MIT CSAIL

6.869: Advances in Computer Vision

MIT COMPUTER VISION

Lecture 22 Object recognition III

Class experiment

Class experiment

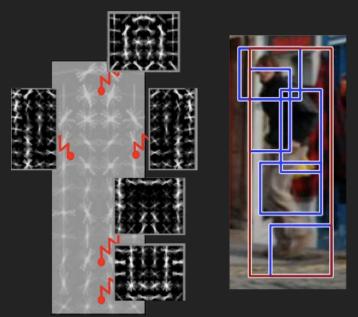
Experiment 1: draw a horse (the entire body, not just the head) in a white piece of paper.

Do not look at your neighbor! You already know how a horse looks like... no need to cheat.

Class experiment

Experiment 2: draw a horse (the entire body, not just the head) but this time chose a viewpoint as weird as possible.

Deformable part models



Model encodes local appearance + pairwise geometry

Scoring function

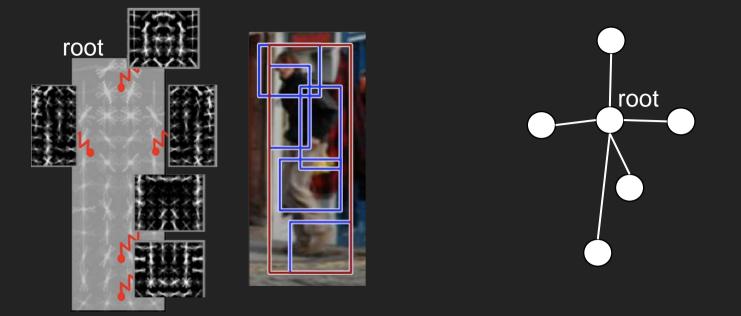
score(x,z)	$=\sum_{i} W_{i} \phi(x, z_{i}) +$	$\sum_{i,j} W_{ij} \Psi(z_i, z_j)$
x = image $Z_i = (X_i, y_i)$ $Z = \{Z_1, Z_2\}$	part template scores	spring deformation model

Score is linear in local templates wi and spring parameters wij

 $score(x,z) = w \cdot \Phi(x, z)$

Inference: max score(x,z)

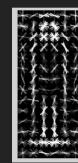
Felzenszwalb & Huttenlocher 05



Star model: the location of the root filter is the anchor point Given the root location, all part locations are independent

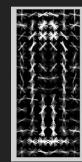
Classification

 $f_w(x) > 0$

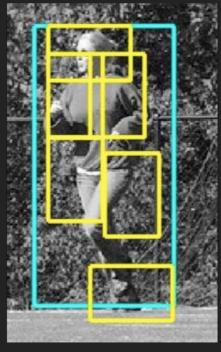


Latent-variable classification

 $f_w(x)=w \cdot \Phi(x)$

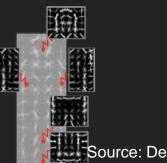


 $f_w(x) > 0$



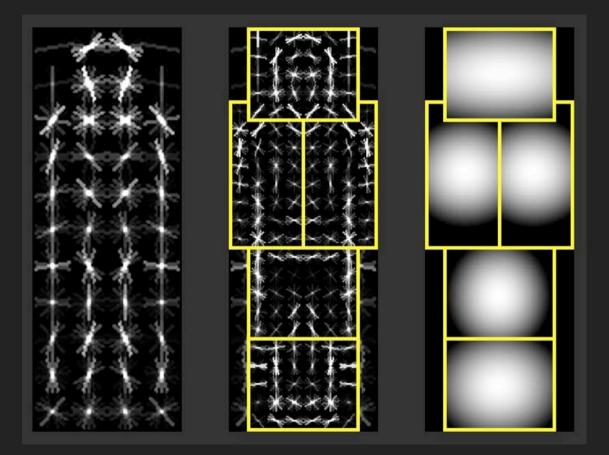
 $f_w(x) = \max_Z S(x,z)$

 $= \max_{z} w \cdot \Phi(x, z)$



Initialization

Learn root filter with SVM Initialize part filters to regions in root filter with lots of energy



Coordinate descent

1) Given positive part locations, learn w with a convex program

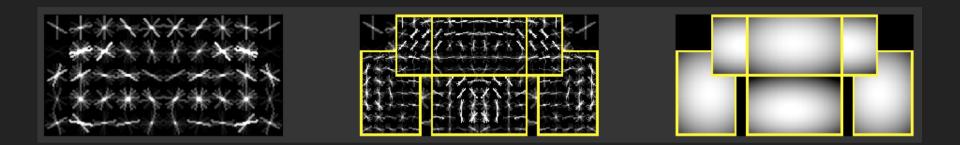
$$w = \underset{w}{\operatorname{argmin}} L(w) \quad \text{with fixed} \quad \{z_n : n \in \operatorname{pos}\}$$

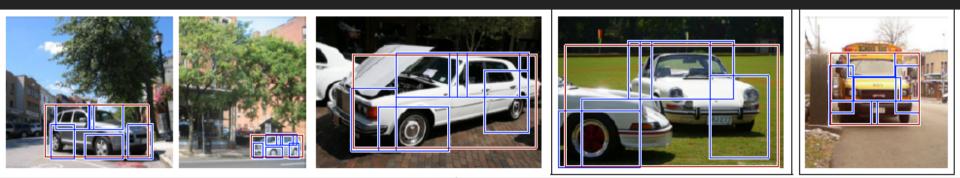
2) Given w, estimate part locations on positives

$$z_n = \operatorname*{argmax}_{z} w \cdot \Phi(x_n, z) \quad \forall n \in \mathrm{pos}$$

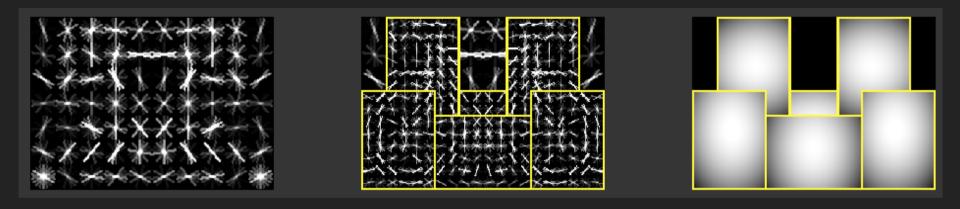
The above steps perform coordinate descent on a joint loss

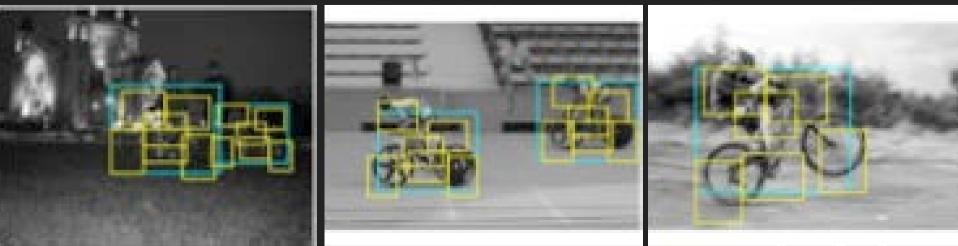
Example models



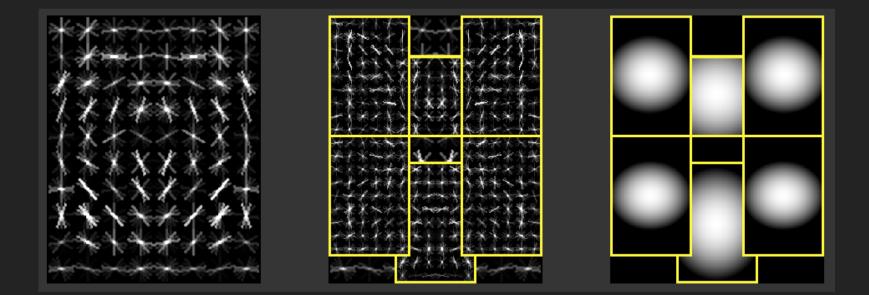


Example models

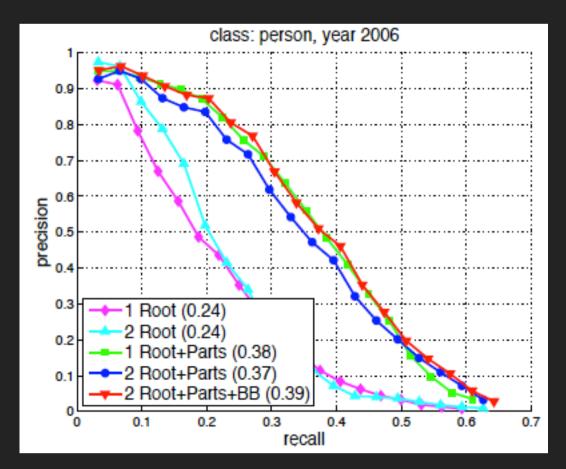




Example models



False positive due to imprecise bounding box

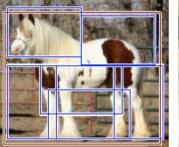


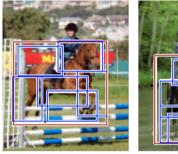
Other tricks:

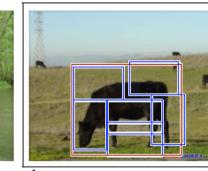
•Mining hard negative examples

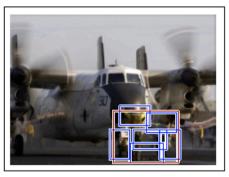
•Noisy annotations

horse

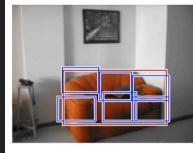


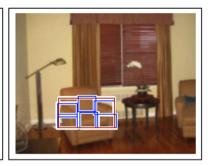






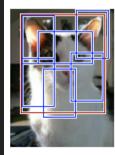
sofa

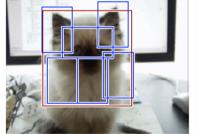


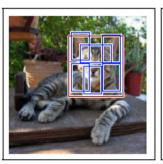


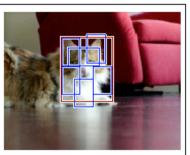
bottle

cat

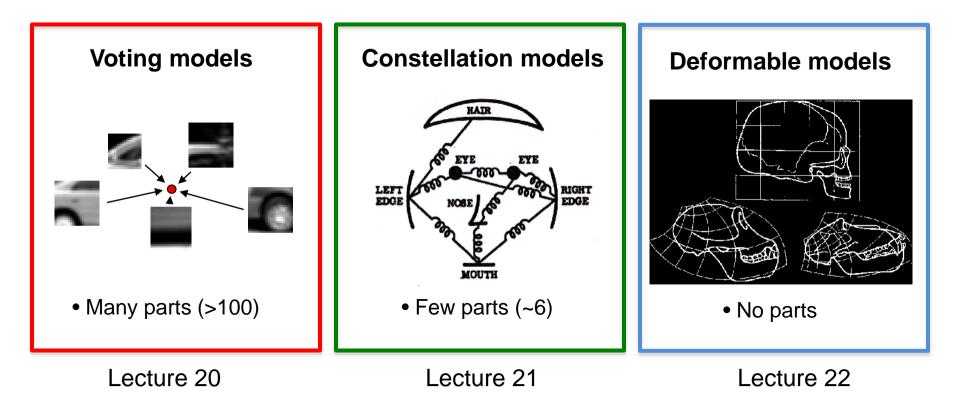




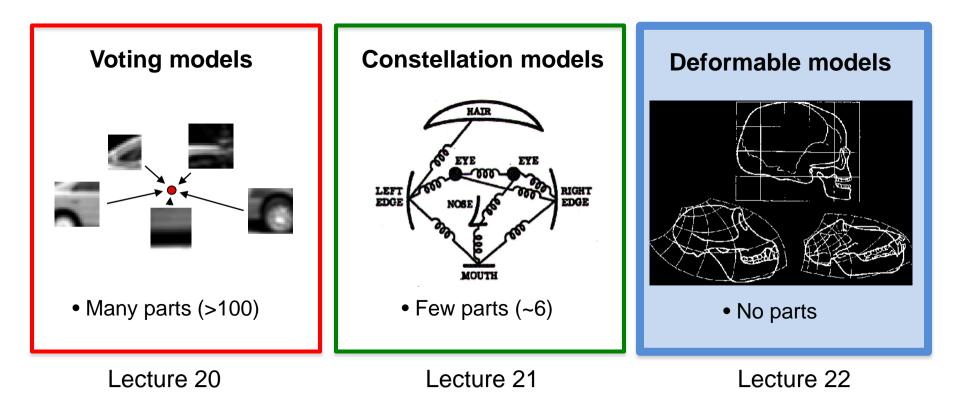




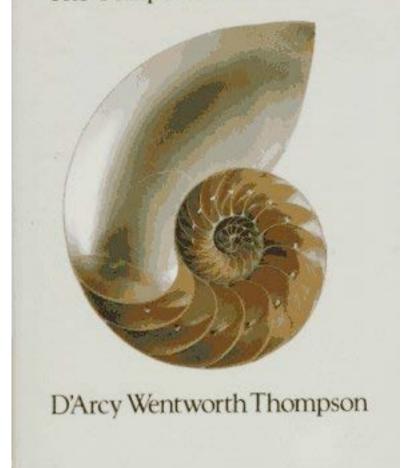
Structure models



Structure models



ON GROWTH AND FORM The Complete Revised Edition



to the lines of our new curved ordinates. In like manner, the still more bizarre outlines of other fishes of the same family of Chaetodonts will be found to correspond to very slight modifications of



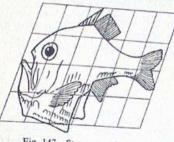
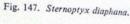


Fig. 146. Argyropelecus olfersi.



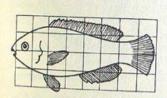


Fig. 148. Scarus sp.

Fig. 149. Pomacanthus.

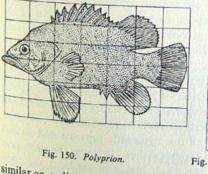


Fig. 151. Pseudopriacanthus altus.

similar co-ordinates; in other words, to small variations in the values of the constants of the coaxial curves. In Figs. 150-153 I have represented another series of Acantho-

pterygian fishes, not very distantly related to the foregoing. If we

From wikipedia: Perhaps the most famous part of the work is chapter XVII, "The Comparison of Related Forms," where Thompson explored the degree to which differences in the forms of related animals could be described by means of relatively simple mathematical transformations.

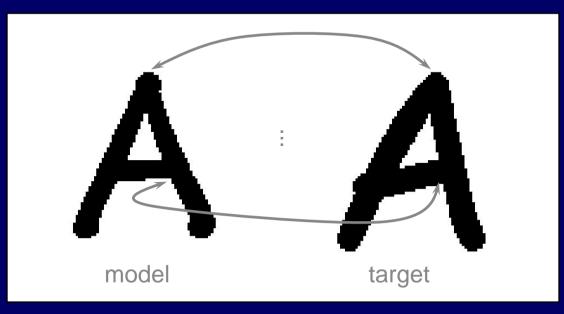
Shape Matching and Object Recognition Using Shape Contexts

Serge Belongie, Member, IEEE, Jitendra Malik, Member, IEEE, and Jan Puzicha

Abstract—We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by 1) solving for correspondences between points on the two shapes, 2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the *shape context*, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape contexts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; regularized thin-plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning transform. We treat recognition in a nearest-neighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits, and the COIL data set.

Index Terms—Shape, object recognition, digit recognition, correspondence problem, MPEG7, image registration, deformable templates.

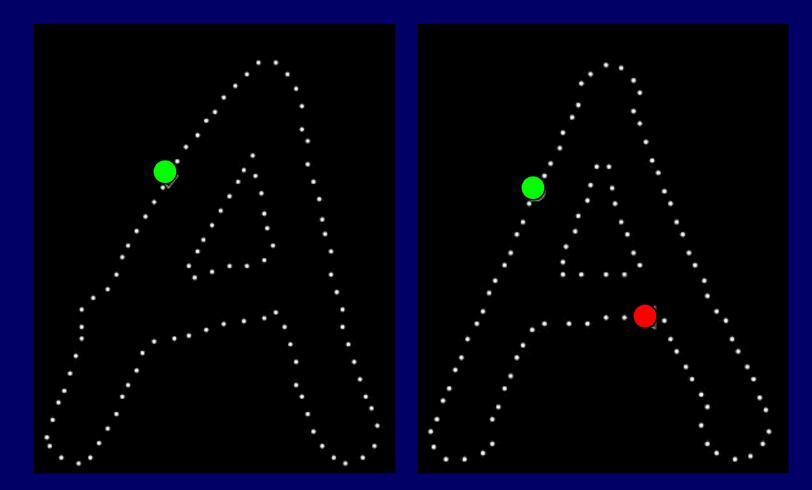
Matching Framework



- Find correspondences between points on shape
- Fast pruning
- Estimate transformation & measure similarity

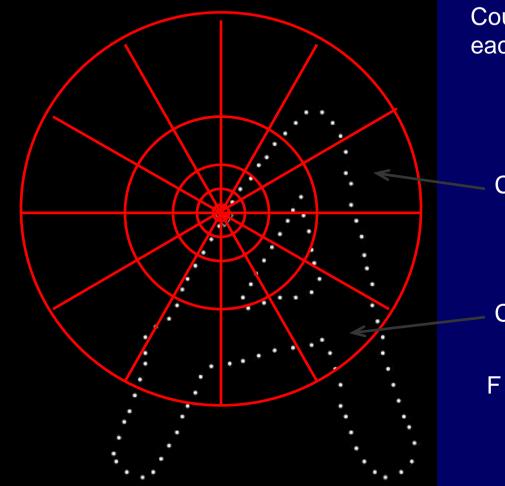
University of California Berkeley

Comparing Pointsets



University of California Berkeley

Shape Context



Count the number of points inside each bin, e.g.:

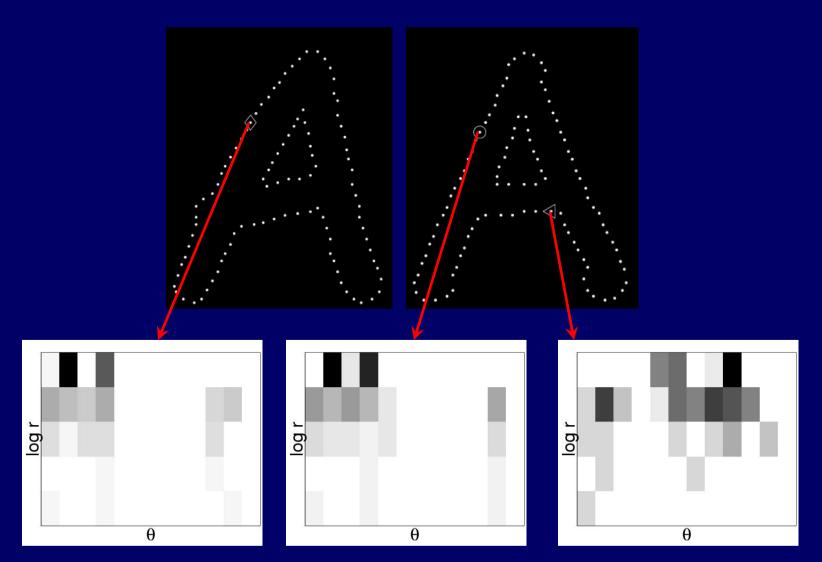
Count = 4

Count = 10

F Compact representation of distribution of points relative to each point

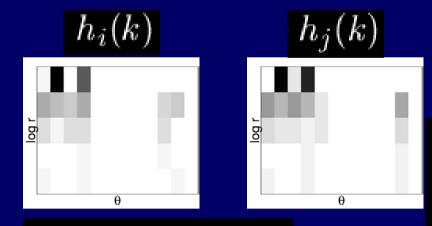
University of California **Berkeley**

Shape Context



University of California Berkeley

Comparing Shape Contexts

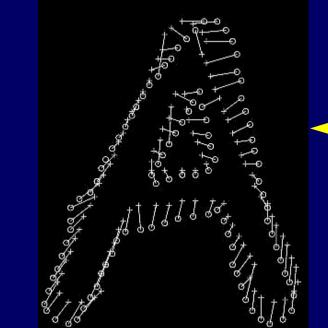


Compute matching costs using Chi Squared distance:

$$C_{ij} = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$$

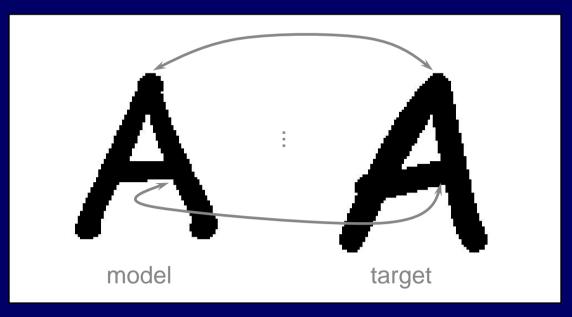
Recover correspondences by solving linear assignment problem with costs C_{ij}

[Jonker & Volgenant 1987]



University of California **Berkeley**

Matching Framework

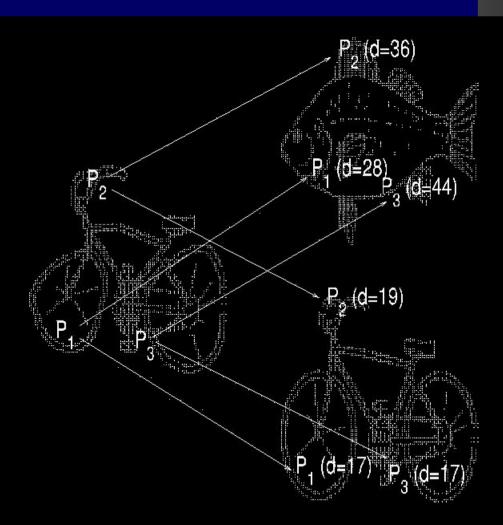


- Find correspondences between points on shape
- Fast pruning
- Estimate transformation & measure similarity

University of California
Berkeley

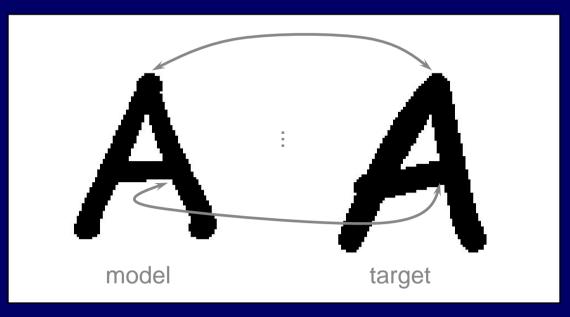
Fast pruning

• Find best match for the shape context at only a few random points and add up cost



University of California Berkeley

Matching Framework



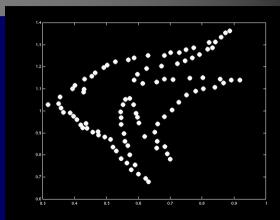
- Find correspondences between points on shape
- Fast pruning
- Estimate transformation & measure similarity

University of California
Berkeley

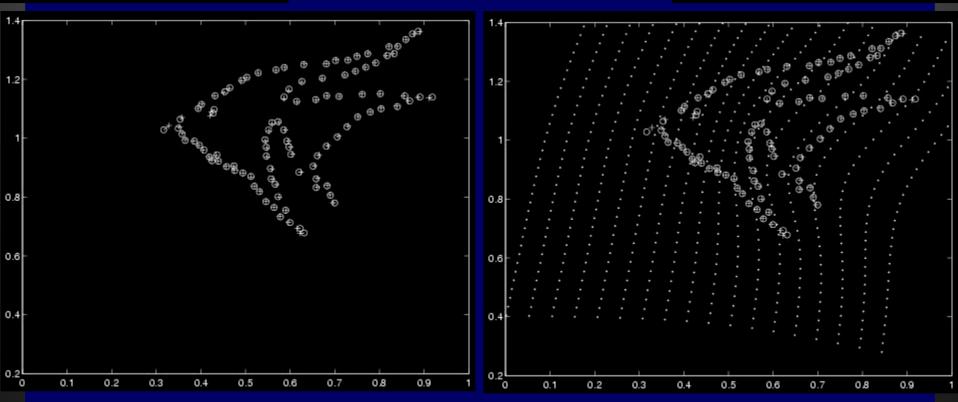


Matching Example

model

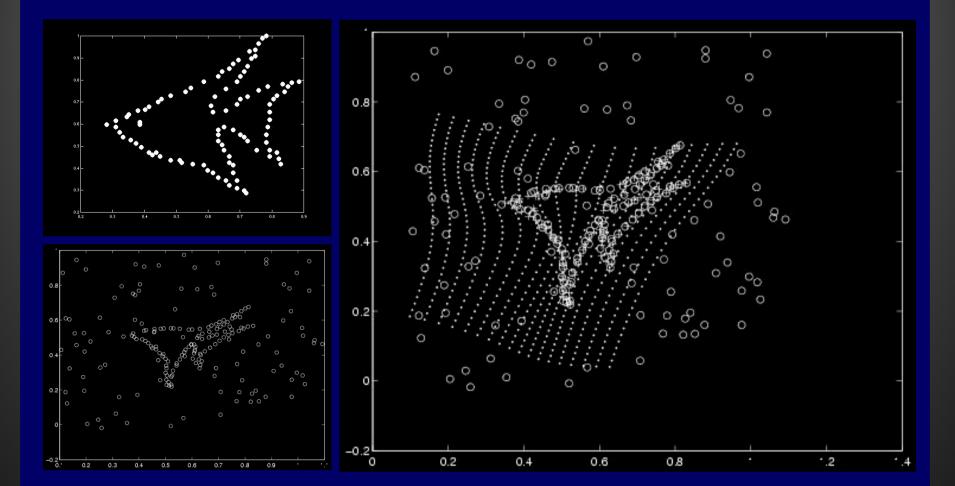


target



University of California Berkeley

Outlier Test Example



University of California Berkeley

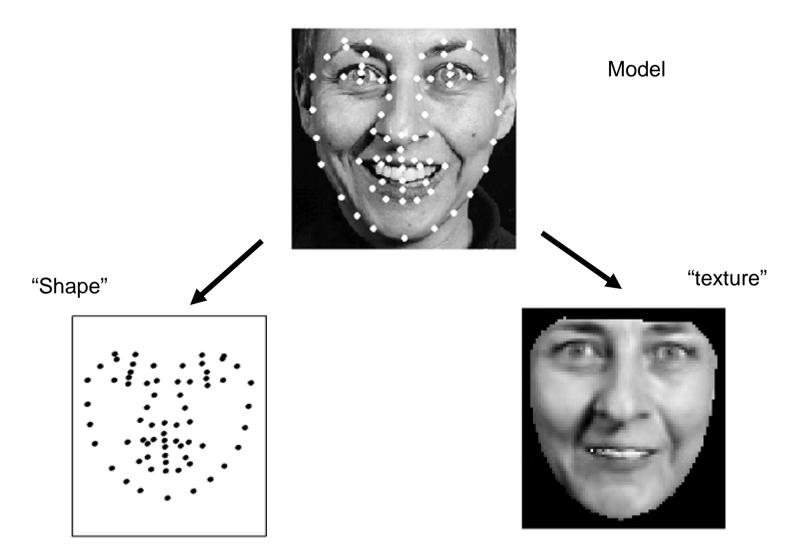
The spaces of faces is not convex

The average of two faces is not another face

The spaces of faces is not convex

The average of two faces is not another face

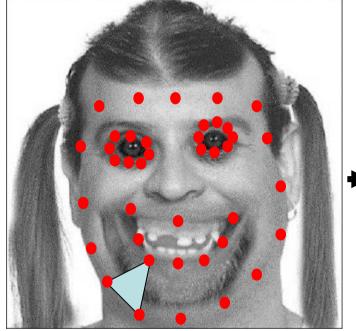
A shape-texture face model



Cootes, Edwards, and Taylor, <u>"Active Appearance Models"</u>, ECCV 1998 Slide: Dhruv Batra

Image warping

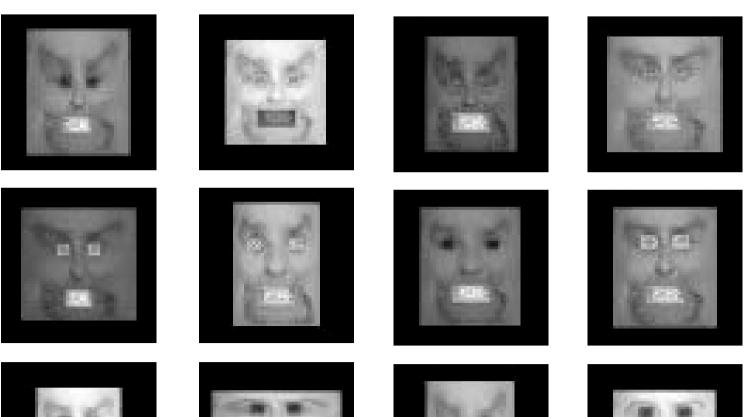
Image warping



Background

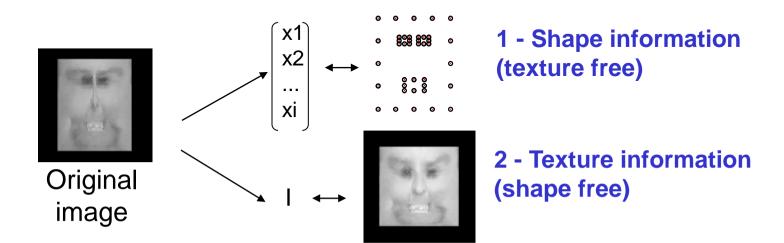
Original image

Face database

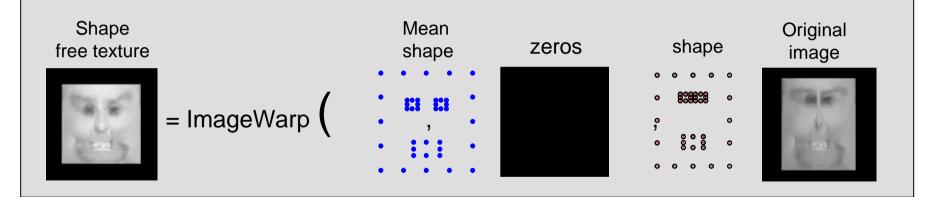


Appearance Model (AppModel.m)

• Each image is represented as (1) a collection of correspondence points (shape) and (2) <u>a texture image normalized in shape.</u>

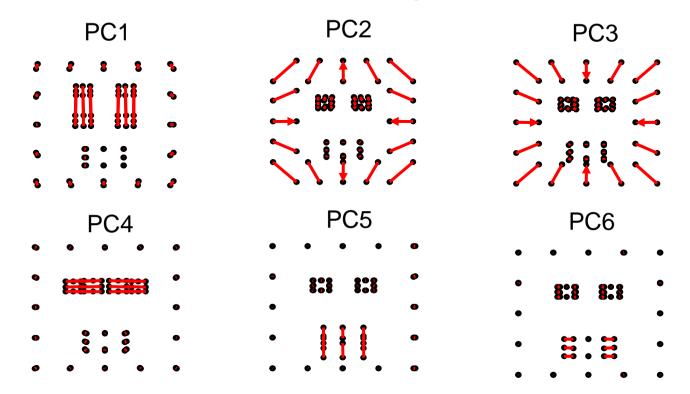


• 2 - Shape normalization is obtained by warping the image into the mean shape of the training database.

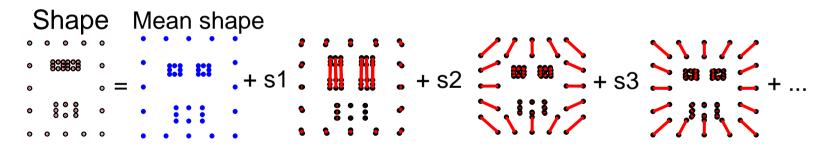


Shape model

• PCA of shape information for the training database:



• Each shape can be decomposed as:



Texture model

• PCA of texture information for the training database:

The PCA is done on the shape free images

PC1

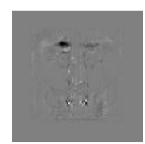
PC2

PC3

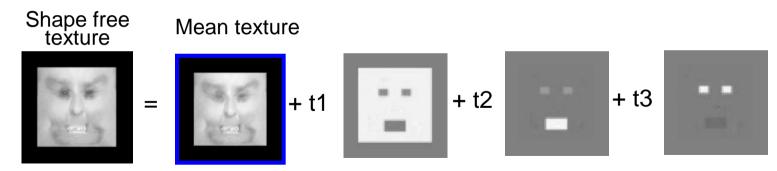
PC6

PC4

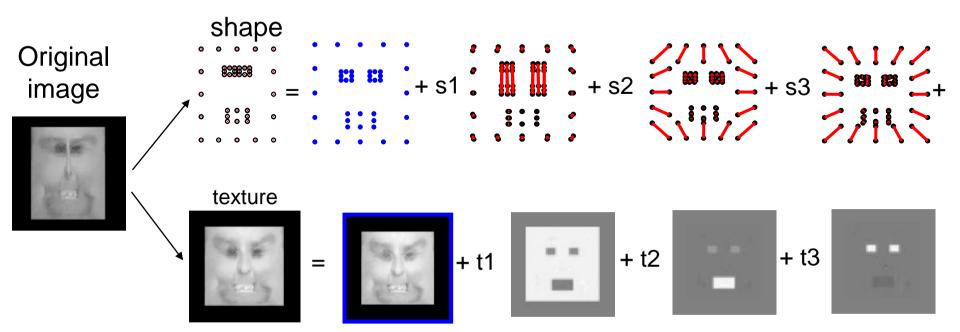
PC5



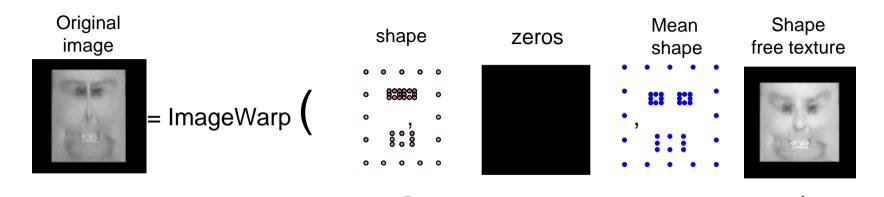
• Each texture (shape free) can be decomposed as:



Summary of Appearance Model of one image



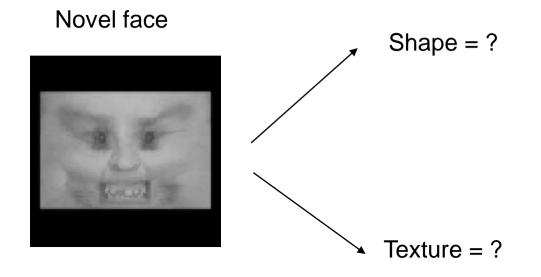
A set of model parameters encode shape and gray level variation learned from a training set



S

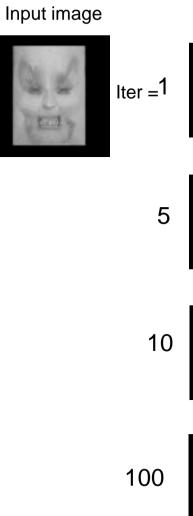
Active Appearance Model Search

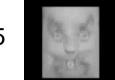
Given a new "face" the model has to build an appearance model (shape + texture) that reproduces the original image:



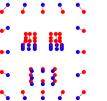
This is done in an iterative procedure that tries to minimize the reconstruction error.

Results

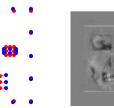


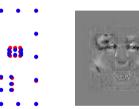


Shape

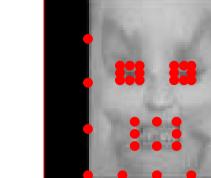


Residual





8



Active Appearance Model Search (Results)

Slide: Dhruv Batra

Essence of the Idea: Recognition by Synthesis

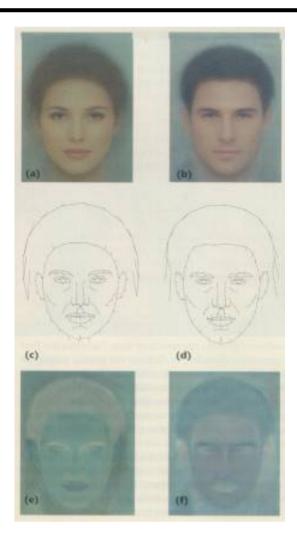
Explain a new example in terms of the model parameters

Slide: Dhruv Batra

Face Modeling

Compute *average* faces (color and shape)

Compute *deviations* between male and female (vector and color differences)

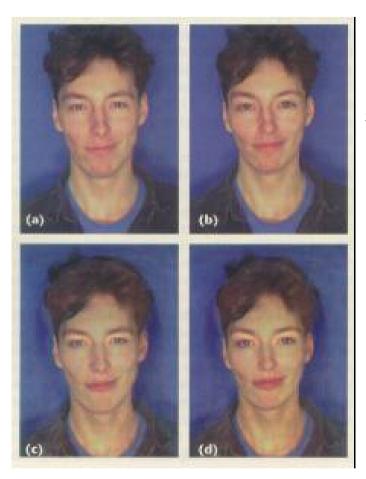


Changing gender

Deform shape and/or color of an input face in the direction of "more female"

original

color



shape

both

Enhancing gender

more same original androgynous more opposite

Changing age

Face becomes "rounder" and "more textured" and "grayer"

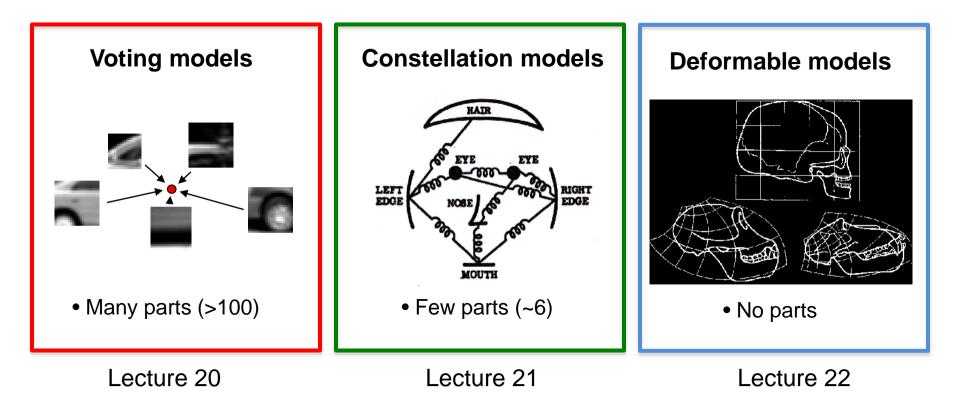
original

color

shape

both

Structure models



Slide credit: Fei fei

Analogy to documents

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that rea m our eyes. For a long time retinal sensory, brain, image was isual centers i visual, perception, movie s retinal, cerebral cortex, image i discove eye, cell, optical know th nerve, image percepti Hubel, Wiesel more com following the to the various and the various of the rtex. Hubel and Wiese demonstrate that the message abo image falling on the retina undergoe wise analysis in a system of nerve cell stored in columns. In this system each has its specific function and is responsible a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of \$90bn (£51bn) to \$100bn this year, a threefold increase on 2004's \$32bn. The Commerce Ministry said the surglassical be created by a predicted 30% 750bn. compared China, trade, \$660bn.] annov th surplus, commerce, China's exports, imports, US, deliber agrees yuan, bank, domestic, yuan is foreign, increase, governo trade, value also need demand so country. China yuan against the and permitted it to trade within a narroy but the US wants the yuan to be allowed de freely. However, Beijing has made it d it will take its time and tread carefully by allowing the yuan to rise further in value.

Related works

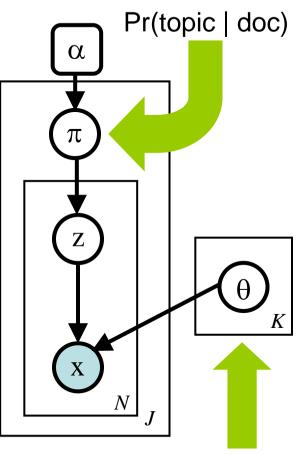
- Early "bag of words" models: mostly texture recognition
 - Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003;
- Hierarchical Bayesian models for documents (pLSA, LDA, etc.)
 - Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal & Blei, 2004

• Object categorization

- Csurka, Bray, Dance & Fan, 2004; Sivic, Russell, Efros, Freeman & Zisserman, 2005; Sudderth, Torralba, Freeman & Willsky, 2005;
- Natural scene categorization
 - Vogel & Schiele, 2004; Fei-Fei & Perona, 2005; Bosch, Zisserman & Munoz, 2006

Hierarchical Topic Models

- Topic models typically use a "bag of words" approx.:
 - Learning topics allows transfer of information within a corpus of related documents
 - Mixing proportions capture the distinctive features of particular documents



Pr(word | topic)

Latent Dirichlet Allocation (LDA) Blei, Ng, & Jordan, JMLR 2003

Analogy: Discovering topics in text collections

Text document

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

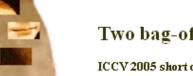
Discovered topics

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Visual analogy

- document image
 - word visual word
 - topics objects

Demo



Two bag-of-words classifiers

ICCV 2005 short courses on <u>Recognizing and Learning Object Categories</u>

A simple approach to classifying images is to treat them as a collection of regions, describing only their appearance and igorning their have been successfully used in the text community for analyzing documents and are known as "bag-of-words" models, since each doct distribution over fixed vocabulary(s). Using such a representation, methods such as probabalistic latent semantic analysis (pLSA) [1] (LDA) [2] are able to extract coherent topics within document collections in an unsupervised manner.

Recently, Fei-Fei et al. [3] and Sivic et al. [4] have applied such methods to the visual domain. The demo code implements pLSA, incl For comparison, a Naive Bayes classifier is also provided which requires labelled training data, unlike pLSA.

The code consists of Matlab scripts (which should run under both Windows and Linux) and a couple of 32-bit Linux binaries for doin representation. Hence the whole system will need to be run on Linux. The code is for teaching/research purposes only. If you find a b where csail point mit point edu.

Download

Download the code and datasets (32 Mbytes)

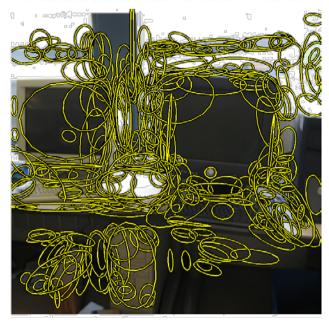
Operation of code

To run the demos:

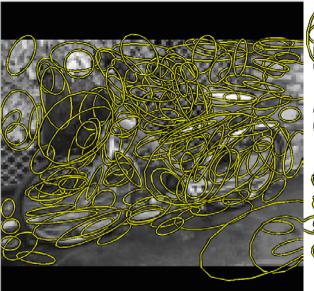
From Images to Features

- Pixels are very sensitive to changes in lighting & pose
- Instead represent image as affine covariant regions:
 - Harris affine invariant regions (corners & edges)
 - Maximally stable extremal regions (segmentation)

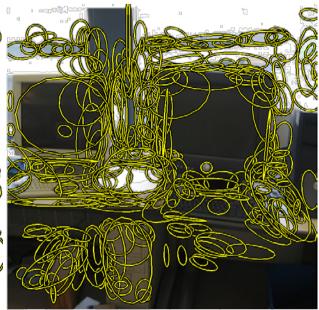
Software provided by Oxford Visual Geometry Group



Sample Detected Features

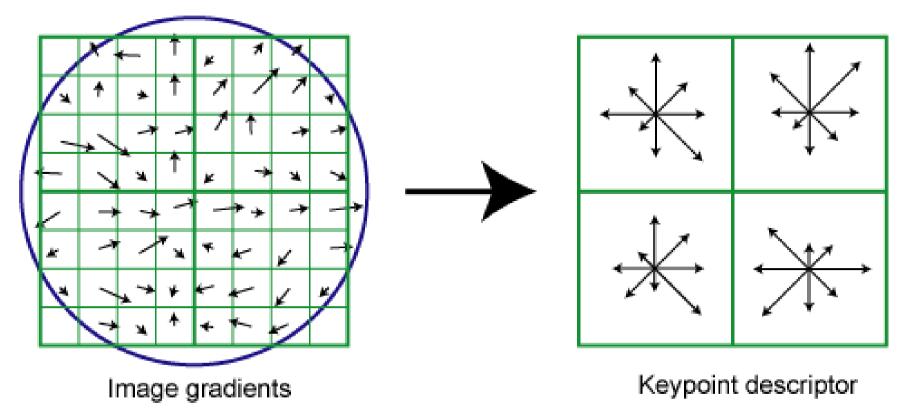






Describing Feature Appearance

- SIFT: Scale Invariant Feature Transform
- Normalized histogram of orientation energy in each affinely adapted region (128-dim.)



D. Lowe, IJCV 2004

A Discrete Feature Vocabulary

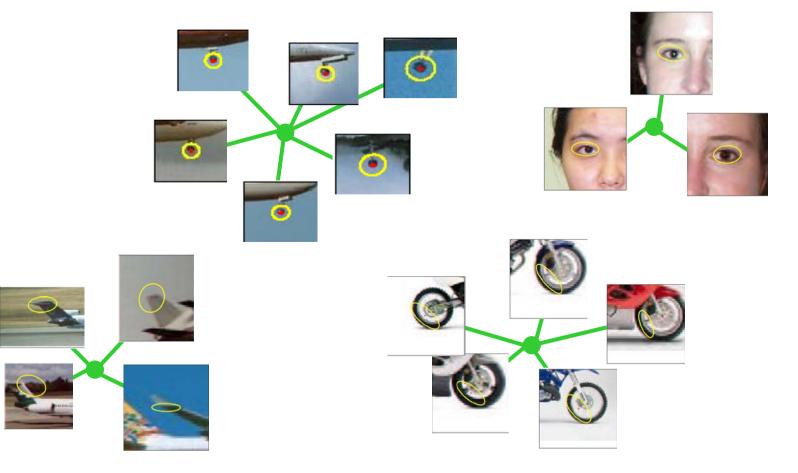
- Using all training images, build a dictionary via K-means clustering (~1000 words)
- Map each SIFT descriptor to nearest word

 $w_{ji} \longrightarrow {}^{\text{appearance of}}_{\text{feature } i \text{ in image } j}$

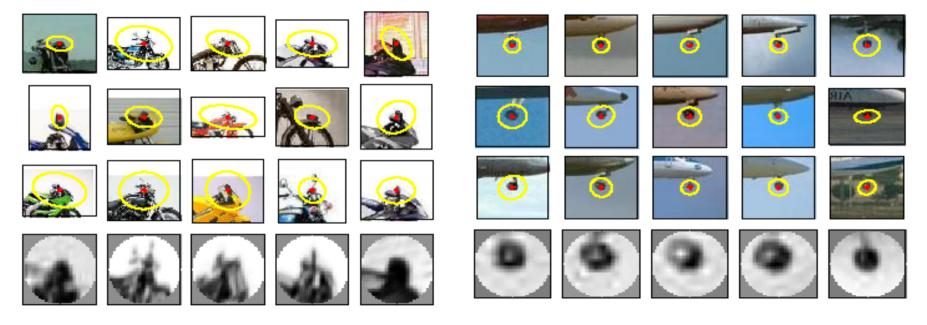
 $y_{ji} \longrightarrow {}^{\text{2D position of}}_{\text{feature } i \text{ in image } j}$

Form dictionary

Build visual vocabulary by k-means clustering SIFT descriptors (K~2,000)



Example regions assigned to the same dictionary cluster

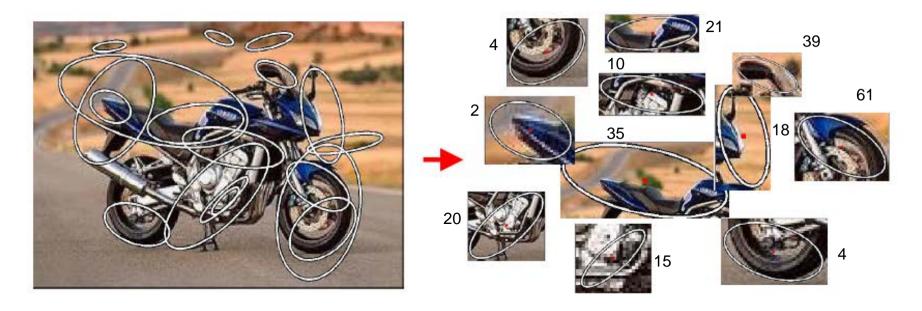


Cluster 1

Cluster 2

Representing an image with visual words

Sivic & Zisserman '03



Interest regions

Visual words

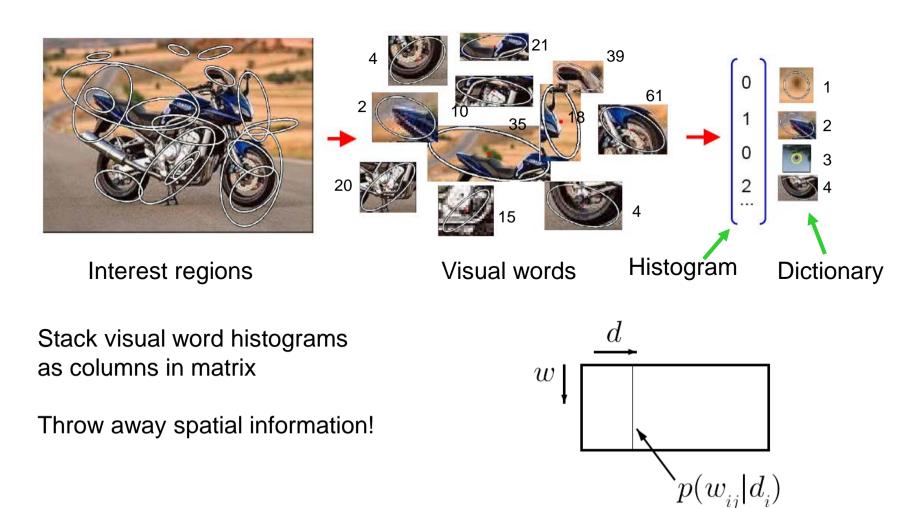
System overview

Input image

Compute visual words

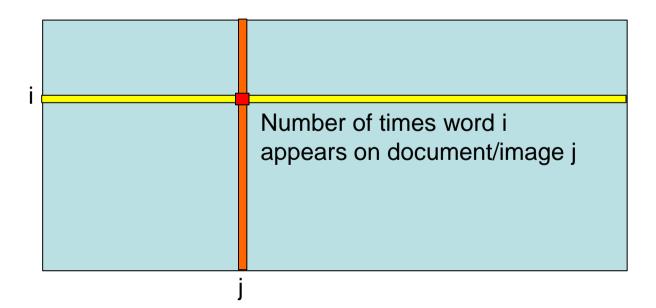
Discover visual topics

Bag of words



Documents collection

Co-ocurrence table:

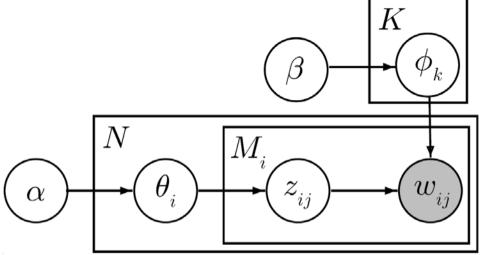


Latent Dirichlet Allocation (LDA)

Blei, et al. 2003

- LDA model assumes exchangeability
- Order of words does not matter

 $w_{ij}|z_{ij} = k, \phi \sim \phi_k$



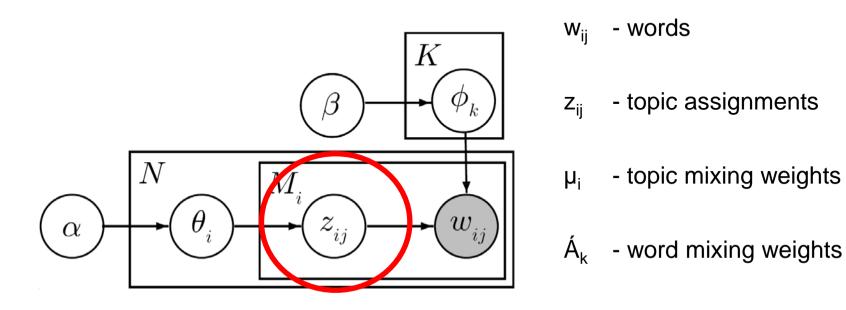
 $z_{ij}|\theta_i \sim \theta_i \qquad \theta_i|\alpha \sim Dirichlet(\alpha)$

 $\phi_k | \beta \sim Dirichlet(\beta)$

- w_{ij} words
- z_{ij} topic assignments
- μ_i topic mixing weights
- $\Phi_{\mathbf{k}}~$ word mixing weights

 $p(w_{ij}) \propto \sum_{k=1}^{K} p(w_{ij}|z_{ij} = k, \phi_k) \ p(z_{ij} = k|\theta_i)$

Inference



Use Gibbs sampler to sample topic assignments

[Griffiths & Steyvers 2004]

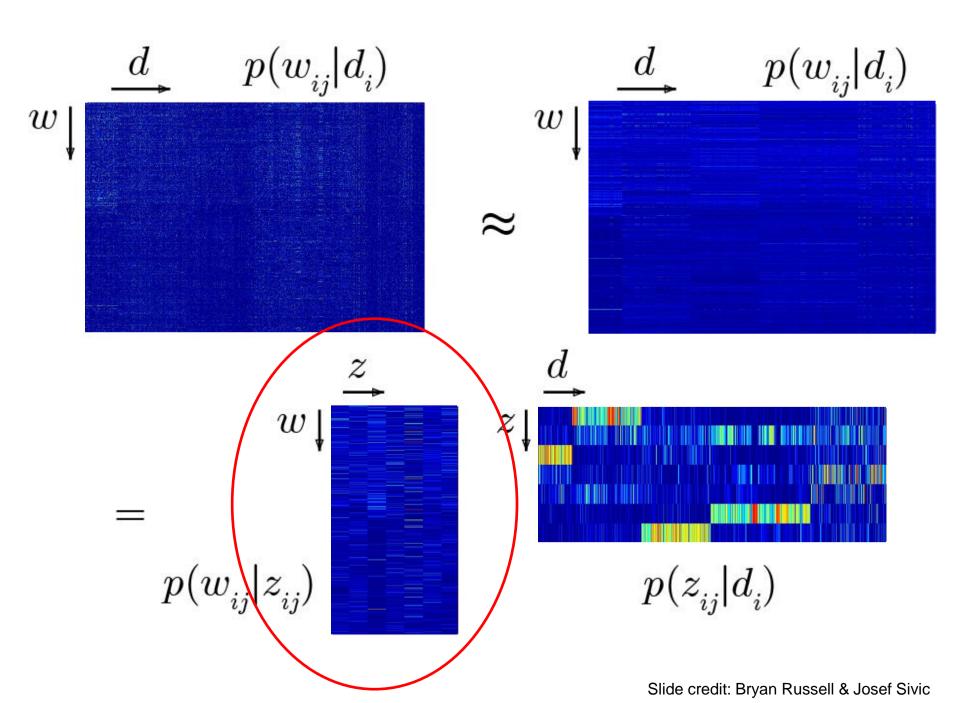
$$z_{ij} \sim p(z_{ij} = k | w_{ij} = v, w_{\langle (ij) \rangle}, z_{\langle (ij) \rangle}, \alpha, \beta)$$

Only need to maintain counts of topic assignments
Sampler typically converges in less than 50 iterations
Run time is less than an hour

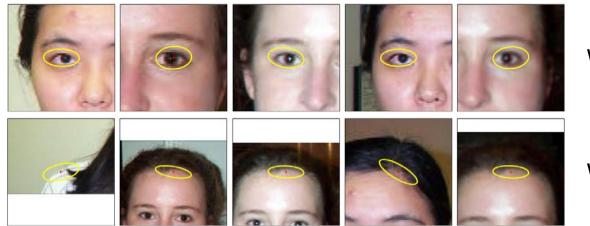
Apply to Caltech 4 + background images

Faces	435
Motorbikes	800
Airplanes	800
Cars (rear)	1155
Background	900
Total:	4090

 $p(w_{ij}|d_i)$ d $p(w_{ij}|d_i)$ dww \approx dzwz $p(w_{ij}|z_{ij})$ $p(z_{ij}|d_i)$

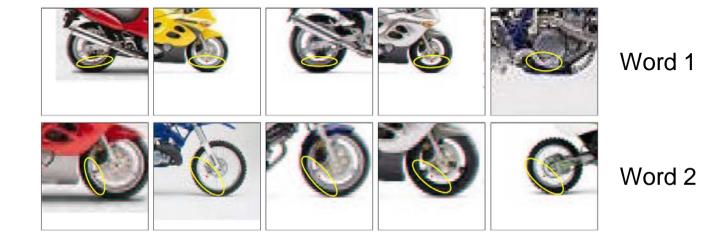


Most likely words given topic



Word 1

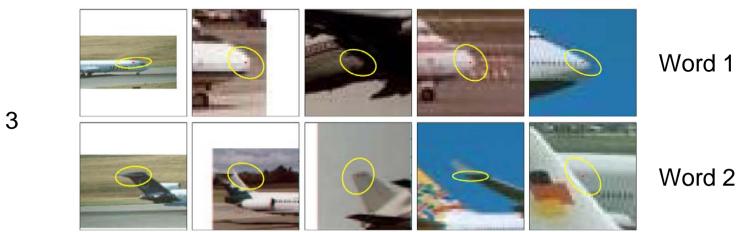
Word 2



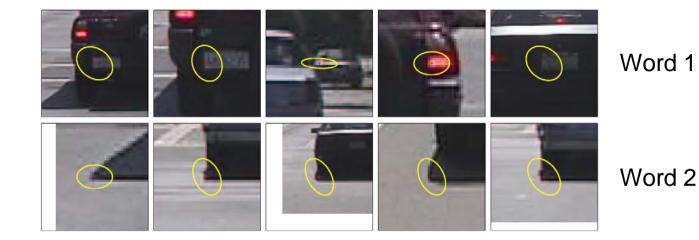
Topic 2

Topic 1

Most likely words given topic



Topic 3

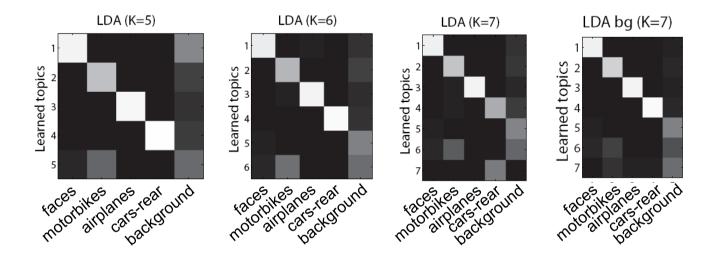


Topic 4

 $p(w_{ij}|d_i)$ d $p(w_{ij}|d_i)$ dww \approx zw $p(w_{\scriptscriptstyle ij}|z_{\scriptscriptstyle ij})$ $p(z_{ij}|d_i)$

Image clustering

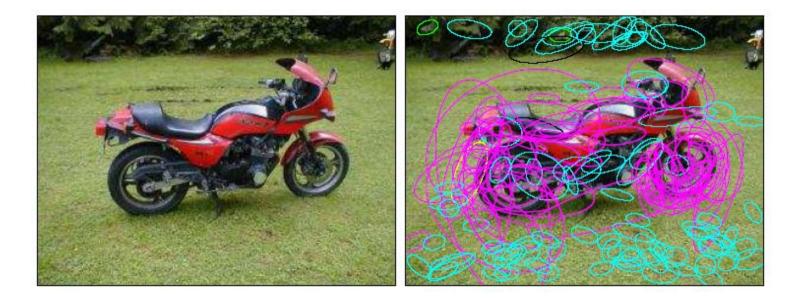
Confusion matrices:

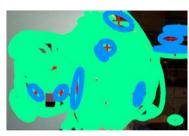


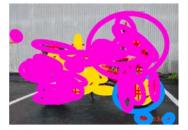
Average confusion:

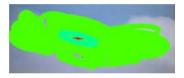
Expt.	Categories	Т	LDA		pLSA		KM baseline	
			%	#	%	#	%	#
(1)	4	4	97	86	98	70	72	908
(2)	4 + bg	5	78	931	78	931	56	1820
$(2)^{*}$	4 + bg	6	84	656	76	1072	—	—
$(2)^{*}$	4 + bg	7	78	1007	83	768	—	—
$(2)^{*}$	4 + bg-fxd	7	90	330	93	238	_	_

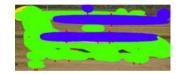
Image as a mixture of topics (objects)

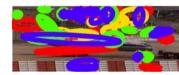


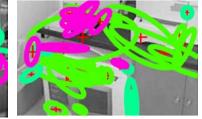


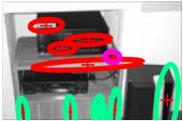


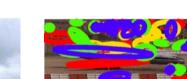












Beyond single classes

- Multiclass
- Multiview
- Datasets

Beyond single classes

- Multiclass
- Multiview
- Datasets

Shared features

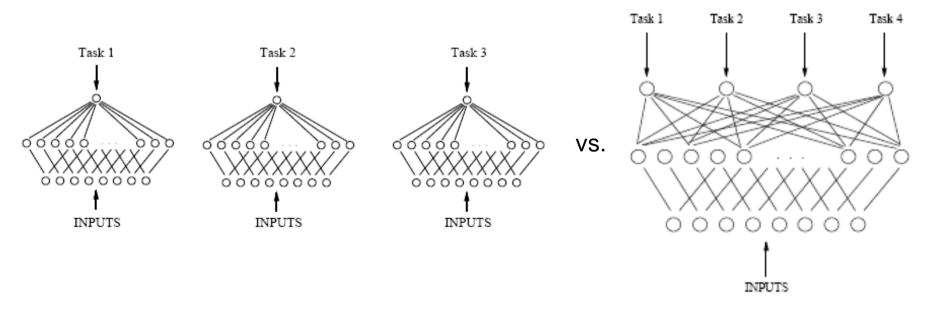
• Is learning the object class 1000 easier than learning the first?

- Can we transfer knowledge from one object to another?
- Are the shared properties interesting by themselves?

Multitask learning

R. Caruana. Multitask Learning. ML 1997

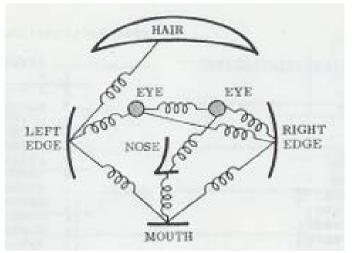
"MTL improves generalization by leveraging the domain-specific information contained in the training signals of *related* tasks. It does this by training tasks in parallel while using a shared representation".



Sejnowski & Rosenberg 1986; Hinton 1986; Le Cun et al. 1989; Suddarth & Kergosien 1990; Pratt et al. 1991; Sharkey & Sharkey 1992; ...

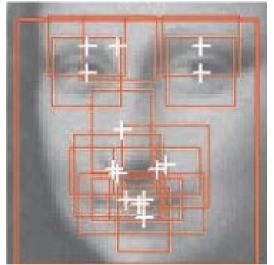
Sharing in constellation models

(next Wednesday)

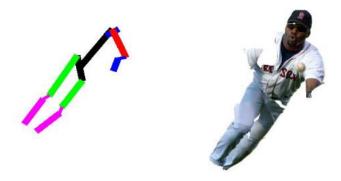


Pictorial Structures Fischler & Elschlager, IEEE Trans. Comp. 1973

Constellation Model Fergus, Perona, & Zisserman, CVPR 2003



SVM Detectors Heisele, Poggio, et. al., NIPS 2001



Model-Guided Segmentation

Mori, Ren, Efros, & Malik, CVPR 2004

Reusable Parts

Krempp, Geman, & Amit "Sequential Learning of Reusable Parts for Object Detection". TR 2002

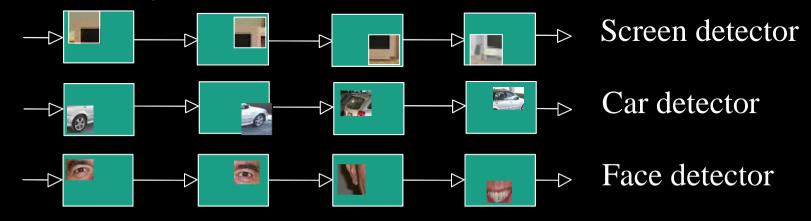
Goal: Look for a vocabulary of edges that reduces the number of features.

Examples of reused parts Number of features 600 500 400 300 200 -100 -0 20

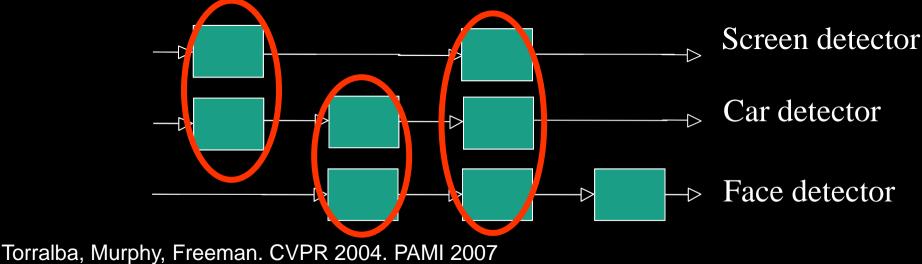
Number of classes

Additive models and boosting

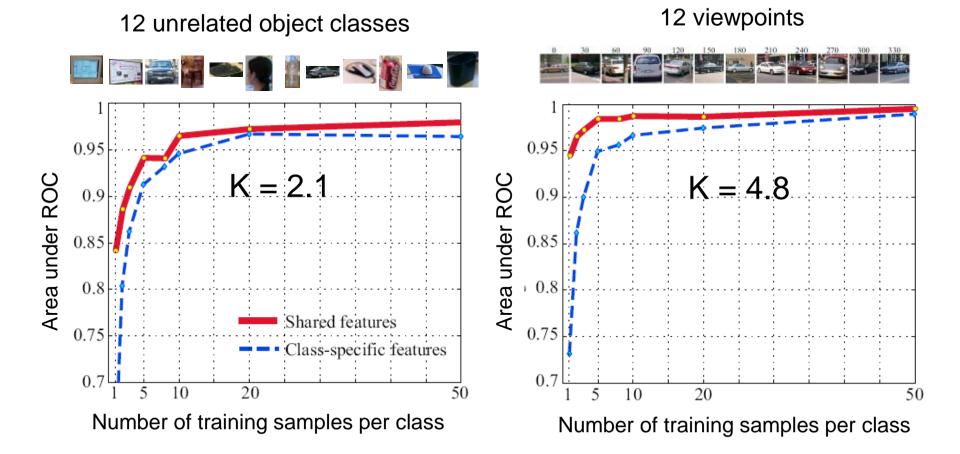
• Independent binary classifiers:



• Binary classifiers that share features:



Generalization as a function of object similarities



Beyond single classes

- Multiclass
- Multiview
- Datasets

3D object categorization

Despite we can categorize all three pictures as being views of a horse, the three pictures do not look as being equally typical views of horses. And they do not seem to be recognizable with the same easiness.

Canonical Perspective

Experiment (Palmer, Rosch & Chase 81): participants are shown views of an object and are asked to rate "how much each one looked like the objects they depict" (scale; 1=very much like, 7=very unlike)

In a recognition task, reaction time correlated with the ratings.

Canonical views are recognized faster at the entry level.

Examples of canonical perspective:

HORSE

PIANO

TEAPOT

CAMERA

CAR

CHAIR

CLOCK

TELEPHONE

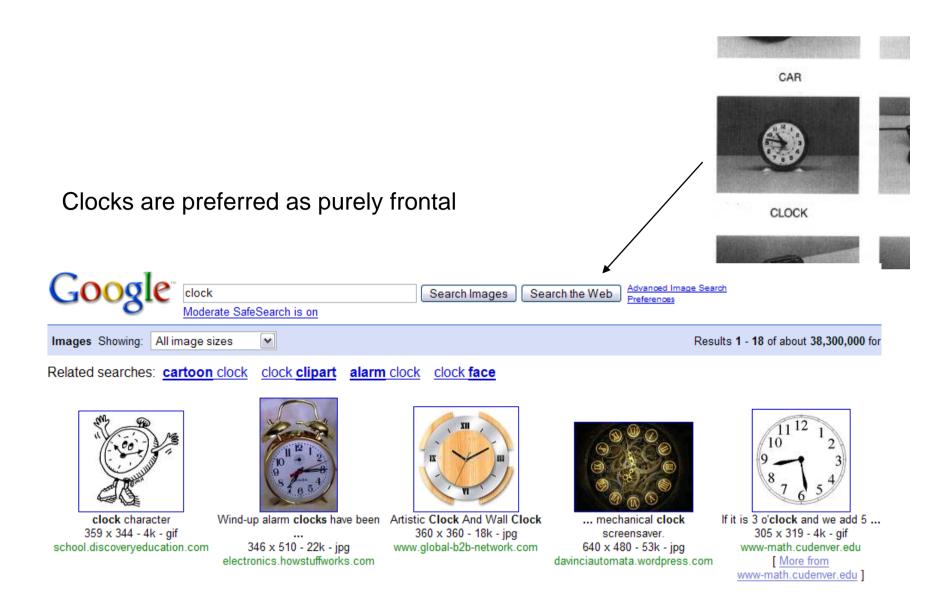
HOUSE

SHOE

IRON

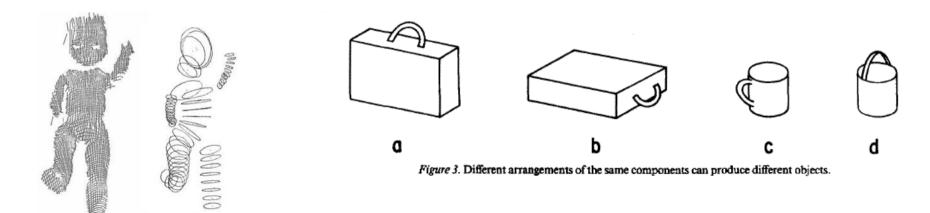
From Vision Science, Palmer

Canonical Viewpoint



Object representations

Explicit 3D models: use volumetric representation. Have an explicit model of the 3D geometry of the object.



Appealing but hard to get it to work...

Object representations

Implicit 3D models: matching the input 2D view to view-specific representations.

(b) For cars, classifiers are trained on 8 viewpoints

Not very appealing but somewhat easy to get it to work...

Beyond single classes

- Multiclass
- Multiview
- Datasets

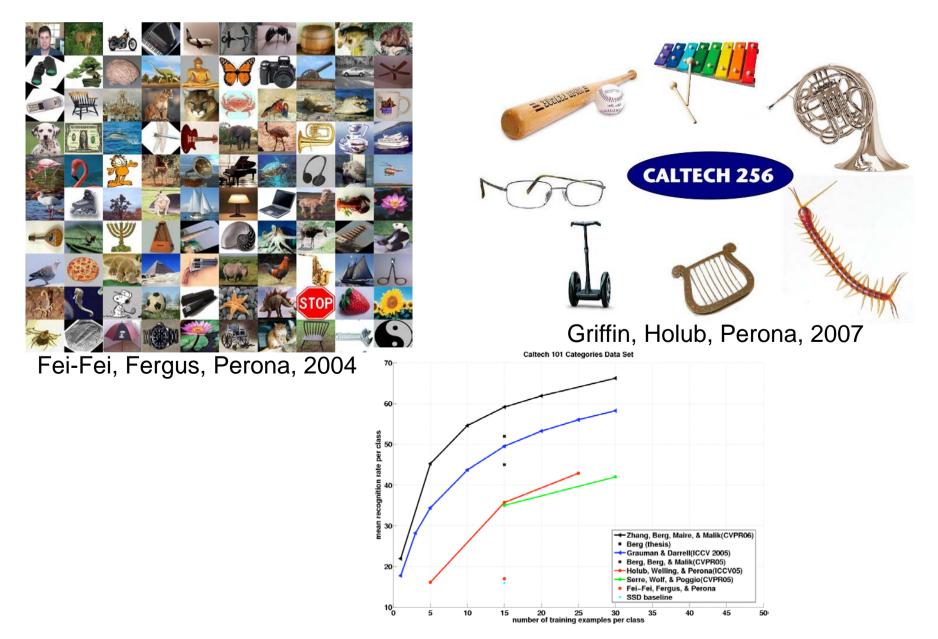
The PASCAL Visual Object Classes

In 2007, the twenty object classes that have been selected are:

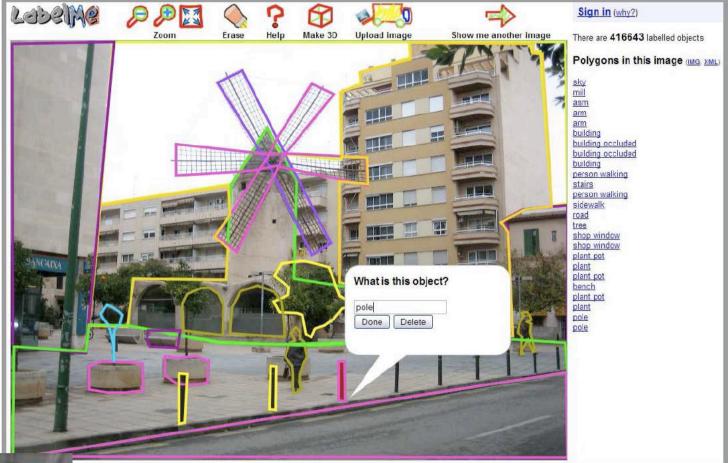
Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

M. Everingham, Luc van Gool , C. Williams, J. Winn, A. Zisserman 2007

Caltech 101 and 256



LabelMe

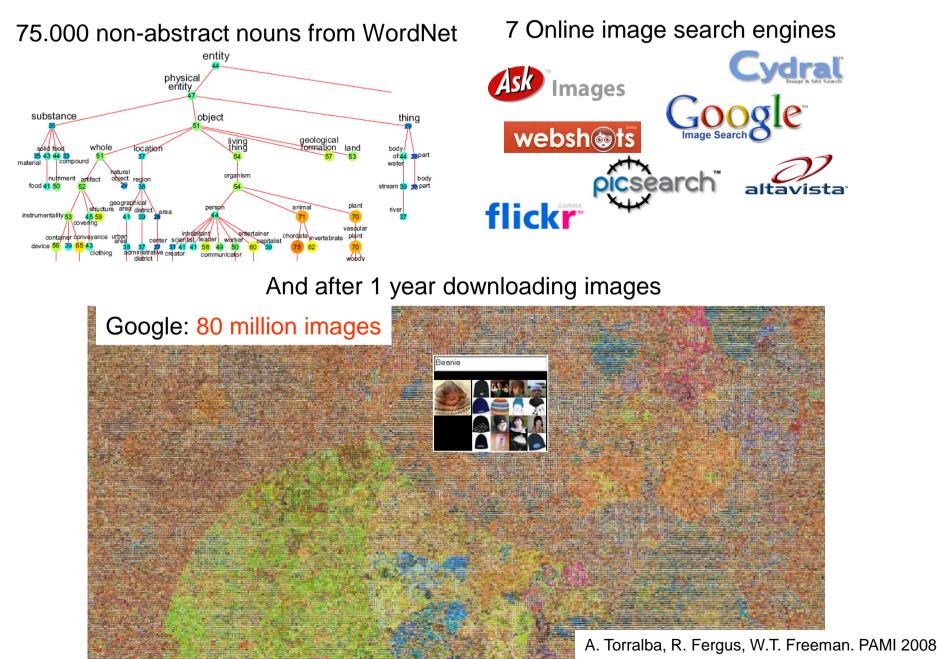


Tool went online July 1st, 2005 530,000 object annotations collected

Labelme.csail.mit.edu

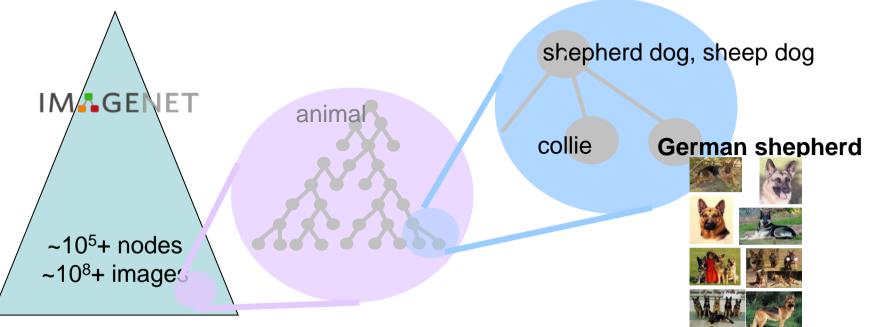
B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, IJCV 2008

80.000.000 images



IM GENET

- An ontology of images based on WordNet
- ImageNet currently has
 - 13,000+ categories of visual concepts
 - 10 million human-cleaned images (~700im/categ)
 - 1/3+ is released online @ www.image-net.org



Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009

mug

About 10 100 000 results (0.09 seconds)

59¢ Logo Coffee Mugs

www.DiscountMugs.com Lead Free & Dishwasher Safe, Save 40-50%. No Catch. Factory Direct !

Custom Mugs On Sale www.Vistaprint.com Order Now & Save 50% On

Custom Mugs No Minimums, Upload Photos & Logos

Promotional Mugs from 69¢ www.4imprint.com/Mugs Huge Selection of Style Colors- Buy 72 Mugs @ \$1.35 ea-24hr Service

Search

Advanced search

SafeSearch moderate V

mua

1000

300 × 279 - 54k - jpg

revnosawatch.org

Google mugs

Dataset biases

Related searches; white mug coffee mug mug root beer mug shot

Ceramic Happy Face

300 × 300 - 77k - jpg

Find similar images

ceramic mug 980 × 1024 - 30k - jpg

divtrade.com

Coffee Mug as a

303 × 301 - 10k - ipg

Find similar images

dustbowl.wordpress.com

larose.com

500 × 429 - 91k - jpg eagereves.org Find similar images

Bring your own 500 × 451 - 15k - jpg

cookstownunited.ca

Find similar images

Back to Ceramic

400 × 400 - 8k - ipg

Find similar images

freshpromotions.com.au

Find similar images

Here I go then, trying 600 × 600 - 35k - jpg

beeper.wordpress.com

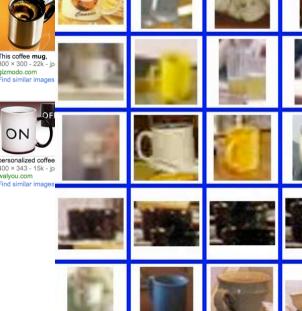
The Chalk Mug » 304 × 314 - 17k - jpg coolest-gadgets.com Find similar images

Dual Purpose Drinking 490 × 428 - 16k - jpg freshome.com Find similar images

SASS Life Member 300 × 302 - 6k - ipg sassnet.com

aizmodo.com Find similar images

400 × 343 - 15k - ip walvou.com Find similar imag



Mugs from LabelMe

Dataset biases

