MIT CSAIL

6.869: Advances in Computer Vision

MIT COMPUTER VISION

Lecture 25

Scene recognition

The texture

The detector challenge

By looking at the output of a detector on a random set of images, can you guess which object is it trying to detect?

What object is the detector trying to detect?

By looking at the output of a detector on a random set of images, can you guess which object is it trying to detect?

What object is the detector trying to detect?

By looking at the output of a detector on a random set of images, can you guess which object is it trying to detect?

Top 8 out of 4317 images

P. Felzenszwalb, D. McAllester, and D. Ramanan. CVPR, 2008

Microwave & refrigerator

Top 8 out of 4317 images

What object is hidden behind the red box?

Objects in context

Torralba, Sinha (2001)

Fink & Perona (2003)

B. face feature from raw image a

Kumar, Hebert (2005)

Carbonetto, de Freitas & Barnard (2004)

Sudderth, Torralba, Wilsky, Freeman (2005)

Heitz and Koller (2008)

Torralba Murphy Freeman (2004)

Rabinovich et al (2007)

Desai, Ramanan, and Fowlkes (2009)

Camera

Camera Height

Hoiem, Efros, Hebert (2005)

3D Object

Object World Height

3D Ohia

Horizo

Increasing the context strength

Scenes rule over objects

3D percept is driven by the scene, which imposes its ruling to the objects

Scene views vs. objects

By scene we mean a place in which a human can act within, or a place to which a human being could navigate. Scenes are a lot more than just a combination of objects (just as objects are more than the combinations of their parts). Like objects, scenes are associated with specific functions and behaviors, such as eating in a restaurant, drinking in a pub, reading in a library, and sleeping in a bedroom.

Scene views vs. objects

A photograph of a firehydrant

A photograph of a street

Scene Categorization

Oliva and Torralba, 2001

Coast

Forest Highway

Inside City

Mountain

Open Country

Street

Tall Building

Fei Fei and Perona, 2005

Office

Suburb

15 Scene

Database

Lazebnik, Schmid, and Ponce, 2006

Industrial

Mary Potter (1976)

Mary Potter (1975, 1976) demonstrated that during a rapid sequential visual presentation (100 msec per image), a novel picture is instantly **understood** and observers seem to comprehend a lot of visual information

Demo : Rapid image understanding By Aude Oliva

Instructions: 9 photographs will be shown for half a second each. Your task is to memorize these pictures

Memory Test

Which of the following pictures have you seen ?

If you have seen the image clap your hands once

If you have not seen the image do nothing

Have you seen this picture ?

You have seen these pictures

You were tested with these pictures

The gist of the scene

In a glance, we remember the meaning of an image and its global layout but some objects and details are forgotten

Which are the important elements?

Ceiling	Ceiling Lamp	wall
_ Door Door	Painting mirror	painting
Door Wall Door Wall Door Wall Door	wall	wall Lamp
Floor	Fireplace armchair armchair	phone Bed alarm
	amenan	Side-table
	Coffee table	carpet

Different content (i.e. objects), different spatial layout

Which are the important elements?

cabinets ceiling cabinets	cabinets ceiling cabinets	ceiling
window window window seat seat seat seat seat seat seat seat seat seat	window seat seat window seat seat seat seat seat seat seat seat	wall screen seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat

Similar objects, and similar spatial layout

Different lighting, different materials, different "stuff"

What can be an alternative to objects?

Scene emergent features

"Recognition via features that are not those of individual objects but "emerge" as objects are brought into relation to each other to form a scene." – Biederman 81

FIG. 8.23. Downtown Buffalo. Drawn by Robert Mezzanotte by converting objects in a photograph to basic rectilinear or cylindrical bodies.

FIG. 8.24. Office, drawn by Robert Mezzanotte.

From "on the semantics of a glance at a scene", Biederman, 1981

Examples of scene emergent features

Suggestive edges and junctions

Simple geometric forms

Oliva & Torralba, 2001

Textures ~ Sketch

Blobs

Ensemble statistics

Ariely, 2001, Seeing sets: Representation by statistical properties Chong, Treisman, 2003, Representation of statistical properties Alvarez, Oliva, 2008, 2009, Spatial ensemble statistics

Conclusion: observers had more accurate representation of the mean than of the individual members of the set.

Global image descriptors

Global image descriptors

Bag of words

Sivic et. al., ICCV 2005 Fei-Fei and Perona, CVPR 2005

Non localized textons

Walker, Malik. Vision Research 2004

Spatially organized textures

M. Gorkani, R. Picard, ICPR 1994 A. Oliva, A. Torralba, IJCV 2001

R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age, *ACM Computing Surveys*, vol. 40, no. 2, pp. 5:1-60, 2008.

Gist descriptor

Oliva and Torralba, 2001

- Apply oriented Gabor filters over different scales
- Average filter energy in each bin

- 8 orientations
- 4 scales
- <u>x 16</u> bins
- 512 dimensions

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004; Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

Gist descriptor

Gist descriptor

Example visual gists

Global features (I) ~ global features (I')

Global features

"The viewer is presented with a 'potential image', that is, a complex multiplicity of possible images, none of which ever finally resolves".

Textons

Vector of filter responses at each pixel

Kmeans over a set of vectors on a collection of images

Filter bank

Malik, Belongie, Shi, Leung, 1999

Textons

K-means (100 clusters)

Malik, Belongie, Shi, Leung, 1999

Bag of words

Spatially organized textures

7 8 0 0 0 2 0 0 7 0 4 0 20 0 0 0 11 1 0 2 14 0 3 3 3 0 12 4 0 0 4 16 3 6 0 11

Bag of words & spatial pyramid matching

Sivic, Zisserman, 2003. Visual words = Kmeans of SIFT descriptors

S. Lazebnik, et al, CVPR 2006

Histogram Intersection

Histogram intersection

$$\mathcal{I}(H(\mathbf{X}), H(\mathbf{Y})) = \sum_{j=1}^{r} \min(H(\mathbf{X})_j, H(\mathbf{Y})_j)$$

 \mathbf{n}

Adapted from Kristen Grauman

SVM

A Support Vector Machine (SVM) learns a classifier with the form:

$$H(x) = \sum_{m=1}^{M} a_m y_m k(x, x_m)$$

Where $\{x_m, y_m\}$, for $m = 1 \dots M$, are the training data with x_m being the input feature vector and $y_m = +1, -1$ the class label. $k(x, x_m)$ is the kernel and it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different family of decision boundaries:

- Linear kernel: $k(x, x_m) = x^T x_m$
- Radial basis function: $k(x, x_m) = exp(-|x x_m|^2/\sigma^2)$.
- Histogram intersection: k(x,x_m) = sum_i(min(x(i), x_m(i)))

Learning Scene Categorization

The 15-scenes benchmark

Oliva & Torralba, 2001 Fei Fei & Perona, 2005 Lazebnik, et al 2006

Office

Skyscrapers

Forest

Living room

Industrial

Street

Highway

Mountain Open country

Store

Scene recognition

SUN Dataset Project

We want:

- Large variety of scene categories (we want them all)
- Lots of objects categories
- Multi-object scenes

1. We take all scene words from a dictionary

2. We download images and clean the categories

3. We segment all the images

Krista Ehinger

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010

Jianxiong Xiao

IIICK

397 Well-sampled Categories

Performance with 400 categories

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010

Training images

Abbey

Airplane cabin

Airport terminal

Alley

Amphitheater

Training images Correct classifications

Abbey

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010

Training images **Correct classifications Miss-classifications**

Abbey

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010

Categories or a continuous space?

Check poster by Malisiewicz, Efros

Categories or a continuous space?

From the city to the mountains in 10 steps

Objects in context

Is local information enough?

Is local information even enough?

Is local information even enough?

The system does not care about the scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

We know there is no keyboard present in this scene

The multiple personalities of a blob

The multiple personalities of a blob

A 13 C

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

The importance of context

- Cognitive psychology
 - Palmer 1975
 - Biederman 1981

- Computer vision
 - Noton and Stark (1971)
 - Hanson and Riseman (1978)
 - Barrow & Tenenbaum (1978)
 - Ohta, kanade, Skai (1978)
 - Haralick (1983)
 - Strat and Fischler (1991)
 - Bobick and Pinhanez (1995)
 - Campbell et al (1997)

Class	Context elements	Operator
SKY	ALWAYS	ABOVE-HORIZON
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY ∧ RGB-IS-AVAILABLE	BLUE
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY ∧	WHITE
	RGB-IS-AVAILABLE	
SKY	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGE-IS-UNDEFINED
SKY	CAMERA-IS-HORIZONTAL	NEAR-TOP
SKY	CAMERA-IS-HORIZONTAL A	ABOVE-SKYLINE
	CLIQUE-CONTAINS(complete-sky)	
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-INTENSITY
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-TEXTURE
SKY	RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky)	SIMILAR-COLOR
GROUND	CAMERA-IS-HORIZONTAL	HORIZONTALLY-STRIATED
GROUND	CAMERA-IS-HORIZONTAL	NEAR-BOTTOM
GROUND	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGES-FORM-HORIZONT
GROUND	DENSE-RANGE-IS-AVAILABLE	DENSE-RANGES-FORM-HORIZONTA
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-SKYLINE
	CLIQUE-CONTAINS(complete-ground)	
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-GEOMETRIC-HORIZON
	CLIQUE-CONTAINS(geometric-horizon) </td <td></td>	
	- CLIQUE-CONTAINS(skyline)	
GROUND	TIME-IS-DAY	DARK

Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

Biederman's violations (1981):

- 1. Support (e.g., a floating fire hydrant). The object does not appear to be resting on a surface.
- Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
 violation appear to be transparent or passing through another object.
- 3. Probability (e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.
- Position (e.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur in that scene, but it is unlikely to be in that particular position.
- 5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large or too small relative to the other objects in the scene.

CONDOR system

Strat and Fischler (1991)

Class	Context elements	Operator
SKY	ALWAYS	ABOVE-HORIZON
SKY	SKY-IS-CLEAR ^ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-CLEAR TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-CLEAR ∧ TIME-IS-DAY ∧ RGB-IS-AVAILABLE	BLUE
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	BRIGHT
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY	UNTEXTURED
SKY	SKY-IS-OVERCAST ∧ TIME-IS-DAY ∧	WHITE
	RGB-IS-AVAILABLE	
SKY	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGE-IS-UNDEFINED
SKY	CAMERA-IS-HORIZONTAL	NEAR-TOP
SKY	CAMERA-IS-HORIZONTAL \land	ABOVE-SKYLINE
	CLIQUE-CONTAINS(complete-sky)	
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-INTENSITY
SKY	CLIQUE-CONTAINS(sky)	SIMILAR-TEXTURE
SKY	RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky)	SIMILAR-COLOR
GROUND	CAMERA-IS-HORIZONTAL	HORIZONTALLY-STRIATED
GROUND	CAMERA-IS-HORIZONTAL	NEAR-BOTTOM
GROUND	SPARSE-RANGE-IS-AVAILABLE	SPARSE-RANGES-FORM-HORIZONT
GROUND	DENSE-RANGE-IS-AVAILABLE	DENSE-RANGES-FORM-HORIZONTA
GROUND	CAMERA-IS-HORIZONTAL \land	BELOW-SKYLINE
	CLIQUE-CONTAINS(complete-ground)	
GROUND	CAMERA-IS-HORIZONTAL A	BELOW-GEOMETRIC-HORIZON
	CLIQUE-CONTAINS(geometric-horizon) \land	
GROUND	TIME-IS-DAY	DARK
Guzman (SEE) 1968 Brooks (ACRONYM 1979		
 Noton and Stark 1971 Marr 1982 		

- Hansen & Riseman (VISIONS), 1978
- Barrow & Tenenbaum 1978

- Ohta & Kanade, 1978
- Yakimovsky & Feldman, 1973

An Age of Scene Understanding

(b) Top-down process [Ohta & Kanade 1978]

(c) Result

- Guzman (*SEE*), 1968
- Noton and Stark 1971
- Hansen & Riseman (VISIONS), 1978
- Barrow & Tenenbaum 1978

- Brooks (ACRONYM), 1979
- Marr, 1982
- Ohta & Kanade, 1978
- Yakimovsky & Feldman, 1973

Context models

Objects are correlated via the scene

Dependencies among objects

Context models

Dependencies among objects

Global precedence

Spart P

Forest Before Trees: The Precedence of Global Features in Visual Perception Navon (1977)

Global and local representations

Global and local representations

An integrated model of Scenes, Objects, and Parts

Context-based vision system for place and object recognition

- Hidden states = location (63 values)
- Observations = v_t^G (80 dimensions)
- Transition matrix encodes topology of environment
- Observation model is a mixture of Gaussians centered on prototypes (100 views per place)

Our mobile rig

Torralba, Murphy, Freeman, Rubin. 2003
Place recognition demo

Identification and categorization of known places

An integrated model of Scenes, Objects, and Parts

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.

Application of object detection for image retrieval

Results using the keyboard detector alone

Application of object detection for image retrieval

Object retrieval: scene features vs. detector

Results using the keyboard detector alone

Results using both the detector and the global scene features

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.

Localizing the object

An integrated model of Scenes, Objects, and Parts

Predicting object location

Predicting location

Torralba & Sinha, 2001; Murphy, Torralba, Freeman, 2003; Hoeim, Efros, Hebert. 2006

screens

keyboard

car

pedestrian

An integrated model of Scenes, Objects, and Parts

We train a multiview car detector.

$$p(d | F=1) = N(d | \mu_1, \sigma_1)$$

 $p(d | F=0) = N(d | \mu_0, \sigma_0)$

An integrated model of Scenes, Objects, and Parts

a) input image

b) car detector output

c) location priming

c) integrated model output

Two tasks

A car out of context ...

A car out of context ...

3d Scene Context

Hoiem, Efros, Hebert ICCV 2005

3d Scene Context

Hoiem, Efros, Hebert ICCV 2005

3D City Modeling using Cognitive Loops

Figure 6. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (c) temporal integration on reconstructed map, (d) estimated 3D car locations, rendered back into the original image.

N. Cornelis, B. Leibe, K. Cornelis, L. Van Gool. CVPR'06

Context models

Objects are correlated via the scene

Dependencies among objects

1) Generate candidate objects (run a detector, or segmentation)

M possible object labels N regions

Label: $c_k = [1...M]$ with k = [1...N]Scores: s_k = vector length M

2) For each candidate, get a list of possible interpretations with their probabilities

 $p(c_k = m \mid s_k)$

 Goal: to assign labels c_k to each candidate so that they are in contextual agreement. We want to optimize the joint probability of all the labels:

$$p(c_1 = m_1, ..., c_N = m_N | s_1, ..., s_N)$$

Goal: to assign labels c_k to each candidate so that they are in contextual agreement.

M possible object labels N regions

Label: $c_k = [1...M]$ with k = [1...N]Scores: s_k = vector length M

We want to optimize the joint probability of all the labels:

 $p(c_1 = m_1, ..., c_N = m_N | s_1, ..., s_N)$

Solution 1: Assume objects are independent:

ng
$$p(c_1=m_1,..., c_N=m_N|s_1,..., s_N) = \prod_{i=1...N} p(c_i=m_i|s_i)$$

Independent model

Problem: it does not makes use of the correlation between objects in the world. This is fine if the detectors are perfect.

Goal: to assign labels c_k to each candidate so that they are in contextual agreement.

M possible object labels N regions

Label: $c_k = [1...M]$ with k = [1...N]Scores: s_k = vector length M

We want to optimize the joint probability of all the labels:

 $p(c_1 = m_1, ..., c_N = m_N \mid s_1, ..., s_N)$

Solution 2: Assume objects are fully dependent:

 $p(c_1=m_1,..., c_N=m_N|s_1,..., s_N) =$

=

 $\frac{p(s_1,...,s_N|c_1=m_1,...,c_N=m_N) p(c_1=m_1,...,c_N=m_N)}{Z(s_1,...,s_N)}$

$$\prod_{i=1...N} p(s_i | c_i = m_i) p(c_1 = m_1, ..., c_N = m_N)$$

 $Z(s_1, \dots, s_N) = \sum_{\text{All } [c_1, \dots, c_N]} \prod_{\text{assignments}} p(s_i | c_i = m_i) p(c_1 = m_1, \dots, c_N = m_N)$

 $Z(S_1,\ldots,S_N)$

Problem: learning $p(c_1=m_1,...,c_N=m_N)$ will need a lot of data. Recognition can be slow.

c3

Goal: to assign labels c_k to each candidate so that they are in contextual agreement.

M possible object labels N regions

Label: $c_k = [1...M]$ with k = [1...N]Scores: s_k = vector length M

We want to optimize the joint probability of all the labels:

 $p(c_1 = m_1, ..., c_N = m_N \mid s_1, ..., s_N)$

Solution 3: Approximated model of dependencies:

$$p(c_1 = m_1, ..., c_N = m_N | s_1, ..., s_N) = \prod_{i=1...N} p(s_i | c_i = m_i) p(c_1 = m_1, ..., c_N = m_N) Z(s_1, ..., s_N)$$

$$p(c_1=m_1,\ldots,c_N=m_N) = exp(\sum_{i,j=1\ldots N} \Phi(c_i=m_i, c_j=m_j))$$

 $\Phi(c_i=m_i, c_j=m_j) = co-ocurrence matrix on training set (count how many times two objects appear together).$

Problem: learning $p(c_1=m_1,...,c_N=m_N)$ will be easier, but recognition may still be slow.

 $\Phi(c_i=m_i, c_j=m_j) = \text{co-ocurrence matrix on}$ training set (count how many times two objects appear together).

MSRC training data

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007

135 A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007

Objects in context

Torralba, Sinha (2001)

Fink & Perona (2003)

B. face feature from raw image a

Kumar, Hebert (2005)

Carbonetto, de Freitas & Barnard (2004)

Sudderth, Torralba, Wilsky, Freeman (2005)

Heitz and Koller (2008)

Torralba Murphy Freeman (2004)

Rabinovich et al (2007)

Desai, Ramanan, and Fowlkes (2009)

Camera

Camera Height

Hoiem, Efros, Hebert (2005)

3D Object

Object World Height

3D Ohia

Horizo

Object-Object Relationships

- Fink & Perona (NIPS 03)
- Use output of boosting from other objects at previous iterations as input into boosting for this iteration

Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows of raw images for legibility). The windows' scale is defined by the detected object size and by the map mode (local or contextual). C. faces are detected using face detection maps H^{Face}, exploiting the fact that faces tend to be horizontally aligned.

Pixel labeling using MRFs

Enforce consistency between neighboring labels, and between labels and pixels

$$P(L,x) = P(L)P(x|L) = \left[\frac{1}{Z}\prod_{i}\prod_{j\in N_i}\psi_{ij}(L_i,L_j)\right]\left[\prod_{i}P(x_i|L_i)\right]$$

Carbonetto, de Freitas & Barnard, ECCV'04

Beyond nearest-neighbor grids

- Most MRF/CRF models assume nearestneighbor graph topology
- This cannot capture long-distance correlations

Dynamically structured trees

• Each node pick its parents (Storkey& Williams, PAMI'03)

• 2D SCFGs

(Pollak, Siskind, Harper & Bouman ICASSP'03)

Object-Object Relationships

Use latent variables to induce long distance correlations between labels in a Conditional Random Field (CRF)

He, Zemel & Carreira-Perpinan (04)

Object-Object Relationships

[Kumar Hebert 2005]

3d Scene Context

Using stuff to find things

Heitz and Koller, ECCV 2008

In this work, there is not labeling for stuff. Instead, they look for clusters of textures and model how each cluster correlates with the target object.

What where and who? Classifying events by scene and object recognition

L-J Li & L. Fei-Fei, ICCV 2007

Slide by Fei-fei

L.-J. Li & L. Fei-Fei ICCV 2007

Grammars

[Ohta & Kanade 1978]

- Guzman (SEE), 1968
- Noton and Stark 1971
- Hansen & Riseman (*VISIONS*), 1978
- Barrow & Tenenbaum 1978
- Brooks (ACRONYM), 1979
- Marr, 1982
- Yakimovsky & Feldman, 1973

Grammars for objects and scenes

S.C. Zhu and D. Mumford. A Stochastic Grammar of Images. Foundations and Trends in Computer Graphics and Vision, 2006.

Who needs context anyway? We can recognize objects even out of context

Banksy