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Schedule the last week

2

5-minute 
presentations 
of your class 
projects

5-8 page 
papers due.

short 
homework 
due (describe 
the main 
points of your 
5-minute 
presentation)

Time and location of final class presentations:
1:00pm - 3:30 or 4:00pm Wednesday
NOTE LOCATION:  3-343,  
http://web.mit.edu/registrar/classrooms/rooms/roompages/Buildings/
Building3/3-343.html
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Prize for best, clearest presentation

3
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Outline

• datasets
• applications
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Some internet image datasets

• Flickr
• Facebook

5
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http://www.eecs.harvard.edu/~zickler/papers/SocialContext_ProcIEEE2010.pdf
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Collecting labeled datasets 
• ESP game (CMU) 
Luis Von Ahn and Laura Dabbish 2004

• LabelMe (MIT)
Russell, Torralba, Freeman, 2005

• 80 Million Tiny Images
Torralba, Fergus, Freeman 2008

• ImageNet
Li, Fei-Fei, 2009

• Mechanical Turk
Amazon

http://www.gwap.com/gwap/

http://groups.csail.mit.edu/vision/TinyImages/

http://labelme.csail.mit.edu/

http://www.image-net.org/

https://www.mturk.com/mturk/welcome

Wednesday, May 4, 2011

http://www.gwap.com/gwap/
http://www.gwap.com/gwap/
http://groups.csail.mit.edu/vision/TinyImages/
http://groups.csail.mit.edu/vision/TinyImages/
http://labelme.csail.mit.edu
http://labelme.csail.mit.edu
http://www.image-net.org
http://www.image-net.org
https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome


Collecting labeled datasets 
• ESP game (CMU) 
Luis Von Ahn and Laura Dabbish 2004

• LabelMe (MIT)
Russell, Torralba, Freeman, 2005

• 80 Million Tiny Images
Torralba, Fergus, Freeman 2008

• ImageNet
Li, Fei-Fei, 2009

• Mechanical Turk
Amazon

http://www.gwap.com/gwap/

Wednesday, May 4, 2011

http://www.gwap.com/gwap/
http://www.gwap.com/gwap/


Collecting labeled datasets 
• ESP game (CMU) 
Luis Von Ahn and Laura Dabbish 2004

• LabelMe (MIT)
Russell, Torralba, Freeman, 2005

• 80 Million Tiny Images
Torralba, Fergus, Freeman 2008

• ImageNet
Li, Fei-Fei, 2009

• Mechanical Turk
Amazon

http://labelme.csail.mit.edu/

Wednesday, May 4, 2011

http://labelme.csail.mit.edu
http://labelme.csail.mit.edu


Collecting labeled datasets 
• ESP game (CMU) 
Luis Von Ahn and Laura Dabbish 2004

• LabelMe (MIT)
Russell, Torralba, Freeman, 2005

• 80 Million Tiny Images
Torralba, Fergus, Freeman 2008

• ImageNet
Li, Fei-Fei, 2009

• Mechanical Turk
Amazon

http://groups.csail.mit.edu/vision/TinyImages/

Wednesday, May 4, 2011

http://groups.csail.mit.edu/vision/TinyImages/
http://groups.csail.mit.edu/vision/TinyImages/


office

windows

drawers

desk

wall-space

waiting area

table
Couches

chairs
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plant

window

dining room

light

plant
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chairs

window

256x256
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dining room
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door
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picture

chair
chairchair chair

center piece

32x32 images

Human’s are capable of recognizing and segmenting images with just 32x32 pixels
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Tiny images: 1000 pixels
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http://wordnet.princeton.edu/
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Lots 

Of 

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008
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How hard is it to find a matching image?

23

(c)
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Automatic Colorization Result

Grayscale input High resolution

Colorization of input using average

A. Torralba, R. Fergus, W.T.Freeman. 2008
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Collecting labeled datasets 
• ESP game (CMU) 
Luis Von Ahn and Laura Dabbish 2004

• LabelMe (MIT)
Russell, Torralba, Freeman, 2005

• 80 Million Tiny Images
Torralba, Fergus, Freeman 2008

• ImageNet
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• Mechanical Turk
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Amazon Mechanical Turk

31
https://www.mturk.com/mturk/welcome
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things to do with images on an 
internet scale

• Object recognition
– 80 million tiny images

• Image editing/completion
– Hayes and Efros
– Infinite images

35
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Scene Completion 
Using Millions of 
Photographs

James Hays and Alexei A. Efros
Carnegie Mellon University

Wednesday, May 4, 2011
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Efros and Leung.  Texture synthesis by 
non-parametric sampling.  ICCV 1999.

Hays and Efros, SIGGRAPH 2007
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Efros and Leung result
Hays and Efros, SIGGRAPH 2007
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Bertalmio, Sapiro, Caselles, and Ballester. 
Image Inpainting. SIGGRAPH 2000.

Hays and Efros, SIGGRAPH 2007
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Diffusion Result
Hays and Efros, SIGGRAPH 2007
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Criminisi, Perez, and Toyama.  
Region filling and object 
removal by exemplar-based 
inpainting. IEEE Transactions 
on Image Processing. 2004.

Hays and Efros, SIGGRAPH 2007
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Criminisi, Perez, and 
Toyama.  Region filling and 
object removal by exemplar-
based inpainting. IEEE 
Transactions on Image 
Processing. 2004.

Hays and Efros, SIGGRAPH 2007

a:  original image

b: edited region

c, d: different stages of the 
filling process.

e:  Criminisi et al result

f: diffusion-based in-filling 
result.
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Criminisi et al. result
Hays and Efros, SIGGRAPH 2007

Wednesday, May 4, 2011



Criminisi et al. result
Hays and Efros, SIGGRAPH 2007
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Microsoft Digital Image Pro Smart erase result
Hays and Efros, SIGGRAPH 2007
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Jian Sun, Lu Yuan, Jiaya Jia and Heung-Yeung Shum. 
Image Completion with Structure Propagation. SIGGRAPH 2005
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Scene Matching for Image Completion
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Scene Completion Result
Hays and Efros, SIGGRAPH 2007
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The Algorithm

Hays and Efros, SIGGRAPH 2007
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The Algorithm

Input image
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The Algorithm

Input image Scene Descriptor
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The Algorithm

Input image Scene Descriptor Image Collection

…
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The Algorithm

Input image Scene Descriptor Image Collection

200 matches

…

…
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The Algorithm

Input image Scene Descriptor Image Collection

200 matches
Context matching

+ blending

…

…

Hays and Efros, SIGGRAPH 2007
Wednesday, May 4, 2011



The Algorithm
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…
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The Algorithm

Input image Scene Descriptor Image Collection

200 matches20 completions
Context matching

+ blending

…

…
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Data
We downloaded 2.3 Million unique images 
from Flickr groups and keyword searches.
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Scene Matching
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Scene Descriptor
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Scene Descriptor

Gist scene descriptor 
(Oliva and Torralba 2001)
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Scene Descriptor

Gist scene descriptor 
(Oliva and Torralba 2001)
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Scene Descriptor

+

Gist scene descriptor 
(Oliva and Torralba 2001)
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… 200 total
Hays and Efros, SIGGRAPH 2007
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Context Matching
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Context Matching
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Graph cut + Poisson blending Hays and Efros, SIGGRAPH 2007
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We assign each of the 200 results a score 
which is the sum of:

Hays and Efros, SIGGRAPH 2007

Result Ranking
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We assign each of the 200 results a score 
which is the sum of:

The scene matching distance
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Result Ranking
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We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
         (color + texture)

Hays and Efros, SIGGRAPH 2007

Result Ranking
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We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
         (color + texture)

The graph cut cost

Hays and Efros, SIGGRAPH 2007

Result Ranking
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Top 20 Results

Hays and Efros, SIGGRAPH 2007
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… 200 scene matches
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… 200 scene matches
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Failures
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Failures
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Evaluation

Hays and Efros, SIGGRAPH 2007
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Criminisi et al.          Scene Completion
Single result Each result 

selected from 20
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Criminisi et al.          Scene Completion
Single result Each result 

selected from 20

 Original Images
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Single result Each result 
selected from 20

 Original Images Criminisi et al.          Scene Completion
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Real Image. This image 
has not been manipulated

or

Fake Image. This image 
has been manipulated

Hays and Efros, SIGGRAPH 2007
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User Study Results - 20 Participants

Hays and Efros, SIGGRAPH 2007
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Why does it work?
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10 nearest neighbors from a
collection of 20,000 images
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10 nearest neighbors from a
collection of 2 million images
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Torralba, Fergus, and Freeman.  Tiny Images. 
MIT-CSAIL-TR-2007-024.  2007.

Database of 70 Million 32x32 images

Hays and Efros, SIGGRAPH 2007
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The Big Picture
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The Big Picture

Sky, Water, Hills, Beach, 
Sunny, mid-day
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The Big Picture

Sky, Water, Hills, Beach, 
Sunny, mid-day

Brute-force Image Understanding
Hays and Efros, SIGGRAPH 2007
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Infinite	
  images

by:
Biliana	
  Kaneva
Josef	
  Sivic
Shai	
  Avidan
Antonio	
  Torralba
Bill	
  Freeman
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Infinite	
  images

Wednesday, May 4, 2011



Infinite	
  images
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The	
  image	
  database

•We	
  have	
  collected	
  ~6	
  million	
  images	
  from	
  Flickr	
  
based	
  on	
  keyword	
  and	
  group	
  searches

– typical	
  image	
  size	
  is	
  500x375	
  pixels

– 720GB	
  of	
  disk	
  space	
  (jpeg	
  compressed)
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Image	
  representaPon

Color layout 

GIST                                      
[Oliva and Torralba’01]

Original image
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Obtaining	
  semanPcally	
  coherent	
  themes
We further break-up the collection into themes of semantically 
coherent scenes:

Train SVM-based classifiers from 1-2k training images 
[Oliva and Torralba, 2001]
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Basic	
  camera	
  moPons	
  

Forward motion Camera rotation Camera pan

Starting from a single image,      find a sequence of 
images to simulate a camera motion:

Wednesday, May 4, 2011



Scene matching with camera view 
transformations: Translation
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Scene matching with camera view 
transformations: Translation

1. Move camera
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Scene matching with camera view 
transformations: Translation

1. Move camera

2. View from the 
virtual camera
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3. Find a match to fill 
the missing pixels

Scene matching with camera view 
transformations: Translation

1. Move camera

2. View from the 
virtual camera
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3. Find a match to fill 
the missing pixels

Scene matching with camera view 
transformations: Translation

1. Move camera

2. View from the 
virtual camera

4. Locally align images
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3. Find a match to fill 
the missing pixels

Scene matching with camera view 
transformations: Translation

1. Move camera

2. View from the 
virtual camera

4. Locally align images

5. Find a seam
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3. Find a match to fill 
the missing pixels

Scene matching with camera view 
transformations: Translation

1. Move camera

2. View from the 
virtual camera

4. Locally align images

5. Find a seam

6. Blend in the gradient domain
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Scene matching with camera view 
transformations: Camera rotation

1. Rotate camera

2. View from the 
virtual camera
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Scene matching with camera view 
transformations: Camera rotation

1. Rotate camera

2. View from the 
virtual camera

3. Find a match to fill-in 
the missing pixels
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4. Stitched rotation

Scene matching with camera view 
transformations: Camera rotation

1. Rotate camera

2. View from the 
virtual camera

3. Find a match to fill-in 
the missing pixels
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4. Stitched rotation

Scene matching with camera view 
transformations: Camera rotation

1. Rotate camera

2. View from the 
virtual camera

3. Find a match to fill-in 
the missing pixels

5. Display on a cylinder
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More “infinite” images – camera translation
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tools for images on an internet 
scale

143
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How many bits do we need?
16 bits

64 bits

32 bits

128 bits

256 bits

512 bits

1024 bits

2048 bits

24576 bits
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Binary codes for global scene 
representation

• Short codes allow for storing millions of 
images

• Efficient search: hamming distance 
(search millions of images in few 
microseconds)

• Internet scale experiments: compute 
nearest neighbors between all images in 
the internet

512 bits

people.csail.mit.edu/torralba/publications/spectralhashing.pdf 
A. Torralba, R. Fergus, and Y. Weiss. Small codes and large databases
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end
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Binary codes for images
• Want images with similar content

to have similar binary codes

• Use Hamming distance between codes
– Number of bit flips
– E.g.:

• Semantic Hashing [Salakhutdinov & Hinton, 
2007]
– Text documents

Ham_Dist(10001010,10001110)=1

Ham_Dist(10001010,11101110)=3

Slide Rob Fergus
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Compact Binary Codes

• Google has few billion images (109)
• Big PC has ~10 Gbytes (1011 bits)
• Codes must fit in memory (disk too slow)
 Budget of 102  bits/image

Slide Rob Fergus
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Compact Binary Codes

• Google has few billion images (109)
• Big PC has ~10 Gbytes (1011 bits)
• Codes must fit in memory (disk too slow)
 Budget of 102  bits/image

• 1	
  Megapixel	
  image	
  is	
  107	
  bits

• 32x32	
  color	
  image	
  is	
  104	
  bits

	
  SemanPc	
  hash	
  funcPon	
  must	
  also	
  reduce	
  
dimensionality

Slide Rob Fergus
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Measuring image similarity with annotated data

Spatial pyramid matching [Lazebnik06, Grauman07]

S(h1,h2) = sum(min(h1,h2))
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Hashing

We consider the following learning problem - given a database of 
images {xi} and a distance function D(i, j) we seek a binary feature 
vector yi = f(xi) that preserves the nearest neighbor relationships 
using a Hamming distance.

Salakhutdinov and Hinton [SIGIR 2007], Shakhnarovich et al [ICCV 2003], Athitsos et al. [ICDE 2008], Grauman et al 
[CVPR 2007], Nascimentio et al [ACM Smyp. App. Computing 2002], Wang [ICME 2006], Wang [PAMI 2008],
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Learning hamming distances with boosting

Shaknarovich and Darrell

Each image is represented by a binary vector with M bits  

x = vector of image features
hi = function with binary output
y = binary vector

Distance between two images is given by a weighted Hamming distance 

y = [h1(x), h2(x), ..., hM(x)]

n=1

M
D(i, j) = Σ  αn|hn(xi) − hn(xj)|

The weights αi and the functions hn(xi) that map the input vector xi into binary 
features are learned.
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Compressing the gist descriptor

GIST                                      
[Oliva and Torralba’01]

Original image
1

0

1

1

1

0

0

1

…
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Ground truth neighbors Gist Gist  (32 – bits)Input image
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