Demos/scrambled.html
http://www.biomotionlab.ca/Demos/scrambled.html


Material from Motion 

Dan Kersten 
http://vision.psych.umn.edu/users/kersten/ke

rsten-
lab/demos/1_S_0001/1_S_0001.mov 

 

http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/1_S_0001/1_S_0001.mov
http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/1_S_0001/1_S_0001.mov
http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/1_S_0001/1_S_0001.mov


From “Computer vision: algorithms and applications.”  

Examples 



From “Computer vision: algorithms and applications.”  

Examples 



From “Computer vision: algorithms and applications.”  



KLT tracker 
 Slide 23 from lecture 17  

Kanade-Lucas-Tomasi Feature Tracker  







Other trackers 
Peter Sand and Seth Teller, Particle Video: Long-Range Motion Estimation using 
Point Trajectories, CVPR, 2006 

Jepson, A.D., Fleet, D.J., El-Maraghi, T. (2003) Robust online appearance 
models for visual tracking. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 25(10):1296-1311 
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(u1,4, v1,4) 

(u2,1, v2,1) 
(u3,1, v3,1) (u4,1, v4,1) 

(u5,1, v5,1) 

We track P points in F frames 
Each point has coordinates: (ufp, vfp) 
 (I will use the notation from the IJCV 92 paper ) 
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W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F frames 

(I will use the notation from the IJCV 92 paper ) 

Measurement matrix 



W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= Measurement matrix 

Centering: subtract from each row its mean  

Registered measurement matrix 

Ufp =  Ufp –  1/P Σ Ufp  
~ 

p=1 

P 

Vfp =  Vfp – 1/P Σ Vfp  
~ 

p=1 

P 
W =  

U 
V 

~ 
~ 

~ 
Registered  
measurement matrix 



The Rank Theorem 
~ 

The matrix W, without noise, has at most rank 3. 

Proof: The matrix W can be decomposed as 
the product of two matrices, a rotation matrix R 
and a shape matrix S.  



The Rank Theorem 
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The matrix W, without noise, has at most rank 3. 

Proof: The matrix W can be decomposed as 
the product of two matrices, a rotation matrix R 
and a shape matrix S.  

R = rotation matrix 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F frames 
~ 

~ 
~ = 

3 

2F 

P points 

3 

S = shape matrix 

W=Registered  
measurement  
matrix 

~ 



jf 

if 

kf (ufp, vpf) 

Sp 

Tf 

Sp-Tf 

ufp = ifT (Sp – Tf) 

vfp = jfT (Sp – Tf) 

Frames 

X 
Y 

Z 

World 
coordinates 

World coordinates Image coordinates 

Proof 
Some notation 

1/P Σ Sp = 0 
p=1 

P 

We define the origin of the world 
coordinates so that: 



Proof ufp = ifT (Sp – Tf) 

vfp = jfT (Sp – Tf) 

World coordinates Image coordinates 

ufp =  ufp – 1/P Σ ufp = ~ 

p=1 

P 

p=1 

P 
= ifT (Sp -  1/P Σ Sp) =  

= ifT Sp   

vfp = jfT Sp 
~ 

1/P Σ Sp = 0 
p=1 

P 

(ufp, vpf) 
jf 

if 

Sp 

ufp = ifT (Sp – Tf) 



Proof vfp = jfT Sp 
~ ufp = ifT Sp  

~ 

(ufp, vpf) 
jf 

if 

Sp 



Proof vfp = jfT Sp 
~ ufp = ifT Sp  

~ 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F frames 
~ 

~ 
~ 

The registered measurement matrix (W) can be decomposed as: ~ 

(ufp, vpf) 
jf 

if 

Sp 



Proof vfp = jfT Sp 
~ ufp = ifT Sp  

~ 

R = rotation matrix 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F frames 
~ 

~ 
~ = 

3 

2F 

P points 

3 

S = shape matrix 

The registered measurement matrix (W) can be decomposed as: ~ 

W = R S  ~ 
(ufp, vpf) 

jf 

if 

Sp 

Rank (W) ≤ 3 ~ 



Factorization 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F frames 
~ 

~ 
~  = R S  

Problem: this factorization is not unique. For any invertible matrix Q, then: 

 W = R S =  RQQ-1S = (RQ)(Q-1S)  ~ ^ ^ ^ ^ 

Given the measurement matrix, we want to find the factorization: 



Additional constraints 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F 
~ 

~ 
~ = 

3 

2F P points 

3 ifT 

jfT 



Additional constraints 

R = rotation matrix = 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F 
~ 

~ 
~ = 

3 

2F P points 

3 ifT 

jfT 

• The rows of R are unit norm 
• Rows 1…F should be orthogonal to corresponding rows F+1…2F 

|if|=|jf|=1 

ifT jf = 1 



Factorization algorithm 
1. Use SVD to decompose W into rank 3 matrices 
2. Impose constraints to find Q 

~ 



Factorization algorithm 
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2. Impose constraints to find Q 

~ 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

P points 

2F 
= 

U D VT 

W = U D VT ~ 

2F x 2F 

P x P 

2F x P 

0 
0 

0 



Factorization algorithm 
1. Use SVD to decompose W into rank 3 matrices 
2. Impose constraints to find Q 

~ 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

P points 

2F 
= 

U’ 

D’ V’T 

W = U D VT ~ 

2F x 3 

3 x P 3 x 3 

R = U’ D’1/2 ^ 
S = D’1/2 V’T ^ 

R and S are one of the possible decompositions. We need to add constraints to R.  ^ ^ 



Factorization algorithm 
1. Use SVD to decompose W into rank 3 matrices 
2. Impose constraints to find Q 

~ 

R = U’ D’1/2 ^ 
S = D’1/2 V’T ^ 

We look for Q such that the final rotation and shape matrices are: 

R = RQ ^ 
S = Q-1S ^ 



Factorization algorithm 
1. Use SVD to decompose W into rank 3 matrices 
2. Impose constraints to find Q 

~ 

R = U’ D’1/2 ^ 
S = D’1/2 V’T ^ 

We look for Q such that the final rotation and shape matrices are: 

R = RQ ^ 
S = Q-1S ^ 

|if|=|jf|=1 

ifT jf = 1 

We impose the constraints on the desired rotation matrix R: 

ifT Q QT if = 1  

ifT Q QT jf = 0  

Find Q 

^ ^ 

jfT Q QT jf = 1  ^ ^ 

^ ^ 

Where if and jf are the corresponding rows of R ^ ^ ^ 

for f = 1:F 



Solving for Q 
Algorithm 1: Use non-linear solver and solve for Q 

Algorithm 2: Solve linear system for C where C = QQT 

ifT C if = 1  

ifT C jf = 0  

^ ^ 

jfT C jf = 1  ^ ^ 

^ ^ 

for f = 1:F 

Then, use Cholesky to factor C 

C = QQT 



Example: cylinder 

3D data Measurement matrix W 

Registered measurement matrix W ~ 

Image tracks 
Observations: 

20 frames 
80 tracks 



Example: cylinder 
Registered measurement matrix W ~ 

= 

= 

SVD 
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Example: cylinder 
Registered measurement matrix W ~ 

= 

R ^ 

S ^ 

= 

Find Q 

R 

S 

Recovered 3D 
coordinates 



Example: cylinder 
S 

Recovered 3D 
coordinates 



Example 
Input frames 

Tracked points 
Reconstructed top 

view 



Dealing with missing data 



Dealing with missing data 
Point p (ufp, vfp) is missing in frame f. 
 
Conditions for reconstruction: 
• Point p is visible in three more frames f1,f2,f3 
• And there are three more points visible in the 

four frames f, f1,f2,f3 
 
The we can recover the full shape matrix and the 

missing coordinates. 
 



Dealing with missing data 

We can get the full shape matrix 

We can get the full translation  
and rotation matrix 



Result, top view 



Perspective 



Factorization with translation 

M = motion matrix 
(rotation and translation) 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points 

2F frames = 

4 

2F 

P points 

4 

S = shape matrix 

W=measurement  
matrix 

1 1 1 1 1 1 1 1 

W = M S  

ix1 iy1 iz1 tx1 

jx1 jy1 jz1 ty1 

sx1 
sy1 
sz1 

Let’s not register de matrix W (do not remove the mean to each row) 

Rank(W) ≤ 4 



Factorization with translation 
Similar algorithm as before 

1. Use SVD to decompose W into rank 4 matrices 
2. Impose constraints to find Q (now add translation constraints) 

W = U D VT 

M= U’ D’1/2 ^ 

S = D’1/2 V’T ^ 

M and S are one of the possible decompositions.  ^ ^ 

We need to add constraints to M.  



M= MQ ^ 
S = Q-1S ^ 

ifT QRQR
T if = 1  

ifT QRQR
T jf = 0  

Find QR 

^ ^ 

jfT QRQR
T jf = 1  ^ ^ 

^ ^ 

for f = 1:F 

Factorization with translation 
Similar algorithm as before 

1. Use SVD to decompose W into rank 4 matrices 
2. Impose constraints to find Q (now add translation constraints) 

 W = MS =  MQQ-1S = (MQ)(Q-1S)  

Q = [QR | Qt] 

^ ^ ^ ^ 

Qt = D-1/2 UT w 

Constraints:  

w is the mean of the rows of W 



Multi-body factorization 





Multi-body factorization 



Multi-body factorization 

W =  
U 

V 

u1,1 u1,2 u1,P 

uF,1 
v1,1 v1,2 

vF,1 

= 

P points = P1 + P2 

2F frames 

Let’s assume we know which points belong to each object and we sort them so that: 

W* = [W1 | W2]  



Multi-body factorization 
• Let’s assume we know which points belong to each object and we sort them so that: 

W* = [W1 | W2]  

• Each measurement matrix can be decomposed as: 

W1 = M1S1= (M1A1)(A1
-1S1) 

^ ^ 

W1 = U1D1V1
T 

Motion-shape factorization: 

SVD: 

W* = [M1 | M2]  
S1 

S2 

0 

0 

• In this canonical form, the measurement matrix is: 

W* will have rank at most 8 



Multi-body factorization 

Challenge: we do not know which features 
belong to each object. 

Q = VVT 

Shape interaction matrix: 

W = UDVT  
First, we compute SVD of the measurement matrix  

We compute r =rank(W) and keep the first r rows of VT   



Multi-body factorization 
Shape interaction matrix 

Q = VVT 
• Let’s assume we know which points belong to each object and we sort them so that: 

Q* has block structure 



Multi-body factorization 

Q* 

Q* has block structure 



Multi-body factorization 
If we do not know the segmentation Q will be unsorted. 
We can swap rows and columns until it becomes block diagonal. Then, 
use same permutations to sort W. 



Multi-body factorization 

This clustering algorithm is related to spectral clustering.  
See “Segmentation using eigenvectors: a unifying view”, Weiss, ICCV’99 



W* =  

W* =  

U 

D VT 

100 frames 
80 points per cylinder 



W* =  

Q* =  

VT V 

= 



Example 

Rank 3 
Rank 4 

Rank 4 



Example 



Example 



Multi-body factorization 

Pros: 
• No dependency on 

the type of motions 
• No need to know 

number of objects 
• No need to know 

shapes 

Cons: 
• Sensitivity to noise 
• Need full trajectories. 

Dealing with 
occlusions will be 
delicate. 







Temporal factorization 



The key idea is to first solve many local 3-point, N-view rigid problems independently, 
providing a "soup" of specific, plausibly rigid, 3D triangles. Triangles from this soup are 
then grouped into bodies, and their depth flips and instantaneous relative depths are 
determined. 
 
The main advantage here is that the extraction of 3D triangles requires only very weak 
assumptions:  
 
(1)deformations can be locally approximated by near-rigid motion of three points (i.e., 
stretching not dominant) and  
(2)local motions involve some generic rotation in depth.  
 





Bundle adjustment 

Sum over views 
Sum over points 

Recover structure and motion by minimization of 
measurement error.  

Given the image coordinates xij, find the camera matrices 
Pi and the 3D locations of the points Xj 





Complex motion 



image 







The training sequence is full of highlights and this makes the leaning 
procedure much more difficult. 
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