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Object mode|

 Voting

* Invariance: search strategy

Here, invariance in translation and scale is achieved by the search strategy: the
classifier is evaluated at all locations (by translating the image) and at all scales

(by scaling the image in small steps).

The search cost can be reduced using a cascade.



Example: screen detection

Feature




Example: screen detection
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Weak ‘detector’
Produces many false alarms.




Example: screen detection

Feature Thresholded  Strong classifier
at iteration 1




Example: screen detection

Feature Thresholded Strong
output output classifier

-'*-

Second weak ‘detector’

Produces a different set of
false alarms.



Example: screen detection

Feature Thresholded Strong
output output classifier

Strong classifier
at iteration 2



Example: screen detection

Feature Thresholded Strong
classifier

Strong classifier
at iteration 10



Example: screen detection

Feature Thresholded Strong
output output classifier

Adding
features

Final
classification

Strong classifier
at iteration 200




Maximal suppression

Detect local maximum of the response. We are only allowed detecting each
object once. The rest will be considered false alarms.

This post-processing stage can have a very strong impact in the final
performance.



Evaluation

When do we have a correct
detection?

Is this correct?

Area intersection
Area union

e ROC
 Precision-recall

> 0.5



ROC and Precision-Recall
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Rapid Object Detection Using a Boosted
Cascade of Simple Features

Paul Viola Michael J. Jones
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA

Most of this work was done at Compaq CRL before the authors moved to MERL

Manuscript available on web:

http://citeseer.ist.psu.edu/cache/papers/cs/23183/http:zSzzSzwww.ai.mit.eduzSzpeoplezSzviolazSzresearchzSzpublicationszSzICCV01-Viola-Jones.pdf/violaOlrobust.pdf



What i1s novel about this
approach?

 Feature set (... Is huge about 16,000,000
features)

« Efficient feature selection using AdaBoost
 New image representation: Integral Image

e Cascaded Classifier for rapid detection
— Hierarchy of Attentional Filters

What is new Is the combination of these ideas.
This yields the fastest known face detector for
gray scale images.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Image Features

“Rectangle filters”

Similar to Haar wavelets

Differences between
sums of pixels in

adjacent rectangles c
J 1 if f(x) >0, 160,000 x100 =16,000,000
h,(X) -
-1 otherwise

Unique Features

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Integral Image

« Define the Integral Image

1'(x, y)=Zl(x',y')

e Any rectangular sum can be
computed Iin constant time:

D=1+4-(2+3)
=A+(A+B+C+D)-(A+C+A+B)

=D
 Rectangle features can be

computed as differences
between rectangles




Huge “Library” of Filters
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001




Example Classifier for Face
Detection

A classifier with 200 rectangle features was learned using

AdaBoost

95% correct detection on test set with 1 in 14084

false positives.

0.85 -

Not quite competitive.
Need to add more features,

0.96 -
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ROC curve for 200 feature classifier

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Fast and accurate classifier using
a cascade

Fleuret and Geman 2001, Viola and Jones 2001
« Given a nested set of classifier hypothesis classes

0

% False Pos
X i? ya

% Detection

50

e Cascade

T T T
IMAGE - —»| Classifier 2 FACE
SUB-WINDOW
IF /! F

NON-FACE NON-FACE NON-FACE



Cascaded Classifier

50% 20% 2%
IMAGE > — —( 20 Featureg—» FACE
SUB-WINDOW

lF lF lF

NON-FACE NON-FACE NON-FACE

e A 1 feature classifier achieves 100% detection rate
and about 50% false positive rate.

A 5 feature classifier achieves 100% detection rate
and 40% false positive rate (20% cumulative)

— using data from previous stage.

e A 20 feature classifier achieve 100% detection rate
with 10% false positive rate (2% cumulative)

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



A Real-time Face Detection
System

Training faces: 4916 face images (24 x 24
pixels) plus vertical flips for a total of 9832
faces

Training non-faces: 350 million sub-windows & ‘
from 9500 non-face images :

Final detector: 38 layer cascaded classifier
The number of features per layer was 1, 10,
25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Speed of Face Detector

Speed is proportional to the average number of features
computed per sub-window.

On the MIT+CMU test set, an average of 9 features out
of a total of 6061 are computed per sub-window.

On a 700 Mhz Pentium 1, a 384x288 pixel image takes
about 0.067 seconds to process (15 fps).

Roughly 15 times faster than Rowley-Baluja-Kanade
and 600 times faster than Schneiderman-Kanade.

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001



Output of Face Detector on Test
Images
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Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Cascade of classifiers

* Perhaps, enough efficiency can overcome
combinatorics...

Fleuret and Geman 2001



Edge based descriptors



Edge based descriptors
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J. Shotton, A. Blake, R. Cipolla. PAMI 2008.

wavelets in 2D
-1 1 -1
-1 1
1
horizontal diagonal

vertical

Original Image

All matched boundary
fragments

Papageorgiou & Poggio (2000)

Centroid Voting on a subset of the matched fragments

Segmentation / Detection  Backprojected Maximum

Opelt, Pinz, Zisserman, ECCV 2006



Edges and chamfer distance

Gavrila, Philomin, ICCV 1999



Edges and chamfer distance
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Gauvrila, Philomin, ICCV 1999



Chamfer distance

Aeham fer(X) = Z min ||(u + x) — v||2
vel
uck Find closest edge location after

T displacement x

Sum over pixels on the
edge template F

E = edge map of the image



Chamfer distance

Edges Distance transform

DT(E) = Function that assigns
to each pixel the distance to the
nearest edge.

Using the distance transform, the Chamfer distance can be written as a convolution



Edges and chamfer distance




Distance transform

Edges



Distance transform

Edges
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Distance transform

(with Manhattan distance)




Efficient computation of DT

P = set of edge pixels.

Two pass O(n) algorithm for 1D L; norm

1. Initialize: For all j
D[j] « 1p[]] /1 0 if jis in P, infinity otherwise
2. Forward: For j from 1 up to n-1
D[j] « min(D[j],.D[j-1]+1)

3. Backward: For j from n-2 down to O |0
D[j] « min(D[j],D[j+1]+1)

110

|

|0 || 0|w|w|ae| 0] o

0|0]1|0|1]|2(3]|0]|1

e N0~ 110(210]1212]1]0]1

Adapted from D. Huttenlocher



Chamfer distance

dc}m.:rn,fer(x) — Z 3161}131 H (11 + X) — VHQ =F * DT(E)

uck  Find closest edge location after

— displacement x
Sum over pixels on the

edge template F

E = edge map of the image



REAL-TIME OBJECT DETECTION FOR "SMART” VEHICLES
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To deal with multiple appearances...
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Issues

Global templates are sensitive to: Constellation of local edge fragments

(5

* Non-rigid deformations



Building a Fragment Dictionary

MaSkS ) h - .
(~10 images) ’ ! ll\
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(~1000 fragments)



Matching Features

o Gaussian weighted oriented chamfer
matching

— aligns features to image

Canny
Distajice

Opelt, Pinz, Zisserman, ECCV 2006
J. Shotton, A. Blake, R. Cipolla. PAMI 2008.



Matching Features

o Gaussian weighted oriented chamfer
matching

— aligns features to image

Matching

—

feature match score at optimal position

optimal position



| ocation Sensitive Classification

e Feature match scores make detection simple
e Detection uses a boosted classification function K(c):

M
K(c) = Y amé(v(Fm, Elc) > 0m) + bm

m=1

M number of features 0. weak learner threshold
F. feature m an weak learner confidence
E canny edge map b, weak learner confidence

object centroid

0-1 indicator function




Object Detection

« Evaluate K(c) for all c gives a
classification map

— confidence as function of

position
object

no object

test classification
image map

contours

o Globally thresholded local
maxima give final detections



Learning System

Background
Training Data Test Data
Segmented .
e K
Training Data - (©) [DetectlonJ

Object
Detections



Training Data

/Class
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Boosting as Feature Selection

1. Fragment Selection

-»> e
]
1000 random 50 discriminative
fragments fragments

2. Model Parameter Estimation
Select o, A for each feature

3. Weak-Learner Estimation
Select 6, a, b for each feature



Contour Results




Contour Results




Histograms of oriented gradients



Histograms of oriented gradients

SIFT, D. Lowe, ICCV 1999

Image gradients

"\

Keypoint descriptor

Shape context
Belongie, Malik, Puzicha, NIPS 2000

Count the number of points
inside each bin, e.g.:

Count =4

Count =10

% Compact representation
of distribution of points
relative to each point



Image features:
Histograms of oriented gradients (HOG)

Bin gradients from 8x8 pixel neighborhoods into 9
orientations

(Dalal & Triggs CVPR 05)

Source: Deva Ramanan



Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Input Normalize Compute Weighted vote Contrast normalize Collect HOGs Li Person /
illll"l o > gamma & —> gadilznts —> | into spatial & | —>| over overlapping || over detection —» S;:‘;;‘r—r non-person
e colour orientation cells spatial blocks window classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.



Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Input _, Normalize Compute Weighted vote Contrast normalize Collect HOG’s Li Person /
iml'i e gamma & | —» gadilt:nts — | into spatial & »| over overlapping | —| over detection —» S;:,l;;lr — non-—person
o colour orientation cells spatial blocks window classification

Figure 1. An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of overlapping blocks
in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed to a linear SVM for object/non-object
classification. The detection window is scanned across the image at all positions and scales, and conventional non-maximum suppression
is run on the output pyramid to detect object instances, but this paper concentrates on the feature extraction process.

Orientation Voting

-
-
H'\.
-

.
-,
H'\.

., " -
| S .
- -

-
'\-\_\_%
Y

. ~=——0verlapping Blocks

e - =,
~~ ey e

Input Image Gradient Image SN,

",

[ocal Normalization




SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H(x) = Z O Ym K (T, )

m—1

Where {x., Y.}, form =1 .. .M, are the training data with x,, being
the input feature vector and y,, = +1,-1 the class label. k(x, x,,) is the kernel and
it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

e Linear kernel: k(x, X.,) = X" X,
 Radial basis function: k(x, x,) = exp(—|x = X,,|?/5?).
» Histogram intersection: k(x,x.,) = sumi(min(x(i), X.,(i)))



Linear SVM
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f(x) = (w.x+Db)



Scanning-window templates

Dalal and Triggs CVPRO05 (HOG)

Papageorgiou and Poggio ICIP99 (wavelets)

neg

w = weights for orientation and spatial bins a\_
w-X >0

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Source: Deva Ramanan



How to Interpret positive and negative weights?

w-x >0

(Wpos = Wneg)'X >0

Wopos*X = Whneg- X

e i
Hﬁ;i
CHARFENN | :
| £ 53 +jPedestrian
Pedestrian § i~ /.« t=-Ibackground
template 4=/ b ;
emp X B X e |
+Fi+ A ek A ¥ temp ate
9 ii' ' | dmenirt |
<f 1 T N depe ¥
4 A W i gty
~ Seophos - “f | | I
S e - **‘** ]

Wpos,Wheg = Welghted average of positive, negative support vectors
Right approach is to compete pedestrian, pillar, doorway... models
Background class is hard to model - easier to penalize particular vertical
edges

Source: Deva Ramanan



Histograms of oriented gradients

Dalal & Trigs, 2006

Not a person

e

Trriin




miss rate

DET - different descriptors on MIT database
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Figure 3. The performance of selected detectors on (left) MIT and (right) INRIA data sets. See the text for details.



Constellation models

Source: short course on object recognition. Fergus, Fei-fei, Torralba



Representation

* Object as set of parts
— Generative representation

 Model:
— Relative locations between parts
— Appearance of part

e |ssues:
— How to model location
— How to represent appearance
— Sparse or dense (pixels or regions)
— How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]



History of Parts and Structure
approaches

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, '00, '03, ‘04, ‘05
Felzenszwalb & Huttenlocher '00, '04
Crandall & Huttenlocher 05, '06

Leibe & Schiele '03, '04

MOUTH

Many papers since 2000



The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER

Abstraci=—The primary problem dealt with in this paper is the
following., Given some description of a visual object, find that object
in an actual photograph. Part of the solution to this problem is the
specification of a descriptive scheme, and a metric on which to base
the decision of “goodness " of matching or detection.

We offer a combined descriptive scheme and decision metric
which is general, intuitively satisfying, and which has led to promis-
ing experimental results. We also present an algorithm which takes
the above descriptions, together with a matrix representing the in-
tensities of the actual photograph, and then finds the described
object in the matrix. The algorithm uses a procedure similar to
dynamic programming in order to cut down on the vast amount of
computation otherwise necessary.

One desirable feature of the approach is its generality. A new
programming system does not need to be written for every new
description; instead, one just specifies descriptions in terms of a
certain set of primitives and parameters.

There are many areas of application : scene analysis and descrip-
tion, map matching for navigation and guidance, optical tracking,

Manuscript received November 30, 1971; revised Mavy 22, 1972,
and August 21, 1972,

The authors are with the Lockheed Palo Alto Research Labora-
;i?&ll_.nfkheed Missiles & Space Company, Inc,, Palo Alto, Calif,

stereo compilation, and image change detection. In fact, the ability
to describe, match, and register scenes is basic for almost any

image processing task.

Index Terms—Dynamic programming, heuristic optimization,

picture description, picture
tation.

InN
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paper is the follo

a visual object, fir

graph. The object mig

complicated, such as an|

can be linguistic, picto
photograph will be cal
dimensional array of gn
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This ability to find 3
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Application to such arg
tion, map matching for

Martin A. Fischler (5'57-M'58) was born in
New York, N, Y., on February 15, 1932. He
received the B.E.E. degree from the City Col-
lege of New York, New York, in 1954 and the
M.S. and Ph.D). degrees in electrical engineer-
ing from Stanford University, Stanford, Calif.,
in 1958 and 1962, respectively.

He served in the U. 8. Army for two years
and held positions at the National Bureau of
Standards and at Hughes Aireraft Corpora-
tion during the period 1954 to 1958. In 1958
he joined the technical staff of the Lockheed Missiles & Space Com-
pany, Inc., at the Lockheed Palo Alto Research Laboratory, Palo
Alto, Calif., and currently holds the title of Staff Scientist. He has
conducted research and published in the areas of artificial intelligence,
picture processing, switching theory, computer organization, and
information theory.

Dir. Fischler is a member of the Association for Computing Ma-
chinery, the Pattern Recognition Society, the Mathematical Associa-
tion of America, Tau Beta Pi, and Eta Kappa Nu. He is currently
an Associate Editor of the journal Pattern Recognition and is a past
Chairman of the San Francisco Chapter of the IEEE Society on Sys-
tems, Man, and Cybernetics,

e

Robert A. Elschlager was born in Chicago,
IIl., on May 25, 1943. He received the B.S.
degree in mathematies from the University of
IMlinois, Urbana, in 1964, and the M.S. degree
in mathematics from the University of Cali-
fornia, Berkeley, in 1969,

Since then he has been an Associate
Scientist with the Lockheed Missiles & Space
Company, Inc., at the Lockheed Palo Alto Re-
search Center, Palo Alto, Calif. His current
. interests are picture processing, operating
systems, computer languages, and computer understanding.

Mr. Elschlager is a member of the American Mathematical
Society, the Mathematical Association of America, and the Associa-

tion for Symbolic Logic.
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L(EV)A for eye. (Density at a point is proportional to
probability that an eye is present at that location.)

Fig. 4.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (6, 18)
L/EDGE WAS LOCATED AT (18, 10}
R/EDGE WAS LOCATED AT (18, 25)
L/EYE WAS LOCATED AT (17,13}
K/EYE WAS LOCATED AT (17,21}
NOSE WAS LOCATED AT (22,18)
MOUTH WAS LOCATED AT (24, 17}

Examples of image-matching experiments using faces. (a) Successful embedding under coherent noise.



Sparse representation

+ Computationally tractable (10° pixels = 101 -- 102 parts)
+ Generative representation of class

+ Avoid modeling global variability

+ Success In specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes



Region operators

— Local maxima of
Interest operator
function

— Can give
scale/orientation
Invariance

MultiScale Harris Difference-of-Gaussian Saliency
Figures from [Kadir, Zisserman and Brady 04]



The correspondence problem

e Model with P parts
« Image with N possible assignments for each part
e Consider mapping to be 1-1

e NP combinations!!!




Different connectivity structures

Fergus et al. '03 Crandall et al. ‘05 Crandall et al. ‘05 Felzenszwalb &
Fei-Fei et aI ‘03 Fergus et al. '05 Huttenlocher ‘00

ON?) (i i@ \/@

C)(N3) @c@
@ [o PNIER

a) Constellation [13] b) Star shape [9, 14] c) k-fan (£ =2) [9] d) Tr

):-i Center {
@ " 2o e, § o
© o -t @m  Sef Pl
@D @ Subpar / ( ) CP X1 @ o (lf
@ FOO® @D .
e) Bag of features [10, 21] f) Hierarchy [4] g) Sparse flexible model
Csurka 04 Bouchard & Triggs ‘05 Carneiro & Lowe ‘06

Vasconcelos ‘00

from Sparse Flexible Models of Local Features
Gustavo Carneiro and David Lowe, ECCV 2006



How much does shape help?

 Crandall, Felzenszwalb, Huttenlocher CVPR’05
« Shape variance increases with increasing model complexity
Do get some benefit from shape

Tl e

(a) Airplane, 1 fan

0

(b) Airplane, 2- tan

- structure :
: 1-fan
i | m—2_fan

0.2 0.3 0.4 0.5 0.6 EI.T-"
False posifive rate



Some class-specific graphs

e Articulated motion
— People
— Animals

e Special parameterisations
— Limb angles

ot

Images from [Kumar, Torr and Zisserman 05, Felzenszwalb & Huttenlocher 05]



Dense layout of parts

Layout CRF: Winn & Shotton, CVPR ‘06

Part labels (color-coded)



How to model location?

o EXxplicit: Probability density functions
 Implicit: Voting scheme

e |nvariance

— Translation

— Scaling — <>
— Similarity/affine

— Viewpoint



Explicit shape model

e Cartesian
— E.g. Gaussian distribution
— Parameters of model, p and X

— Independence corresponds to zeros in X

— Burl et al. '96, Weber et al. ‘00, Fergus et al. '03

1
2
p=| "3
Y1
e Polar v
. Y3
— Convenient for
Invariance to
rotation .
—
\

121
21
371
Yyiri
Yya2xr1
Yy3ri

L1X2
L2IL2
L3T2
Yyixr2
Yyo2x2
Yy3xro

L1123
L2I3
L3713
Yy1x3
Y273
Y3x3

L1Y1
L2Y1
L3Y1
Yiy1
Y291
Y3y1

L1Y2
L2Y2
L3Y2
Yi1y2
Yy2y2
Y3y2

®

L1Y3
L2Y3
L3Y3
Y193
Y2Yy3
Y3Y3

Mikolajczyk et al., CVPR ‘06




Implicit shape model

* Use Hough space voting to find object
 Leibe and Schiele '03,’05

Learning
« Learn appearance codebook B
— Cluster over interest points on Uk
training Images |
&

« Learn spatial distributions
— Match codebook to training images
— Record matching positions on object SL— S
— Centroid is given

Spatial occurrence distributions

Matched Codebook Probabilistic

Recognition Interest Points
Entries Voting

e E




Deformable Template Matching

s g

eplate

 Formulate problem as Integer Quadratic Programming
 O(NP)in general
» Use approximations that allow P=50 and N=2550 in <2 secs




Multiple view points

model
(codeboak,
links)

Hoiem, Rother, Winn, 3D LayoutCRF for 1hom|as, Fegar:!, :_elbe,d L v
Multi-View Object Class Recognition and Guytle _?_ars, dC I\I/Ie T:[’. "\Jl/n .Oban ¢
Segmentation, CVPR ‘07 00l -fowargs MUt-view LJbjec

Class Detection, CVPR 06



Representation of appearance

 Needs to handle intra-class variation

— Task is no longer matching of
descriptors

— Implicit variation (VQ to get discrete
appearance)

— EXxplicit model of appearance (e.qg.
Gaussians in SIFT space)

« Dependency structure

— Often assume each part’'s
appearance is independent

— Common to assume
Independence with location




Representation of appearance

e |nvariance needs to match that of
shape model

e Insensitive to small shifts in
translation/scale
— Compensate for jitter of features

— e.g. SIFT

e lllumination invariance
— Normalize out




Appearance representation

e Decision trees
[Lepetit and Fua CVPR 2005]

\
")
N
K *
.l:. ‘..'. \-'i' '..
\ v Y
’l .

oL

h" |I|‘| ‘|||||| ||Figure from Winn &

Shotton, CVPR ‘06




Background clutter

e Explicit model

— Generative model for clutter as well as foreground
object

e Use a sub-window

— At correct position,
no clutter is present




Demo Web Page

<3 A simple parts and|structure object detector, - Microsoft Internet Explorer provided by Insight Broadband

File Edit Yiew Faworites Tools  Help

N A =) . - 1A I
eBack T < \ﬂ @ -.'_lj e ) Search . Favarites 6‘3 [-’-_.;-_\- (=" @ = _J ﬁ '3
Address |@ http: Jpeaple. csail.mit. edufFergus/icov2005 partsstructure. html
GDCnge"lreserve "beijing hatel" V| |G| search ~ 52 Sh100blocked | A% check - U Autolink v By options & [F] reserve [§

A simple parts and stiucture ohject detector

ICCY 2005 short courses on
Recognizing and Learning Object Categories

Iy irtuitive way to represent objects is as a collection of distinctive parts. Such schemes rmodel both the relative positions of the parts as well as their appearance,
givihg a spatse representation that captures the essence of the object.

This siraple derno illnstrates the concepts behind marey such "parts and structure" approaches. For simplicity, training is manmally guided with the user kand-clicking
on the distinetrve parts of a few training images. & sitaple model is then built for use in recogpition. Two different recognition approaches arve provided: one relving
on feature points [17; the other using the efficient methods of Felzenswalh and Huttendocher [J].

The code consists of Ilatldh scripts (which should ron under both Windowrs and Line). The Irage Processing toolox is required. The code is for teachingftesearch
purposes only. If won find a bug, please ernail me at ferms whete ezail point mit point edu.

Download

Download the code and datasets (24 Ibyrtes)

Operation of code

To run the deraos:

1 TTrrark the win file intnoa wewr divectorr e o horoemaermaroeidemna

€

‘4 Start




Felative location model
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Precision

ROC Curve, Area: 085186 OpP: 0.75789

Demo (4)

Image; 26 Best match score; —3.00351
Y TN T i

L R TR

N
¥
1
3
*
i
*
*

a3

e

a0 100 150 200

Irmage: ¥4 Best match score: —12.1807

Irmage: 43 Best match score: —6.602




Object Detection with Discriminatively Trained
Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Abstract—We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able
to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While
deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the
PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-
sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of
MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is

specified for the positive examples. This leads to an iterative training algorithm that aliernates between fixing latent values for positive
examples and optimizing the latent SVM objective function.

Index Terms—Object Recognition, Deformable Models, Pictorial Structures, Discriminative Training, Latent SVM

+




PASCAL Visual Object Challenge

————

=

5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table
dog horse motorbike person plant sheep sofa train tv

Source: Deva Ramanan



5 years of PASCAL people detection

50

37.5
average

precision 25

1% to 45% in 5 years

Discriminative mixtures of star models 2007-2010 Felzenszwalb,
McAllester, Ramanan CVPR 2008
Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2009

Source: Deva Ramanan



Deformable part models

E,"-'-.‘ 4
o

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan
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Image pyramid Feature pyramid




Scoring function
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score(X,z)

Source: Deva Ramanan



Scoring function

X
.i,ﬂ,l.
X ¥
NN

” X

score(x,z) =X w; ¢ (X, z))

X = image

Zi = (Xi,Yi)
z ={z1,22...}

part template
scores

Source: Deva Ramanan



Scoring function

score(X,z) = X W ¢ (X, Z;) ZJ w; ¥(z;, ;)

X = image

zi = (Xi,Yi)
z ={z21,22...}

part template pring deformation model
scores

E = relational graph

Source: Deva Ramanan



Scoring function

score(x,z) =X w; ¢(x, z) +Z w; ¥(z; z)

X = image

zi = (Xi,Yi)
z ={z21,22...}

part template spring deformation model
scores

Score is linear in local templates wi and spring parameters wi;

score(x,z) = w - d(x, 2)

Source: Deva Ramanan



Inference: max score(x,z)

Felzenszwalb & Huttenlocher 05

21l T

ﬂﬂ o————l@o
i L9

|
—— e

Star model: the location of the root filter is the anchor point
Given the root location, all part locations are independent

Source: Deva Ramanan



Classification

£ (X)>0

Source: Deva Ramanan



|_atent-variable classification

£ (X)>0

Z)

max S(X
V4

fw(X)

W - O(X)

f(X)
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(X

y4

max w - @
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Latent SVMSs

mi §D
neg

i R
l_ 2
P
Given positive and negative training windows {xn}

5

= .o-u:sw -

L(w) = |lw|* + > max(0,1 - fu(z,)) + Y max(0,1+ fu(z,))

neEpos neneg

fw(r) = maxw - ®(x, 2)

A

L(w) is “almost” convex

Source: Deva Ramanan



Latent SVMSs

I L
neg

Given positive and negative training windows {xn}

L(w) = |lw][>+ ) max(0,1 - fu{za)) + Y max(0,1+ fu(za))

nepos neneg
w - P(x,, 2,)

fw(x) = maxw - ®(z, 2)

L(w) is convex if we fix latent values for positives

Source: Deva Ramanan



Coordinate descent

1) Given positive part locations, learn w with a convex program

w = argmin L(w) with fixed {z,:n € pos}

2) Given w, estimate part locations on positives

zp = argmaxw - ®(x,,z) Vn € pos
Z

The above steps perform coordinate descent on a joint loss

Source: Deva Ramanan



Treat ground-truth labels
as partially latent

Allows for “cleaning up” of noisy labels
(in ) during iterative learning



Initialization

Learn root filter with SVM

Initialize part filters to regions in
root filter with lots of energy

:

Source: Deva Ramanan



Example models
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Source: Deva Ramanan



Example models
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Example models

Source: Deva Ramanan

False positive due to imprecise

bounding box
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class: person, year 2006

c 0
]
o
E 0
| —
=T

—+—1 Root (0.24)
2 Root (0.24)
1 Root+Parts (0.38)
—e—2 Root+Parts (0.37)
I —»—2 Root+Parts+BB (0.39)

Other tricks:
*Mining hard negative examples
*Noisy annotations
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