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Estimating depth with stereo

e Stereo: shape from disparities between two views

e We'll need to consider:

e Info on camera pose (“calibration”)

* |mage point correspondences

optical

center'w plane
‘.

.

scene point

Slide credit: Kristen Grauman



Beyond two-view stereo

The third view can be used for verification

Slide credit: S. Lazebnik



Multiple-baseline stereo

* Pick a reference image, and slide the corresponding
window along the corresponding epipolar lines of all
other images, using inverse depth relative to the first
Image as the search parameter

imagef
image7
imageX
image5

{

D

Figure 2 An example scene. The grid .
pattern in the backeround has Baseline b 2Zb 3b 4b 5h G6b Th Eb 9B

ambiguity of matching,

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Slide credit: S. Lazebnik


http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf

Multiple-baseline stereo results

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

Slide credit: S. Lazebnik


http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf
http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf

Volumetric Stereo / Voxel Coloring

Discretized

—

Scene Volume

Input Images
(Calibrated)

Goal: Assign RGB values to voxels in V

photo-consistent with images
Slide credit: S. Lazebnik



Space Carving

A
N

Image 1

/ Image N

Space Carving Algorithm

 Initialize to a volume V containing the true scene
Choose a voxel on the outside of the volume
Project to visible input images
Carve if not photo-consistent
Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999
Slide credit: S. Lazebnik



http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Space Carving Results: African Violet

Input Image (1 of 45) Reconstruction

Reconstruction Reconstruction

Source: S. Seitz



Space Carving Results: Hand

Input Image
(1 of 100)

Views of Reconstruction
Slide credit: S. Lazebnik



Reconstruction from Silhouettes

 The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all
Views

Binary Images =——p . ‘

Slide credit: S. Lazebnik




Reconstruction from Silhouettes

 The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all
Views

v

Binary Images =——p

Finding the silhouette-consistent shape (visual hull):
» Backproject each silhouette
* Intersect backprojected volumes

Slide credit: S. Lazebnik



Volume Intersection

B. Baumgart, Geometric Modeling for Computer Vision, Stanford Artificial Intelligence
Laboratory, Memo no. AIM-249, Stanford University, October 1974.

Slide credit: S. Lazebnik


http://www.baumgart.org/winged-edge/winged-edge.html

Carved visual hulls

Yasutaka Furukawa and Jean Ponce, Carved Visual Hulls for Image-Based
Modeling, ECCV 2006. Slide credit: S. Lazebnik



http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf
http://www-cvr.ai.uiuc.edu/~yfurukaw/papers/eccv06b.pdf

Structure from motion

Multiple views of a static scene _ _
from different cameras One camera, a moving object










Point light walker

Gender and walking style:

http://www.biomotionlab.ca/Demos/BMLwalker
.htm]

Inversion and other animals:

http://www.biomotionlab.ca/Demos/scrambled.
html



http://www.biomotionlab.ca/Demos/BMLwalker.html
http://www.biomotionlab.ca/Demos/BMLwalker.html
http://www.biomotionlab.ca/Demos/scrambled.html
http://www.biomotionlab.ca/Demos/scrambled.html

Material from Motion

Dan Kersten
http://vision.psych.umn.edu/users/kersten/ke

rsten-
lab/demos/1 S 0001/1 S 0001.mov



http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/1_S_0001/1_S_0001.mov
http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/1_S_0001/1_S_0001.mov
http://vision.psych.umn.edu/users/kersten/kersten-lab/demos/1_S_0001/1_S_0001.mov

Examples

Figure 7.1: Some examples of structure from motion systems: (a—d) orthographic factorization
(Tomasi and Kanade 1992): (e—f) using line matching (Schmid and Zisserman 1997). (g—k) in-
cremental structure from motion (Snavely et al. 2006); 3D reconstructions produced by Snavely et
al. (2006) for: (1) Trafalgar Square, (m) the Great Wall of China, and (c) the Old Town Square in
Prague.

From “Computer vision: algorithms and applications.”



Examples

Figure 7.1: Some examples of structure from motion systems: (a—d) orthographic factorization
(Tomasi and Kanade 1992): (e—f) using line matching (Schmid and Zisserman 1997). (g—k) in-
cremental structure from motion (Snavely et al. 2006); 3D reconstructions produced by Snavely et
al. (2006) for: (1) Trafalgar Square, (m) the Great Wall of China, and (c) the Old Town Square in
Prague.

From “Computer vision: algorithms and applications.”
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Figure 7.1: Some examples of structure from motion systems: (a—d) orthographic factorization
(Tomasi and Kanade 1992): (e—f) using line matching (Schmid and Zisserman 1997). (g—k) in-
cremental structure from motion (Snavely et al. 2006); 3D reconstructions produced by Snavely et
al. (2006) for: (1) Trafalgar Square, (m) the Great Wall of China, and (c) the Old Town Square in

Prague.

From “Computer vision: algorithms and applications.”



KLT tracker

Kanade-Lucas-Tomasi Feature Tracker
Slide 23 from lecture 17

Tracking reliable features

* Idea: no need to work on ambiguous region pixels (flat
regions & line structures)

* Instead, we can track features and then propagate the
tracking to ambiguous pixels

* Good features to track |Shi & Tomashi 94

— )
du __[Igcnlx Ii?ly] [l;lt
al =i, a ] (i

* Block matching + Lucas-Kanade refinement









Other trackers

Peter Sand and Seth Teller, Particle Video: Long-Range Motion Estimation using
Point Trajectories, CVPR, 2006

X X X

Feature Tracking Optical Flow Particle Video

Jepson, A.D., Fleet, D.J., EI-Maraghi, T. (2003) Robust online appearance
models for visual tracking. IEEE Transactions on Pattern Analysis and Machine
Intelligence 25(10):1296-1311
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International Journal of Computer Vision, 9:2, 137-154 (1992)
2 1992 Kluwer Academic Publishers, Manufactured in The Netherlands.

Shape and Motion from Image Streams under Orthography:
a Factorization Method

CARLO TOMASI
Department of Computer Science, Comell University, Ithaca, NY 14850

TAKEO KANADE
School of Computer Science, Carmegie Mellon University, Pittsburgh, PA 15213

Received

Abstract

Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned
problem when the objects are distant with respect to their size. We have developed a factorization method that
can overcome this difficulty by recovering shape and motion under orthography without computing depth as an
intermediate step.

An image stream can be represented by the 2FXP measurement matrix of the image coordinates of P points
tracked through F frames. We show that under orthographic projection this matrix is of rank 3.

Based on this observation, the factorization method uses the singular-value decomposition technique to factor
the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two
of the three translation components are computed in a preprocessing stage. The method can also handle and obtain
a full solution from a partially filled-in measurement matrix that may result from occlusions or tracking failures.

The method gives accurate results, and does not introduce smoothing in either shape or motion. We demonstrate
this with a series of experiments on laboratory and outdoor image streams, with and without occlusions.



We track P points in F frames
Each point has coordinates: (Ug,, Vi)
(I will use the notation from the IJCV 92 paper)

(Us 1, Vs 1) (Up1, V14)

(U1, V21)/.
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We track P points in F frames
Each point has coordinates: (Ug,, Vi)
(I will use the notation from the IJCV 92 paper)

(Us, 1, Vs 1) o(Ui1, Vig)

(U1, V21)
\\JU4 10 Vg 1) (u3 1’ Vs 1&}/@(1,2, V1,2) \
®(U;3: Vi3

// (Ug 41 V14)
o

F frames

P points

<€ >

A

F frames

v

P points



We track P points in F frames
Each point has coordinates: (Ug,, Vi)
(I will use the notation from the IJCV 92 paper)

(Us, 1, Vs 1) o(Ui1, Vig)

(U1, V21)
\\JU4 10 Vg 1) (u3 1’ Vs 1Q>/(U(1,2, V1,2) \
®(U;3: Vi3

—_
\.\ ® //‘(Ul,m V14)

Q.
\ o o
A
A
= F frames
v
< : > U
P points wz=I|—I|= 2F frames
A V
N - o
\4
v < : >
<€ > P points

P points
Measurement matrix



Registered measurement matrix

Measurement matrix

Centering: subtract from each row its mean

~

~

N P

U.. = U.— 1/P 2 U
p p p=1 P Registered

measurement matrix

i P v
Vip= Vip = 1P Z Vg,



The Rank Theorem

The matrix \7V, without noise, has at most rank 3.

Proof: The matrix W can be decomposed as
the product of two matrices, a rotation matrix R
and a shape matrix S.



The Rank Theorem

The matrix \7V, without noise, has at most rank 3.

Proof: The matrix W can be decomposed as
the product of two matrices, a rotation matrix R
and a shape matrix S.

A

<€ : >
P points

S = shape matrix

v

“—>

P points 3 .
R = rotation matrix

W=Registered
measurement
matrix



Proof

Some notation S

Frames

World
coordinates

Ue = iT (S,—T)) We define the origin of the world
fp f P f : _
coordinates so that:

Vip = J¢' (Sp—Ty)

P
/ \ 1/Pp§18p:0

Image coordinates World coordinates



Proof .
U, = i' (S, —Ty)

Vi, = ' (Sp = T)
/

Image coordinates World coordinates

) Ug, = I (Sp — Tf)
U

P
= ufp—llPZu =

P

=S,

~ T
pr_Jf Sp




- o
Proof Uy, = ifT S, Vi, = T S,




Proof ufp = |]c Vf

The registered measurement matrix (W) can be decomposed as:

Up 1| U2 Ul,PA
- U
W = = [ 2F frames
V 1|V,
VE1 \
<€ >

P points




Proof ufp = |f Vf

The registered measurement matrix (W) can be decomposed as:

u u u A A
_|U
W= |—|=F% 2F frames =
v A
P points
S = shape matrix
VE1 \ v
< : > «—>
P points 3

R = rotation matrix

W=RS Rank (W) <3




Factorization

Given the measurement matrix, we want to find the factorization:
A

2Fframes = R S

v
<€ >

P points

Problem: this factorization is not unique. For any invertible matrix Q, then:

W =R S = RQQS = (RQ)(QS)



Additional constraints

.17
f

!

2F =

<t |

.-I-z

Js

<F,:I. - > H
P points 3




Additional constraints

.17
f

\K/: — ::F’lv 2F = 2F
V . T
Js
VE1 \ 4
€ - > “—>
P points s
lif|=1jf|=1
R = rotation matrix =

" jr =1

» The rows of R are unit norm
* Rows 1...F should be orthogonal to corresponding rows F+1...2F



Factorization algorithm

1. Use SVD to decompose W into rank 3 matrices
2. Impose constraints to find Q



Factorization algorithm

1. Use SVD to decompose W into rank 3 matrices

~

W=UDVT

2F

PxP

P points
U D VT



Factorization algorithm

1. Use SVD to decompose W into rank 3 matrices

~

W=UDVT
+ Ul’PA ﬁ
3x3 3xP
2F
V11| V12 — D’ V’T
VE1 \ 4
€ > 2F x 3

P points
U!

R=U DY S=p2yT

AN N
R and S are one of the possible decompositions. We need to add constraints to R.



Factorization algorithm

2. Impose constraints to find Q

N N

R=U’ D’1/2 S = D’1/2 \V'T
We look for Q such that the final rotation and shape matrices are:

R = RQ S = Q1S



Factorization algorithm

2. Impose constraints to find Q

R=U DY S=p2\yT

We look for Q such that the final rotation and shape matrices are:

N N
R=RQ S=Q1S
We impose the constraints on the desired rotation matrix R:
VAN
| k=1
i=ljf=1 f\")f Q'
iTQ Q)= — Find Q
N
'fT QQTj=0
If f_ 1 forf=1:F -

Where |, e and j jf are the corresponding rows of R




Solving for Q

Algorithm 1: Use non-linear solver and solve for Q

Algorithm 2: Solve linear system for C where C = QQT

/i\fTC/i\le forf=1.F

N\ A
HCi=1
A A
it Cj;=0

Then, use Cholesky to factor C

C=QQ!



Example: cylinder

Observations:
3D data Image tracks Measurement matrix W
2.5 ’ . L .
15 * * " ’ L} - :-
1 :u .l' ‘e . ."‘
LN . ® .
05 - . .
* . . " S
[ ] . ‘ ;
05 : . .
0.5 . ' iy — .
05 ° ° 05 0 0.5

20 frames
80 tracks




Example: cylinder

Registered measurement matrix W

1

40

—
s e
-1 A




Example: cylinder

Registered measurement matrix W

s I | | 1 | i - | = = = e
10 -
15 F i
20 J—
25 I
a0 H I
a5 | H
40 2
10 20 a0

= Il.".l."':':l'_-'J:'-'.-'_'-'l:'E"'ﬂ'.-:'-"T".'.'.

N
S

>



Example: cylinder

Registered measurement matrix W

\

Recovered 3D
coordinates




Example: cylinder

L -lm;“’_o.{ oL,

Recovered 3D

coordinates
1 - 1
05 b % 0.8 .
' ) 05
-’ . - L
D * .y [ ] L ] D4 [
L ]
D2F 42
05 r ol
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-1 . 02 o
04l -
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. 1 05 i 05
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Example

Input frames Reconstructed top
Tracked points view
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120 150 '
(a)
Fig. 2a. The “Hotel” stream: four of the 150 frames.



data

INg with missing

Deal

ST

Fig. 9. The “Ball” stream : (a) the first frame, (b) tracks of 60 features, and (c) the fill matrix (shaded entries are known image coordinates).



Dealing with missing data

Point p (U, Vg,) IS missing in frame f.

Conditions for reconstruction:
* Point p is visible in three more frames f,,f,,f;

* And there are three more points visible in the
four frames f, f,,f,,f;

The we can recover the full shape matrix and the
missing coordinates.



< |

(I

Dealing with missing data

Wexa =

We can get the full shape matrix

waxa -

We can get the full translation

V31

Uy2
o)
s
Vi2
V22
Va2

U3
23

Va3

Va4

—

and rotation matrix




100

Result, top view

]
H
14
M
]
i
T
i
HEE
H
H
]
Bl 4
H
i
'
i:

Fig. 12. The “Hand” stream: (a) four of the 240 frames, (b) tracks of 60 features, and (c) the fill matrix (shaded entries are known image
coordinates).



Perspective

Euclidean Reconstruction: from Paraperspective
to Perspective *

Stéphane Christy and Radu Horaud

GRAVIR-IMAG & INRIA Rhéne-Alpes
46, avenue Félix Viallet 38031 Grenoble FRANCE

ECCV’96, volume II, pages 129-140

A factorization based algorithm for multi-image

projective structure and motion
PETER STURM AND BILL TRIGGS

to appear at ECCV’96, version of 16/01/96



Factorization with translation

Let’s not register de matrix W (do not remove the mean to each row)

A

v
<€ >

P points

W=measurement
matrix

2F frames =

<>

4

tx1

yal

A

11111)1(1|1)1|1

<€ - >
P points

S = shape matrix

M = motion matrix
(rotation and translation)

W=MS
Rank(W) < 4



Factorization with translation

Similar algorithm as before

1. Use SVD to decompose W into rank 4 matrices

W=UDVT
I/\\/I and /é are one of the possible decompositions.

|</|: U’ D’l/2

é = D'L2\y'T

We need to add constraints to M.



Factorization with translation

Similar algorithm as before

2. Impose constraints to find Q (now add translation constraints)

W =MS = MQQ1S§ = (MQ)(Q1S)

M=

Constraints:
) N -
' QrQg"if =1
- -
i QrOQR'Ji =1

Ar oA
' QrQR' J =0

MQ

S =Q1S

Q=[Qr| Q4

— Find Qg

forf=1:F —

Qt — D-1/2 Utw

w is the mean of the rows of W



Multi-body factorization

Proe. R. Sec. Lond. B. 203, 405-428 (1979)
Printed in (reat Britain

T'he interpretation of structure from motion

By 5. ULnLmax

Artificial Intelligence Laboratory, Massachuselts Institute of Technology,
345 Technology Square (Room 808), Cambridge, Massachuselts 02139 U8 A,

(Communicated by S. Brenner, F.R.S. - Received 20 April 1978)

The interpretation of structure from motion is examined from a com-
putional point of view. The question addressed is how the three dimen-
sional structure and motion of objects can be inferred from the two
dimensional transtormations of their projected images when no three
dimensional information iz conveyed by the individual projections,
The following scheme is proposed: (i) divide the image into groups of
four elements each; (ii) test each group for a rigid interpretation; (iii)
combine the results obtained in [ii} It is shown that this scheme will
mm‘c‘c'rly decompose seenes containing arbitrary nt_,n*l objects in motion,
recovering their three dimensional structure and motion. The analysis is
based primarily on the ‘structure from motion ' theorem which states that
the structure of four non-coplanar points is recoverable from three
orthographic projections. The interpretation scheme is extended to
cover perspective projections, and its psychological relevance is discussed.,






Multi-body factorization

A Multi-body Factorization Method
tor Motion Analysis

Jodo Costeira Takeo Kanade

CMU-CS-TR-94-220

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

September 30, 1994



Multi-body factorization

2F frames

\
<€ >

P points = P1 + P2

Let’'s assume we know which points belong to each object and we sort them so that:

W* = [Wy | Wy



Multi-body factorization

 Let's assume we know which points belong to each object and we sort them so that:

W= =W, | W,]

« Each measurement matrix can be decomposed as:

Motion-shape factorization: W, =M,S,= (I\/>I1A1)(A1'1§1)

SVD: W, =U,D,V,T

* In this canonical form, the measurement matrix is:
S; 0
W* = [M; | M,]

0S,

W* will have rank at most 8



Multi-body factorization

Challenge: we do not know which features
belong to each object.

Shape Interaction matrix:

First, we compute SVD of the measurement matrix

W = UDVT

We compute r =rank(W) and keep the first r rows of VT

Q=VVT



Multi-body factorization

Shape interaction matrix

Q=VVT

 Let’'s assume we know which points belong to each object and we sort them so that:

Q* = vv!
— S TAIYATS”
— S ATy AT s
1 1n . 114 -1
— Saf {*A_a—lzx—l;-\/w«f I \VAD 1;-_ALH { |] S — Sxf {stxf _:|_ISH

A

0 So

Q* has block structure




g

Multi-body factorization

Q* has block structure

or — S17A17'S, 0
B 0 S.TAL7!S,

si Aq _151_}. if feature trajectory z and ; belong to object 1

s%: : AZ_ISQJ- if feature trajectory z and ; belong to object 2

0 if feature trajectory : and ; belong to different objects.



Multi-body factorization

If we do not know the segmentation Q will be unsorted.

We can swap rows and columns until it becomes block diagonal. Then,
use same permutations to sort W.

W Column Permutations W

T T
-

NI+N2 -~ \ N1 N2
x2 x1, x2 x1, 2 x2 ! xl %1,
Xzz; }112._ 52223122 322._X22 _i xlz1X122
2F
y2 vyl y2 vl v2 y2 | oyl yl
F1 F1 F2 F2 F1 F2 : F1 F2
Objectl # Object2
T e [1-94=0
Q=VV Q .
N1 ‘
Object 1
;% N1
N1+N2 '
N2
Object 2
- el N2



Multi-body factorization

The whole algorithm of the multi-body factorization method is now summarized as:

1. Extract and track features in the input image sequence and create matrix W
2. Compute r = rank( W)

3. Decompose matrix W using SVD

4. Compute shape interaction matrix Q using the first r rows of V7'

5. Block-diagonalize Q

6. Permute matrix V* into submatrices, each corresponding to a single object
7. Compute A; for each object, and thus its shape and motion.

This clustering algorithm is related to spectral clustering.
See “Segmentation using eigenvectors: a unifying view”, Weiss, ICCV’99
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Figure 6: The shape interaction matrix for the synthetic scene with three transparent objects: (a)
Unsorted matrix Q, and (b) sorted matrix Q*.



(c)

(b)

Figure 7: Recovered shape of the objects




Multi-body factorization

Pros: cons:
 No dependency on e Sensitivity to noise
the type of motions « Need full trajectories.
 NoO need to know Dealing with
number of objects occlusions will be
» No need to know delicate.

shapes



Multibody Factorization with Uncertainty and Missing Data Using the EM
Algorithm

Amit Gruber and Yair Weiss
School of Computer Science and Engineering
The Hebrew University of Jerusalem
Jerusalem, Israel 91904

Figure 1: a. Ullman’s [12] co-axial transparent cylinders
demonstration. b. Costeira-Kanade [1] factorized matrix
for noise free input. Top row is unsorted matrix, bottom is
sorted. ¢. Costeira-Kanade factorized matrix for noisy input
(unsorted on top row, sorted on bottom).



Temporal Factorization Vs. Spatial Factorization

Lihi Zelnik-Manor! and Michal Irani®

' California Institute of Technology, Pasadena CA, USA,
lihi@caltech. edu,
WWW home page: http://www.vision.caltech.edu/1ihi
2 Weizmann Institute of Science, Rehovot, Israel

Given a video clip of a dynamic scene:

1. Track reliable feature points along the entire sequence.

2. Place each trajectory into a column vector and construct the corre-
spondence matrix W = [%] (see Eq. (1))

3. Apply any of the existing algorithms for column clustering (e.g.,
“multi-body factorization” of [6,7,9]), but to the matrix W7 (in-
stead of W).




Temporal factorization

Spatial Factorization Temporal Factorization
Apply clustering to WTw WwT
Data dimensionality N x N F x F
Data type Points (columns) Frames (rows)
Cluster by Consistent motions Consistent shapes

(a) Temporal factorization result:

*OPEN "CLOSE"
. " frames

The resulting frames
temporal | SEEE—— EE——  EE—_“" B . -
tlustering
Frarrrga
numoer
Ground Truth & time ban
| | | | | | |
50 100 180 200 250 300 350
(b) Example frame from (c) Example frame from (d) Spatial factorization

the “OPEN” cluster the “CLOSE" cluster result




Non-Rigid Structure from Locally-Rigid Motion

Jonathan Taylor Allan D. Jepson Kiriakos N. Kutulakos
Department of Computer Science
Unaversity of Toronto

The key idea is to first solve many local 3-point, N-view rigid problems independently,
providing a "soup" of specific, plausibly rigid, 3D triangles. Triangles from this soup are
then grouped into bodies, and their depth flips and instantaneous relative depths are
determined.

The main advantage here is that the extraction of 3D triangles requires only very weak
assumptions:

(1)deformations can be locally approximated by near-rigid motion of three points (i.e.,
stretching not dominant) and
(2)local motions involve some generic rotation in depth.
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Bundle adjustment

Recover structure and motion by minimization of
measurement error.

Given the image coordinates x;, find the camera matrices
P; and the 3D locations of the points X;

m

E(P.X) = ZZD(XWPIX )

/r 1 j=
Sum over views X

Sum over points




Bundle Adjustment in the Large
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Complex motion
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x(t+1)=Ax(t) +v@) v(t)~N(©,Q); x(0)=xg
y(t) = Cx(1) + w(r) w(t) ~ N(0, R)
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Original Synthesized

The training sequence is full of highlights and this makes the leaning
procedure much more difficult.
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