
Lecture 21 
 Object recognition II 



Object model 

• Voting 
 
 
 
• Invariance: search strategy 
 
 
 

fi, Pi 
gi 

Here, invariance in translation and scale is achieved by the search strategy: the 
classifier is evaluated at all locations (by translating the image) and at all scales 
(by scaling the image in small steps). 
 
The search cost can be reduced using a cascade. 



Example: screen detection 
Feature  
output 



Example: screen detection 
Feature  
output 

Thresholded  
output 

Weak ‘detector’ 
Produces many false alarms. 



Example: screen detection 
Feature  
output 

Thresholded  
output 

Strong classifier  
at iteration 1 



Example: screen detection 
Feature  
output 

Thresholded  
output 

Strong 
classifier 

Second weak ‘detector’ 
Produces a different set of 
false alarms. 



Example: screen detection 

+ 

Feature  
output 

Thresholded  
output 

Strong 
classifier 

Strong classifier  
at iteration 2 



Example: screen detection 
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…
 

Feature  
output 

Thresholded  
output 

Strong 
classifier 

Strong classifier  
at iteration 10 



Example: screen detection 

+ 

…
 

Feature  
output 

Thresholded  
output 

Strong 
classifier 

Adding  
features 

Final 
classification 

Strong classifier  
at iteration 200 



Maximal suppression 

Detect local maximum of the response. We are only allowed detecting each 
object once. The rest will be considered false alarms. 
 
This post-processing stage can have a very strong impact in the final 
performance.  



Evaluation 

• ROC 
• Precision-recall 

When do we have a correct  
detection? 

Is this correct? 

Area intersection 
Area union > 0.5 



ROC and Precision-Recall 

Detection  
rate 

False alarm rate 

Precision 

Recall 

Plots from PASCAL competition 



Paul Viola       Michael J. Jones 
Mitsubishi Electric Research Laboratories (MERL) 

Cambridge,  MA 
 
 

Most of this work was done at Compaq CRL before the authors moved to MERL 

Rapid Object Detection Using a Boosted 
Cascade of Simple Features 

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones.pdf/viola01robust.pdf 

Manuscript available on web: 



What is novel about this 
approach? 

• Feature set (… is huge about 16,000,000 
features) 

• Efficient feature selection using AdaBoost 
• New image representation: Integral Image  
• Cascaded Classifier for rapid detection 

– Hierarchy of Attentional Filters 

What is new is the combination of these ideas. 
This yields the fastest known face detector for 
gray scale images. 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Image Features 

“Rectangle filters” 
 
Similar to Haar wavelets  
    
Differences between 
sums of pixels in 
adjacent rectangles 

{ ht(x)  = +1   if  ft(x) > θt 
-1    otherwise 

000,000,16100000,160 =×
Unique Features 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Integral Image 
• Define the Integral Image 

 
 
 

• Any rectangular sum can be 
computed in constant time: 
 
 
 
 

• Rectangle features can be 
computed as differences 
between rectangles  
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Huge “Library” of Filters 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Example Classifier for Face 
Detection 

ROC curve for 200 feature classifier 

A classifier with 200 rectangle features was learned using 
AdaBoost 
 
95% correct detection on test set with 1 in 14084 
false positives. 
 
Not quite competitive.   
Need to add more features,  
but then that slows it down. 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Fast and accurate classifier using 
a cascade 

• Given a nested set of classifier hypothesis classes 
 
 
 
 
 
 

• Cascade 

vs  false  neg  determined by 
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Fleuret and Geman 2001, Viola and Jones 2001 



Cascaded Classifier 

1 Feature 5 Features 

F 

50% 
20 Features 

20% 2% 
FACE 

NON-FACE 

F 

NON-FACE 

F 

NON-FACE 

IMAGE 
SUB-WINDOW 

• A 1 feature classifier achieves 100% detection rate 
and about 50% false positive rate. 

• A 5 feature classifier achieves 100% detection rate 
and 40% false positive rate (20% cumulative) 
– using data from previous stage.  

• A 20 feature classifier achieve 100% detection rate 
with 10% false positive rate (2% cumulative) 
 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



A Real-time Face Detection 
System 

Training faces: 4916 face images (24 x 24 
pixels) plus vertical flips for a total of 9832 
faces 
 
Training non-faces: 350 million sub-windows 
from 9500 non-face images 
 
Final detector: 38 layer cascaded classifier  
The number of features per layer was 1, 10, 
25, 25, 50, 50, 50, 75, 100, …, 200, … 
 
Final classifier contains 6061 features. 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Speed of Face Detector 

Speed is proportional to the average number of features 
computed per sub-window. 
 
On the MIT+CMU test set, an average of 9 features out 
of a total of 6061 are computed per sub-window. 
 
On a 700 Mhz Pentium III, a 384x288 pixel image takes 
about 0.067 seconds to process (15 fps). 
 
Roughly 15 times faster than Rowley-Baluja-Kanade 
and 600 times faster than Schneiderman-Kanade. 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 



Output of Face Detector on Test 
Images 

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001 
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Fleuret and Geman 2001 



Cascade of classifiers 

• Perhaps, enough efficiency can overcome 
combinatorics… 

Fleuret and Geman 2001 



Edge based descriptors 



Edge based descriptors 

Gavrila, Philomin, ICCV 1999 
Papageorgiou & Poggio (2000) 

J. Shotton, A. Blake, R. Cipolla. PAMI 2008.  

Opelt, Pinz, Zisserman, ECCV 2006 

What makes an image memorable? 



Edges and chamfer distance 

Gavrila, Philomin, ICCV 1999 
Gavrila, Philomin, ICCV 1999 



Edges and chamfer distance 

Gavrila, Philomin, ICCV 1999 

Template 



Chamfer distance 

Sum over pixels on the  
edge template F 

Find closest edge location after  
displacement x 

E = edge map of the image 



Chamfer distance 

DT(E) = Function that assigns 
to each pixel the distance to the  
nearest edge. 

Distance transform 

Using the distance transform, the Chamfer distance can be written as a convolution 

Edges 



Edges and chamfer distance 

Gavrila, Philomin, ICCV 1999 



Distance transform 

Edges 



Distance transform 

Edges Distance transform 
(with Manhattan distance) 



Efficient computation of DT 
P = set of edge pixels. 



Chamfer distance 

Sum over pixels on the  
edge template F 

Find closest edge location after  
displacement x 

E = edge map of the image 

= F  *  DT(E) 





To deal with multiple appearances… 



Issues 

Global templates are sensitive to: 
• Partial occlusions 
• Non-rigid deformations  

Constellation of local edge fragments 
  



Building a Fragment Dictionary 

… … Masks 
 

(~10 images) 

Contour 
Fragments Tn 

 
(~1000 fragments) 

… … 



Matching Features 

 
Canny 
Edge 

Detector 

 
Distance 

Transform 

• Gaussian weighted oriented chamfer 
matching 
– aligns features to image 

 

Opelt, Pinz, Zisserman, ECCV 2006 

J. Shotton, A. Blake, R. Cipolla. PAMI 2008.  



Matching Features 

• Gaussian weighted oriented chamfer 
matching 
– aligns features to image 

 
Chamfer 
Matching 

feature match score at optimal position 
optimal position 



confidence weighted weak learner 

Location Sensitive Classification 
• Feature match scores make detection simple 
• Detection uses a boosted classification function K(c): 

 
 
 
 

M number of features 

Fm feature m 

E canny edge map 

c object centroid 

match score thresholded match score 

θ m weak learner threshold  

am weak learner confidence 

bm weak learner confidence 

δ 0-1 indicator function 



• Evaluate K(c) for all c gives a 
classification map 
– confidence as function of 

position 
 

 
 
 
 
 

• Globally thresholded local 
maxima give final detections 

Object Detection 

test 
image 

classification 
map contours 

object 

no object 



Learning System 

Detection Boosting 
Algorithm K(c) Segmented 

Training Data 

Test Data 

Object 
Detections 

Background 
Training Data 



Training Data 

  Class
Unsegmented (40)Segmented (10)

Background (50)



Boosting as Feature Selection 

1000 random 
fragments 

50 discriminative 
fragments 

1. Fragment Selection 

2. Model Parameter Estimation 
Select σ, λ for each feature 

3. Weak-Learner Estimation 
Select θ, a, b for each feature 



Contour Results 



Contour Results 



Histograms of oriented gradients 



Histograms of oriented gradients 

Shape context 
Belongie, Malik, Puzicha, NIPS 2000 SIFT, D. Lowe, ICCV 1999 



Image features: 

Bin gradients from 8x8 pixel neighborhoods into 9 
orientations 

(Dalal & Triggs CVPR 05) 

Histograms of oriented gradients (HOG) 

Source: Deva Ramanan 





[-1 0 1] 



A Support Vector Machine (SVM) learns a classifier with the form: 
 
 
 
 
 
 
Where {xm, ym}, for m = 1 . . .M, are the training data with xm being 
the input feature vector and ym = +1,-1 the class label. k(x, xm) is the kernel and 
it can be any symmetric function satisfying the Mercer Theorem.  
 
The classification is obtained by thresholding the value of H(x). 
 
There is a large number of possible kernels, each yielding a different 
family of decision boundaries:  
 
• Linear kernel: k(x, xm) = xT xm  
• Radial basis function: k(x, xm) = exp(−|x − xm|2/σ2). 
• Histogram intersection: k(x,xm) = sumi(min(x(i), xm(i))) 

SVM 



Linear SVM 

f(x) = (w . x + b)  

w 

margin 



Scanning-window templates 
Dalal and Triggs CVPR05 (HOG) 

w·x > 0 

w 
w = weights for orientation and spatial bins 

Papageorgiou and Poggio ICIP99 (wavelets) 

Train with a linear classifier (perceptron, logistic regression, SVMs...) 

neg 

pos 

Source: Deva Ramanan 



How to interpret positive and negative weights? 
w·x > 0 

(wpos - wneg)·x > 0 

wpos·x > wneg·x 

> 

Right approach is to compete pedestrian, pillar, doorway... models 

Pedestrian  
template 

Pedestrian  
background 
template 

Background class is hard to model - easier to penalize particular vertical 
edges 

wpos,wneg = weighted average of positive, negative support vectors 

Source: Deva Ramanan 



Histograms of oriented gradients 
Dalal & Trigs, 2006 

x Not a person 

x person 





Constellation models 

Source: short course on object recognition. Fergus, Fei-fei, Torralba 



Representation 
• Object as set of parts 

– Generative representation 
 

• Model: 
– Relative locations between parts 
– Appearance of part 
 

• Issues: 
– How to model location 
– How to represent appearance 
– Sparse or dense (pixels or regions) 
– How to handle occlusion/clutter 

Figure from [Fischler & Elschlager 73] 



History of Parts and Structure 
approaches 

 
• Fischler & Elschlager 1973 

 
 

• Yuille ‘91 
• Brunelli & Poggio ‘93 
• Lades, v.d. Malsburg et al. ‘93 
• Cootes, Lanitis, Taylor et al. ‘95 
• Amit & Geman ‘95, ‘99  
• Perona et al. ‘95, ‘96, ’98, ’00, ’03, ‘04, ‘05 
• Felzenszwalb & Huttenlocher ’00, ’04  
• Crandall & Huttenlocher ’05, ’06 
• Leibe & Schiele ’03, ’04 

 
• Many papers since 2000 







Sparse representation 
+ Computationally tractable (105 pixels  101 -- 102 parts) 
+ Generative representation of class 
+ Avoid modeling global variability  
+ Success in specific object recognition 

- Throw away most image information 
- Parts need to be distinctive to separate from other classes 



Region operators 
– Local maxima of 

interest operator 
function 
 

– Can give 
scale/orientation 
invariance 

Figures from [Kadir, Zisserman and Brady 04] 



The correspondence problem 
• Model with P parts 
• Image with N possible assignments for each part 
• Consider mapping to be 1-1 

 

• NP combinations!!! 



from Sparse Flexible Models of Local Features 
Gustavo Carneiro and David Lowe, ECCV 2006 

 

Different connectivity structures 

O(N6) O(N2) O(N3) 
O(N2) 

Fergus et al. ’03 
Fei-Fei et al. ‘03 

Crandall et al. ‘05 
Fergus et al. ’05 

Crandall et al. ‘05 
Felzenszwalb & 
Huttenlocher ‘00 

Bouchard & Triggs ‘05 Carneiro & Lowe ‘06 Csurka ’04 
Vasconcelos ‘00 



How much does shape help? 
• Crandall, Felzenszwalb, Huttenlocher CVPR’05 
• Shape variance increases with increasing model complexity 
• Do get some benefit from shape 



Some class-specific graphs 
• Articulated motion 

– People 
– Animals 

 

• Special parameterisations 
– Limb angles 

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05] 



Dense layout of parts 
Layout CRF: Winn & Shotton, CVPR ‘06 

Part labels (color-coded) 



How to model location? 

• Explicit: Probability density functions  
• Implicit: Voting scheme 

 
• Invariance 

– Translation 
– Scaling 
– Similarity/affine 
– Viewpoint  

 

Similarity transformation Translation and Scaling Translation Affine transformation 



• Cartesian  
– E.g. Gaussian distribution 
– Parameters of model, µ and Σ 
– Independence corresponds to zeros in Σ 
– Burl et al. ’96, Weber et al. ‘00, Fergus et al. ’03 

 
 

• Polar  
– Convenient for 

invariance to  
rotation 
 

 
 

 

Explicit shape model  

Mikolajczyk et al., CVPR ‘06  



Implicit shape model 

Spatial occurrence distributions 
x 

y 

s 

x 

y 

s 
x 

y 

s 

x 

y 
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Probabilistic  

Voting 
Interest Points Matched Codebook  

Entries 
Recognition 

Learning 
• Learn appearance codebook 

– Cluster over interest points on 
training images  

 
• Learn spatial distributions 

– Match codebook to training images 
– Record matching positions on object 
– Centroid is given 

• Use Hough space voting to find object  
• Leibe and Schiele ’03,’05 



Deformable Template Matching 

Query Template 

Berg, Berg and Malik CVPR 2005 

• Formulate problem as Integer Quadratic Programming 
• O(NP) in general 
• Use approximations that allow P=50 and N=2550 in <2 secs 



Multiple view points 

 

Thomas, Ferrari, Leibe, 
Tuytelaars, Schiele, and L. Van 
Gool. Towards Multi-View Object 
Class Detection, CVPR 06 

Hoiem, Rother, Winn, 3D LayoutCRF for 
Multi-View Object Class Recognition and 
Segmentation, CVPR ‘07 



Representation of appearance 

• Dependency structure 
– Often assume each part’s 

appearance is independent  
– Common to assume 

independence with location 
 
 
 

• Needs to handle intra-class variation 
–  Task is no longer matching of 
descriptors 
–  Implicit variation (VQ to get discrete 
appearance) 
–  Explicit model of appearance (e.g. 
Gaussians in SIFT space) 



Representation of appearance 
• Invariance needs to match that of 

shape model 
 
 

• Insensitive to small shifts in 
translation/scale 
– Compensate for jitter of features 
– e.g. SIFT 

 
 
 

• Illumination invariance 
– Normalize out 



Appearance representation 
• Decision trees 

Figure from Winn & 
Shotton, CVPR ‘06 

• SIFT 

• PCA  

[Lepetit and Fua CVPR 2005] 



Background clutter 

• Explicit model 
– Generative model for clutter as well as foreground 

object 
 

• Use a sub-window 
– At correct position,  

no clutter is present 



Demo Web Page 



Demo (2) 



Demo (3) 



Demo (4) 





PASCAL Visual Object Challenge 

5000 training images 5000 testing images 

20 everyday object categories 

aeroplane bike bird boat bottle bus car cat chair cow table 
dog horse motorbike person plant sheep sofa train tv 

Source: Deva Ramanan 



5 years of PASCAL people detection 

average 
precision 

Discriminative mixtures of star models 2007-2010 Felzenszwalb, 
McAllester, Ramanan CVPR 2008 
Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2009  

 1% to 45% in 5 years 

Source: Deva Ramanan 



Deformable part models 

Model encodes local appearance + pairwise geometry 
 

Source: Deva Ramanan 





Scoring function 

x = image  
zi = (xi,yi) 
z = {z1,z2...} 
 

part template  
scores 
 

spring deformation model 
 

Source: Deva Ramanan 

score(x,z)  = Σ wi Φ(x, zi) + Σ  wij Ψ(zi, zj)   i i,j  



Scoring function 

part template  
scores 
 

spring deformation model 
 

x = image  
zi = (xi,yi) 
z = {z1,z2...} 
 

Source: Deva Ramanan 

score(x,z)  = Σ wi φ (x, zi) + Σ  wij Ψ(zi, zj)   i i,j  



Scoring function 

part template  
scores 
 

spring deformation model 
 

E = relational graph  

x = image  
zi = (xi,yi) 
z = {z1,z2...} 
 

Source: Deva Ramanan 

score(x,z)  = Σ wi φ (x, zi) + Σ  wij Ψ(zi, zj)   i i,j  



Scoring function 

part template  
scores 
 

spring deformation model 
 

Score is linear in local templates wi and spring parameters wij 

x = image  
zi = (xi,yi) 
z = {z1,z2...} 
 

Source: Deva Ramanan 

score(x,z)  = Σ wi φ(x, zi) + Σ  wij Ψ(zi, zj)   i i,j  

score(x,z)  =  w . Φ(x, z)  



Inference: max score(x,z) 
Felzenszwalb & Huttenlocher 05  

z 

Source: Deva Ramanan 

Star model: the location of the root filter is the anchor point 
Given the root location, all part locations are independent 

root 

root 



Classification 

Source: Deva Ramanan 

fw(x)>0 

fw(x)=w . Φ(x) 



Latent-variable classification 

Source: Deva Ramanan 

fw(x)>0 

fw(x)=w . Φ(x) fw(x)=max S(x,z) 
  
       =max w . Φ(x, z) 

z 

z 



Latent SVMs 

Given positive and negative training windows {xn} 

pos neg 

 L(w) is “almost” convex 

Source: Deva Ramanan 



Latent SVMs 

Given positive and negative training windows {xn} 

 L(w) is convex if we fix latent values for positives 

pos neg 

Source: Deva Ramanan 



1) Given positive part locations, learn w with a convex program 

The above steps perform coordinate descent on a joint loss  

2) Given w,  estimate part locations on positives  
 

Coordinate descent 

Source: Deva Ramanan 



Treat ground-truth labels 
as partially latent 

Allows for “cleaning up” of noisy labels 
(in blue) during iterative learning 

Source: Deva Ramanan 



Initialization 
Learn root filter with SVM 

Initialize part filters to regions in 
root filter with lots of energy 

Source: Deva Ramanan 



Example models 

Source: Deva Ramanan 



Example models 

Source: Deva Ramanan 



Example models 

False positive due to imprecise 
bounding box 

Source: Deva Ramanan 



Other tricks: 
•Mining hard negative examples 
•Noisy annotations 
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