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Instances vs. categories

Instances Find these two toys Categories Find a bottle:

Can nall it Can’'t do
unless you do not
care about few errors...



Why do we care about recognition?
Perception of function: We can perceive the 3D

shape, texture, material properties, without
knowing about objects. But, the concept of
category encapsulates also information about

what can we do with those objects.
™

“We therefore include the perception of function as a proper —indeed, crucial- subject
for vision science”, from Vision Science, chapter 9, Palmer.




The perception of function
* Direct perception (affordances). Gibson

Flat surface
Horizontal | Sittable
Knee-high upon

* Mediated perception (Categorization)

Flat surface _
Horizontal .| Chair | Sittable
Knee-high upon




Direct perception

Some aspects of an object function can be
perceived directly

* Functional form: Some forms clearly
iIndicate to a function (“sittable-upon”,
container, cutting device, ...)

Sittable-upon sittaple-upon It does not seem easy
to sit-upon this...

Sittable-upon



Direct perception

Some aspects of an object function can be
perceived directly

* Observer relativity: Function Is observer
dependent




Limitations of Direct Perception

Obijects of similar structure might have very different functions

Figure 9.1.2 Objects with similar structure but different func-
tions. Mailboxes afford letter mailing, whereas trash cans do nnl.‘
even though they have many similar physical features, ﬁ\'nlch d\l
size, location, and presence of an opening large enough to mser

letters and medium-sized packages.

Not all functions seem to be available from direct visual information only.

The functions are the same at some level of description: we can put things
inside in both and somebody will come later to empty them. However, we
are not expected to put inside the same kinds of things...



Limitations of Direct Perception

Visual appearance might be a very weak cue to function

Propulsion system

Strong protective surface

Something that looks like a door

Sure, | can travel to space on __
this object

\




ODbject recognition
Is It really so hard?

Find the chair in this image Output of normalized correlation
By

This is a chair




Object recognition
Is It really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

My biggest concern while making this slide was:
how do | justify 50 years of research, and this course, if this experiment did work?



ODbject recognition
Is It really so hard?

Find the chair in this image

A “popular method is that of template matching, by point to point correlation of a
model pattern with the image pattern. These techniques are inadequate for three-
dimensional scene analysis for many reasons, such as occlusion, changes in viewing
angle, and articulation of parts.” Nivatia & Binford, 1977.



Why Is object recognition a hard task?



Challenges 1: view point variation

Slides: course object recognition

Michelangelo 1475-1564 ] e ICCV 2005



Challenges 2: illumination

slide credit: S. Ullman
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Challenges 4: scale

Slides: course object recognition
ICCV 2005



Challenges 5: deformation

Slides: course object recognition

ICCV 2005 Xu, Beihong 1943



Challenges 6: Intra-class variation

Slides: course object recognition
ICCV 2005



Challenges 7: background clutter

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Which level of categorization
IS the right one?

Car is an object composed of:
a few doors, four wheels (not all visible at all times), a roof,
front lights, windshield

If you are thinking in buying a car, you might want to be a bit more specific about
your categorization.



Entry-level categories
(Jolicoeur, Gluck, Kosslyn 1984)

» Typical member of a basic-level category
are categorized at the expected level

« Atypical members tend to be classified at
a subordinate level.




Creation of new categories

A new class can borrow information from
similar categories




ODbject recognition
Is It really so hard?

Yes, object recognition is hard...

(or at least it seems so for now...)



So, let’'s make the problem simpler:
Block world

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks
world scene. c)Detected edges using a 2x2 gradient operator. d} A 3-d polyhedral
description of the scene, formed automatically from the single image. ) The 3-d scene
displayed with a viewpoint different from the original image to demonstrate its accuracy
and completeness. (b) - e) are taken from [64] with permission MIT Press.)

Nice framework to develop fancy math, but too far from reality...

Object Recognition in the Geometric Era:
a Retrospective. Joseph L. Mundy. 2006



Binford and generalized cylinders
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Fig. 3. The representation of objects by assemblies of generalized cylinders. a) Thomas

Binford. b) A range image of a doll. ¢) The resulting set of generalized cylinders. ( b)
and c) are taken from Agin [1] with permission.)

Object Recognition in the Geometric Era:
a Retrospective. Joseph L. Mundy. 2006



Binford and generalized cylinders

(b) Sweeping rule.

(a) Cross section.
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(d) Generalized cylinder

(c) True cylinder



Recognition by components

Irving Biederman
Recognition-by-Components: A Theory of Human Image Understanding.
Psychological Review, 1987.



Recognition by components

The fundamental assumption of the proposed theory,
recognition-by-components (RBC), is that a modest set
of generalized-cone components, called geons (N = 36),
can be derived from contrasts of five readily detectable
properties of edges in a two-dimensional image:
curvature, collinearity, symmetry, parallelism, and
cotermination.

The “contribution lies in its proposal for a particular
vocabulary of components derived from perceptual
mechanisms and its account of how an arrangement of
these components can access a representation of an
object in memory.”



A do-it-yourself example

4

1) We know that this object is nothing we know
2) We can split this objects into parts that everybody will agree

3) We can see how it resembles something familiar: “a hot dog cart”

“The naive realism that emerges in descriptions of nonsense objects may be
reflecting the workings of a representational system by which objects are

identified.”



Hypothesis

 Hypothesis: there is a small number of geometric
components that constitute the primitive elements of the
object recognition system (like letters to form words).

« “The particular properties of edges that are postulated to
be relevant to the generation of the volumetric primitives
have the desirable properties that they are invariant over
changes in orientation and can be determined from just a
few points on each edge.”

e Limitation: “The modeling has been limited to concrete
entities with specified boundaries.” (count nouns) — this
limitation is shared by many modern object detection
algorithms.



Constraints on possible models of recognition

1) Access to the mental representation of an
object should not be dependent on absolute
judgments of quantitative detall

2) The information that is the basis of recognition
should be relatively invariant with respect to
orientation and modest degradation.

3) Partial matches should be computable. A theory
of object interpretation should have some
principled means for computing a match for
occluded, partial, or new exemplars of a given
category.



Stages of processing

Stages in Object Perception

Extraction
Detection of Parsing ot Regions
Nonaccidental of Concavity
Properties

Determination of
Components

Matching of Components
to Object Representations

Object
Identification

Figure 2. Presumed processing stages in object recognition.

“Parsing is performed, primarily at concave regions, simultaneously with a
detection of nonaccidental properties.”



Non accidental properties

Certain properties of edges in a two-dimensional image are taken by the visual
system as strong evidence that the edges in the three-dimensional world contain those
same properties.

Non accidental properties, (Witkin & Tenenbaum,1983): Rarely be produced by

accidental alignments of viewpoint and object features and consequently are generally
unaffected by slight variations in viewpoint.

image

A=
~




Examples:

* Colinearity

» Smoothness
e Symmetry
 Parallelism

* Cotermination

Principle of Non-Accidentginess: Critical information is unlikety to be a

consaquence of on accident of viewpoint.
Tiree Space Inference from image Features
2-D Relation 3-D Inferance Exompies
1. Collinearity of Collinearity in 3-Space ]
points or lines Jf
/
rd
2. Curvilinsority of Curvilinearity in 3-Space
points of arcs S
/f \\ \
d N
\
3. Symmetry Symmetry in 3-Space
{Skew Symmetry ?} ) N
Tre @& A
4 Porallel Curves Curves ore pwalul in 3-Space

m?zfm) /_\/ \\

5. Vertices—two or more Curves terminate ata
terminations ot a common point in 3~ Space

sion.)



Some Nonaccidental Differences Between a Brick and a Cylinder

Brick Cylinder

mle: wo fangent Y vertices
Three Three (Occluding edge tangent
orle o O e
edges arrow
vertices Curved edges
Two parallel
edges

The high speed and accuracy of determining a given nonaccidental relation {e.g.,
whether some pattern is symmetrical) should be contrasted with performance in
making absolute quantitative judgments of variations in a single physical attribute,
such as length of a segment or degree of tilt or curvature.

Object recognition is performed by humans in around 100ms.



Locus of Deletion

Proportion At Midsegment At Vertex
Contour

Deleted Q_j,‘q : I)
25% < ri’/ \ /)

45% v \
r ’

N —
& )r"\) —— }
5% L \ 1/
N’ _

Recoverable | Unrecoverable

“If contours are deleted at a vertex they can be restored, as long as there is no
accidental filling-in. The greater disruption from vertex deletion is expected on the basis
of their importance as diagnostic image features for the components.”



From generalized cylinders to
GEONS

“From variation over only two or three levels in the nonaccidental relations of four
attributes of generalized cylinders, a set of 36 GEONS can be generated.”

Geons represent a restricted form of generalized cylinders.



More GEONS

CROSS SECTION CROSS SECTION
Edge Symenatry size Axiy Edge Symmatry Size Axis
Straight S | Rot B Ret ++ |Constant ++ | Straight + Straight S | Rot B Ref ++ {Constant ++ | Straight +
Goon i C  |Rets Expanded - nnﬂ'- GO0 [CavedC  |Rete Exponded— | Curved-
Asymm-  |Exp 8 Cont-- Asymm~  |Exp & Cont-~
@ S ++ ++ + Q S + ++ -
@ C ++ ++ + m C + ++ -
el-l-1-1-1 & ~|-|-
@ [ ++ + - &:::O C ++ — -
@ C ++ -~ + Q S + - -
ﬁ S + + + Q c + - -

Figure 9. Geons with curved axis and straight or curved cross sections.
{Determining the shape of the cross section, particularly if siraight,
might require attention.)

Figure 7. Proposed partial set of volumetric primitives (geons)
derived from differences in nonaccidental properties,



Objects and their geons

Geons
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Scenes and geons
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Supercuadrics

block

g

e

b-ﬂ?}*

6. Tapered 7. Cone 8. Barrel 9. Ellipsoid 10. Bent
Cylinder Cylinder

Introduced in computer vision by A. Pentland, 1986.



What is missing?
The notion of geometric structure.

Although they were aware of it, the previous
works put more emphasis on defining the
primitive elements than modeling their
geometric relationships.



The importance of spatial
arrangement

1= ot

Figure 3. Different arrangements of the same components can produce different objects.



Parts and Structure approaches

With a different perspective, these models focused more on the
geometry than on defining the constituent elements:

Fischler & Elschlager 1973
Yuille ‘91

Brunelli & Poggio ‘93
Lades, v.d. Malsburg et al. ‘93 Lerr [ S
Cootes, Lanitis, Taylor et al. ‘95 el
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, 00, '03, ‘04

MOUTH

Felzenszwalb & Huttenlocher 00, '04 Figure from [Fischler & Elschlager 73]
Crandall & Huttenlocher ’'05, '06

Leibe & Schiele '03, '04

Many papers since 2000



Representation

* Object as set of parts
— Generative representation

 Model:
— Relative locations between parts
— Appearance of part

e |[ssues: LEFT [ A%
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

We will discuss these models more in depth later



But, despite promising initial results...things did
not work out so well (lack of data, processing
power, lack of reliable methods for low-level and
mid-level vision)

Instead, a different way of thinking about object
detection started making some progress:
learning based approaches and classifiers,
which ignored low and mid-level vision.

Maybe the time is here to come back to some of
the earlier models, more grounded In intuitions
about visual perception.



Neocognitron

Fukushima (1980). Hierarchical multilayered neural network
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edge recognition
extraction layer

input

layer
contrast
extraction

S-cells work as feature-extracting cells. They resemble simple cells of the
primary visual cortex in their response.

C-cells, which resembles complex cells in the visual cortex, are inserted in the
network to allow for positional errors in the features of the stimulus. The input
connections of C-cells, which come from S-cells of the preceding layer, are fixed
and invariable. Each C-cell receives excitatory input connections from a group
of S-cells that extract the same feature, but from slightly different positions. The
C-cell responds if at least one of these S-cells yield an output.



Neocognitron
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Learning is done greedily for each layer



Convolutional Neural Network

INPUT feature maps feature maps feature maps feature maps QUTPUT
28x28 4{@24x24 4@12x12 12@8x8 12@4xd 26@1x1

Le Cun et al, 98

The output neurons share all the intermediate levels



Face detection and the success
of learning based approaches

* The representation and matching of pictorial structures Fischler, Elschlager (1973).
* Face recognition using eigenfaces M. Turk and A. Pentland (1991).

» Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)

* Graded Learning for Object Detection - Fleuret, Geman (1999)

* Robust Real-time Object Detection - Viola, Jones (2001)

* Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre,
Mukherjee Poggio (2001)



b b _;37 S i

* The representation and matching of pictorial structures Fischler,"Elschlager(1973)

* Face recognition using eigenfaces M. Turk and A. Pentland (1991).

» Human Face Detection in Visual Scenes - Rowley, Baluja, Kanade (1995)

» Graded Learning for Object Detection - Fleuret, Geman (1999)

* Robust Real-time Object Detection - Viola, Jones (2001)

» Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images - Heisele, Serre,
Mukherjee, Poggio (2001)




Distribution-Based Face
Detector

» Learn face and nonface models from examples [Sung and
Poggio 95]

e Cluster and project the examples to a lower dimensional space
using Gaussian distributions and PCA

» Detect faces using distance metric to face and nonface clusters

¥3  Face Sample X3 Approximation with
1 Diztbuton i G_aussia.n cluzters

e g &
Frontal Face Pattem TR TG . ] Z Test Pattern
sarnples to approxdmate Y ) T ) : B i o i
vector subspace of g% \ % \ - =g K enirol
canordcal face views ol x EE *
Cu
a8
E £ D2 ..
¥3 Mon-Face Sample ¥3 Approximation with z = Closter
Gaussian clusters = o SU:ET ...... Eii
5
A PSLy Eeslfj;fe 8
]SEHY&C.:-DTS

(b)

Special Mon-Face Pattem

samples to refine vector

subspace boundaries of
caronical face views

Mon-Face Centroids



Distribution-Based Face
Detector

» Learn face and nonface models from examples [Sung and
Poggio 95]

Image Output

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern




Neural Network-Based Face Detector

* Train a set of multilayer perceptrons and
arbitrate a decision among all outputs

[Rowley et al. 98]
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Coarse-to-Fine Face Detection

Irancois Fleuret * Donald Geman *

June 2000

1UL ULLCL O JeCLy 111 vdlluus suuseus.

Finally, in defense of limited goals, nobody has yet demonstrated that objects from
even one generic class under constrained poses can be rapidly detected without errors
in complex, natural scenes; visual selection by humans occurs within two hundred

milleseconds and is virtually perfect.

L Acknowledeements: We are oratefnl to Yali Amit for many sueeestions durine a

fAvant-Projet IMEDIA, INBTA-Rocquenconrt, Tomaine de Valuesan, BP105, 78155 Le Ches-

nay. Email: Francos Flearetfinrafr. Supported in part by the CNET.
tDepartment of Mathematios and Statistivs. University of Massachusetts, Amherst, WA 01003,

Emailg eman@mathoumass edn, Supported in o part by ONR under contract NOOO014-97-1-0249 and

ARO under MTURTD grant TrA ATTO4-06-1-0014415.




http://www.marcofolio.net/imagedump/faces_everywhere 15 images_8 illusions.html

60



Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones.pdf/violaOlrobust.pdf



Face detection

‘ Canon

[Face priority AE] When a bright part of the face is too bright



Families of recognition algorithms

Voting models Shape matching
Pag of wor.s models - ° Deformable models

et e

L.

L ed V_iola and Jo_nes, ICCV 2001 Berg, Berg, Malik, 2005
Csurka, Dance, Fan, Willamowski, and Heisele, Poggio, et. al., NIPS 01 Cootes, Edwards, Taylor, 2001
Bray 2004 Sc_hnelderman, Kanade 2004
Sivic, Russell, Freeman, Zisserman, Vidal-Naquet, Uliman 2003

ICCV 2005

Rigid template models

weighted weighted

Constellation models

1 InpULimage pos wts neg wts
Fischler and Elschlager, 1973 _Srir?(vi;h ar|1d ';irtl)g;fw
Burl, Leung, and Perona, 1995 Durl ’I &e_lf‘t_ an B
Weber, Welling, and Perona, 2000 alal & 1riggs,

Fergus, Perona, & Zisserman, CVPR 2003



A simple object detector

« Simple but contains some of same basic
elements of many state of the art detectors.

» Based on boosting which makes all the
stages of the training and testing easy to
understand.

Most of the slides are from the ICCV 05 short course
http://people.csail.mit.edu/torralba/shortCourseRLOC/



Discriminative vs. generative

» Generative model

p(Data, No Zebra)

p(Data, Zebra)

(The artist)

* Discriminative model p(Zebra|Data)
- 1
(The lousy painter) ) Cgp(wo Zebra| Data)
05"
% 10 20 30 40 50 50 70

ImM potoTobrs

» Classification function

| | | | | | |
0 10 20 30 40 50 60 70 80
X = data



Discriminative methods

Obiject detection and recognition is formulated as a classification problem.
The image is partitioned into a set of overlapping windows

... and a decision is taken at each window about if it contains a target object or not.

Decision

Background boundary
Where are the screens?

Computer screen

Bag of image patches

In some feature space



Discriminative methods

Nearest neighbor

r-"“\
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108 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005
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Neural networks
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LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Support Vector Machines and Kernels

Guyon, Vapnik
Heisele, Serre, Poggio, 2001

Conditional Random Fields

McCallum, Freitag, Pereira 2000
Kumar, Hebert 2003




Formulation

 Formulation: binary classification

SO h . = 5 | ® —
Features x= X1 XN+1 XN+2 o XN+M
Labels y= -1 ? ? ?
— —— — - ~ ~
Training data: each image patch is labeled Test data

as containing the object or background

e Classification function

g p— F(:C) Where F(aj‘) belongs to some family of functions

« Minimize misclassification error

(Not that simple: we need some guarantees that there will be generalization)



Overview of section

e Object detection with classifiers

 Boosting
— Gentle boosting
— Weak detectors
— Object model
— ODbject detection



A simple object detector with Boosting

Fle Edt View Go Bookmarks Tools Help

A simple object detector
with boosting

ICCY 2005 short courses on
Recognizing and Learning Object Categories

Boosting provides a simple framework to develop robust object detection algorithms. This set of functions provide a minimal set to
build an object detection algorithm. It is entirely written on Matlab in order to make it easily accesible as a teaching tool. Therefore.
it is not appropriate for building real-time applications.

Setup

Download the code and datasets
Download the LabelMe toolbox

Unzip both files. Modify the paths in initpath.m

Modify the folder paths in paramaters m to point to the locations of the images and annotations.

Description of the functions

Initialization
initpath m - Initializes the matlab path You should run this command when you start the Matlab session.
paremeters.m - Contains parameters to configure the classifiers and the database.

Boosting tools
demoGentleBoost.m - simple demo of gentleBoost using stumps on two dimensions

Scripts

createDatabases.m - creates the training and test database using the LabelMe database.

createDictionary.m - creates a dictionary of filiered patches from the target object.

computeF eatures m - precomputes the features of all images and stores the feature outputs on the center of the target object and on a
sparse set of locations from the background.

trainDetector.m - creates the training and test database using the LabelMe database

runDetector.m - runs the detector on test images

Features and weak detectors
convCrossConv.m - Weak detector: computes template matching with a localized patch in object centered coordinates.

Detector
singleScaleBoostedDetector.m - runs the strong classifier on an image at a single scale and outputs bounding boxes and scores.

LabelMe toolbox
LabelMe - Describes the utility functions used to manipulate the database

Done

http://people.csail.mit.edu/torralba/iccv2005/

Download
» Toolbox for manipulating dataset

» Code and dataset

Matlab code
» Gentle boosting

» Object detector using a part based model

Dataset with cars and computer monitors

Detector output
Input image with ground truth Boosting margin Thresholded output targets=1, correct=1, false alarms=0




Why boosting?

* A simple algorithm for learning robust classifiers
— Freund & Shapire, 1995
— Friedman, Hastie, Tibshhirani, 1998

* Provides efficient algorithm for sparse visual
feature selection

— Tieu & Viola, 2000
— Viola & Jones, 2003

« Easy to implement, not requires external
optimization tools.

For a description of several methods:
Friedman, J. H., Hastie, T. and Tibshirani, R.
Additive Logistic Regression: a Statistical View of Boosting. 1998



Boosting

* Defines a classifier using an additive model:

F(x) = aul]}l(m) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features

vector



Boosting

* Defines a classifier using an additive model:

F(x) = 0{‘1]%1(3?) + axfa(z) + azfz(z) + ...

Strong Weak classifier
classifier
Weight
Features
vector

* \We need to define a family of weak classifiers

fk(ib’) from a family of weak classifiers



Boosting

 Itis a sequential procedure:

o %o o v
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Toy example

Weak learners from the family of lines
o %o e ©
¢ Each data point has
® e o @ O
@ O O OO‘ @ a class label:
o © o ©O @ +1
e 0P 20 o ® :{ ©
@ od O -1 (©
@ ° ° o O ®@ O
° @ @ and a weight:
® o © @ @ w; =1
@
@ ®@ O ®
® e
>

h => p(error) = 0.5 itis at chance



Toy example

o Ple e ©
® ® o Each data point has
o el o
® |gd p OO‘ O a class label:
o ®| ol D o ‘e
o PP Lo e © :{ ©)
o d o 10
Q
@ ° ° o O @ O
° @ @ and a weight:
o e P @ o w, =1
@
@ @| © ®
@ e
S o o

This one seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.



Toy example

Each data point has

O O O O ' a class label:
@
° Q 5 00 © +1 @)
@
() O Q -1 (O)
® O
® ® We update the weights:
() @ . ‘ W, W, exp{-y; H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
+1 (@
Yt:{ ©
-1©
We update the weights:

W, <= W, exp{-y, H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
yt:{ 1@
@ -1 (©

@ Weupdate the weights:

W, <= W, exp{-y, H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

Each data point has

a class label:
yt:{ 1@
-1©

@ @ Weupdate the weights:

W, <= W, exp{-y, H}

We set a new problem for which the previous weak classifier performs at chance again



Toy example

o © O
O 0° S o e
@ @ @) L..
o o P © Fo fs
e ol o ©
® O

The strong (non- linear) classifier is built as the combination of
all the weak (linear) classifiers.



Boosting

e Different cost functions and minimization
algorithms result is various flavors of

Boosting

 In this demo, | will use gentleBoosting: it is
simple to implement and numerically
stable.



Overview of section

e Object detection with classifiers

e Boosting
— Gentle boosting
— Weak detectors
— Object model
— ODbject detection



Boosting

Boosting fits the additive model
F(x) = f1(x) + fo(x) + fa(x) + ...

by minimizing the exponential loss

N
— —ytF'(z¢)
J(F) t; e N

Training samples

The exponential loss is a differentiable upper bound to the misclassification error.



Exponential loss

Squared error

LOSS 4 - \ \ . g ‘- \
Misclassification error |

N
Squared error | J = Z [yt . F(xt)]Q
t=1

Exponential loss |

Exponential loss

N
J = Z o~ YtF (z¢)
t=1

! | .
-1.5 -1 -0.5 0 0.5 1 15

yF(§<) = margin



Boosting

Sequential procedure. At each step we add
F(z) «— F(z) + fm(z)
to minimize the residual loss

N
(qﬁg{z) = arg mqgﬂ t; J (3/\7;7 F(ﬁ{) + f(xt; 9))

Parameters Desired output  input
weak classifier

For more details: Friedman, Hastie, Tibshirani. “Additive Logistic Regression: a Statistical View of Boosting” (1998)



gentleBoosting

e At each iteration:
We chose fm () that minimizes the cost:

N
J(F+ fm) =Y o~ Ut(F (@)t fm(zt))
t=1

Instead of doing exact optimization, gentle
Boosting minimizes a Taylor approximation of

the error:

N : :
At each iterations we
—y 2
J(F') Z eVt (xt)'(yt — fm(z¢)) just need to solve a
t=1 weighted least squares
T problem

Weights at this iteration

For more details: Friedman, Hastie, Tibshirani. “Additive Logistic Regression: a Statistical View of Boosting” (1998)



Weak classifiers

 The input is a set of weighted training

samples (X,y,w)

* Regression stumps: simple but commonly

used In object detection.

fm(x) = alzy, < 0] + blxy > 0]

Four parameters: [a, b, 0, k]

a=E,(y [x< 6])

p Tm(X)

b=E,(y [x> 6])

0

X



gentleBoosting.m

function classifier = gentleBoost(x, y, Nrounds)

for m = 1:Nrounds
fm = selectBestWeakClassifier(x, y, w);

w=w.*exp(-y .* fm);

v

v

% store parameters of fm in classifier

end

v

Initialize weights w = 1

Solve weighted least-squares

Re-weight training samples



Demo gentleBoosting

Demo using Gentle boost and stumps with hand selected 2D data:

> demoGentleBoost.m

A simple object detector
with boosting

ICCV 2005 short courses on
Recognizing and Learning Object Categories

Boosting provides a simple framework to develop robust object detection algorithms. This set of functions provide a minimal set to
budd an cbject detection algorighm, Tt is entively written on Matlah in order to make it enslly accestle a3 a teaching tool Therefore,
it i not approgiate for bulding real-time appbcations

Setup

Download the code and datasets

Dovmload the LabelMe toolbox

Unzip both Sles. Modify the paths in intpath.m

Modfy the folder paths in parsmaters.m to point to the locations of the images and annotations.

Description of the functions

Initialication
istpath.m - Initializes the matab path. You should run this command when vou stan the Matlab session.
peremeters m - Contains parameters to configure the classifiers and the database

Boosting tools
demoGenteBosst m - smple demo of gentleBloost using shumps oa two dmensions

Seripts
createDetabases m - crcates the banmyg and test database using the LabelMe database.

createDictionary.m - creates a dictionary of fltered patches from the target object.

computeF canzes m - precomputes the features of all anages and stores the featare outputs on the center of the target object and ona
sparse set of locations from the background.

trainDetector m - creates the training and test database using the LabeDe databace

numDetector m - runs the detector on test mnages

Features and weak detectors
comCrossComv.m - Weak detector: computes template matching with a localized patch in object centered coordinates.

Detector
singleScaleBoostedDetecton.m - nans the strong classifier on an image at a single scale and cutputs bounding boxes and scores.

LabelMe toalbox
LabelMe - Describes the uslity fmctions used to manipulste the database

Done




Flavors of boosting

AdaBoost (Freund and Shapire, 1995)
Real AdaBoost (Friedman et al, 1998)
LogitBoost (Friedman et al, 1998)
Gentle AdaBoost (Friedman et al, 1998)
BrownBoosting (Freund, 2000)
FloatBoost (LI et al, 2002)



Overview of section

e Object detection with classifiers

e Boosting
— Gentle boosting
— Weak detectors
— Object model
— ODbject detection



From images to features:
Weak detectors

We will now define a family of visual
features that can be used as weak
classifiers (“weak detectors”)

L NN h'([, T, y)_>

Takes image as input and the output is binary response.
The output is a weak detector.




ODbject recognition
Is It really so hard?

Find the chair in this image

But what if we use smaller patches? Just a part of the chair?



Parts

But what if we use smaller patches? Just a part of the chair?

b

Find a chair in this image

i e —

Seems to fire on legs... not so bad



Weak detectors

Textures of textures

Tieu and Viola, CVPR 2000. One of the first papers to use boosting for vision.

9i,g.k = Z ||I * fll l2 *f-7| 12 *fk input image
pizels = input image
mm - .
=110
Al e LA
k - = -_- " = l-:-l \
ElE

Every combination of three filters
generates a different feature

This gives thousands of features. Boosting selects a sparse subset, so computations
on test time are very efficient. Boosting also avoids overfitting to some extend.



Weak detectors

Haar filters and integral image
Viola and Jones, ICCV 2001

=|
=,

The average intensity in the
block is computed with four
sums independently of the
block size.



Edge fragments

J. Shotton, A. Blake, R. Cipolla.
Multi-Scale Categorical Object Recognition

Using Contour Fragments. In IEEE Trans. Opelt, Pinz, Zisserman, ECCV 2006

On PAM', 30(7).1270'1281, JUly 2008. Tv;'obnundary Matching o the edge image
ragments =5 -
- Ha = Wz Overlap of centroid predictions
-3 Lf il - == 6 { ‘~®
¢ = - - _-? :
= Vn 1
/ ‘J » @T_@E_riliesoi m_;gf@
Matching '_Eban the edge image I'
. . - . . —— Ciating for same centra
Fig. 1. Object recognition using contour fragments. Our innate % e
biological vision system is able (o interpret spatially arranged local I ® ®
fragments of contour to recognize the objects present. In this work we r 5
show that an automatic computer vision system can also successfully i

exploit the cue of contour for object recognition.

All matched boundary
fragments

Original Image
: Centroid Voting on a subset of the matched fragments

Segmentation / Detection Backprojected Maximum



Weak detectors

Other weak detectors:

e Carmichael, Hebert 2004

* Yuille, Snow, Nitzbert, 1998
 Amit, Geman 1998

e Papageorgiou, Poggio, 2000
 Heisele, Serre, Poggio, 2001
« Agarwal, Awan, Roth, 2004

e Schneiderman, Kanade 2004



Weak detectors

Part based: similar to part-based generative
models. We create weak detectors by
using parts and voting for the object center
location

Car model

These features are used for the detector on the course web site.



Weak detectors

First we collect a set of part templates from a set of training
objects.

Vidal-Naquet, Uliman (2003)

= B

£ = H
* x I
o -

- .
L.




Weak detectors

We now define a family of “weak detectors” as:

hi(l,z,y) = [I ® P;] * g;

o=

-
.

lhz(la x, y) > 0

Better than chance




Weak detectors

We can do a better job using filtered images

hi(I,z,y) = [|I * f;| ® P;] * g

Still a weak detector
but better than before




Training

First we evaluate all the N features on all the training images.

Feature 1 [( )
Feature N [(

Then, we sample the feature outputs on the object center and at random
locations in the background:

o

5 X = 0 o --
SRR - B
= = | |
22 &2
= 3 = 3
g1 B
2 N1 2 N1 [N
2 | N S N

| N e [N ][N
o Z.




Representation and object model

Selected features for the sc tector
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Representation and object model

Selected features for the car detector

ol | o=

10 100




Overview of section

e Object detection with classifiers

e Boosting
— Gentle boosting
— Weak detectors
— Object model
— Object detection



Object mode|

 Voting

e |Invariance: search strategy

Here, invariance in translation and scale is achieved by the search strategy: the
classifier is evaluated at all locations (by translating the image) and at all scales

(by scaling the image in small steps).

The search cost can be reduced using a cascade.



Example: screen detection

Feature




Example: screen detection

Feature Thresholded
output output

i
l-l o — —— —
- — ﬂ -
“ i _> -‘ & _> - .- -
[ - ’- -
= - - - a o
5

Weak ‘detector’
Produces many false alarms.




Example: screen detection

Feature Thresholded  Strong classifier
at iteration 1




Example: screen detection

Feature Thresholded Strong
output output classifier

-'*-

Second weak ‘detector’

Produces a different set of
false alarms.



Example: screen detection

Feature Thresholded Strong
output output classifier

Strong classifier
at iteration 2



Example: screen detection

Feature Thresholded Strong
classifier

Strong classifier
at iteration 10



Example: screen detection

Feature Thresholded Strong
output output classifier

Adding
features

Final
classification

Strong classifier
at iteration 200




Maximal suppression

Detect local maximum of the response. We are only allowed detecting each
object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final
performance.
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