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The detector challenge
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By looking at the output of a detector on a random set
of images, can you guess which object is it trying to detect?



What object is the detector trying to detect?
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By looking at the output of a detector on a random set
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Microwave Search

Top 8 out of 4317 images

P. Felzenszwalb, D. McAllester, and D. Ramanan. CVPR, 2008



Microwave & refrigerator Search ‘

Top 8 out of 4317 images



What object is hidden behind the red box?







ODbjects In context

Torralba, Sinha (2001) Torralba Murphy Freeman (2004)

Fink & Perona (2003)
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Increasing the context strength
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Scenes rule over objects
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3D percept is driven by the scene, which imposes its ruling to the objects



Scene views vs. objects

By scene we mean a place in which a human can act within, or a place to which a
human being could navigate. Scenes are a lot more than just a combination of
objects (just as objects are more than the combinations of their parts). Like
objects, scenes are associated with specific functions and behaviors, such as
eating in a restaurant, drinking in a pub, reading in a library, and sleeping in a
bedroom.



Scene views vs. objects

tograph of a firehydrant A photograph of a street
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Scene Categorization

Oliva and Torralba, 2001

Coast Forest Highway Inside Mountain Open Street B TaII
City Country Building

Fel Fei and Perona 2005

Bedroom  Kitchen  Living Room Office N

Lazebnlk Schmld and Ponce, 2006

15 Scene
Database

Industrial " Store



Mary Potter (1976)

Mary Potter (1975, 1976) demonstrated that during a rapid sequential
visual presentation (100 msec per image), a novel picture is instantly
understood and observers seem to comprehend a lot of visual
information




Demo : Rapid image understanding

By Aude Oliva

Instructions: 9 photographs will be shown for
half a second each. Your task is to memorize
these pictures
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Memory Test

Which of the following pictures have you seen ?

If you have seen the image
clap your hands once

If you have not seen the image
do nothing



Have you seen this picture ?






Have you seen this picture ?






Have you seen this picture ?






Have you seen this picture ?






Have you seen this picture ?






Have you seen this picture ?






You have seen these pictures




The gist of the scene

In a glance, we remember the meaning of an
Image and its global layout but some
objects and details are forgotten




Which are the important elements?

Ceiling
Light
Door Door

oor
Wall Door Wall Door

Floor

mirror

armchair

Celling
Lamp

Painting  yirror

wall

_Fireplace _
armchair

Coffee table

painting

wall

Bed

wall

Lamp

phone
alarm

Side-table

carpet

Different content (i.e. objects), different spatial layout




Which are the important elements?

cabinets

window

ceiling

window

cabinets

window

seat seat

seat

seat
seat

seat

seat
seat

cabinets

window

seat

ceiling _
cabinets
seat seat window
seat
seat
seat

ceiling
wall
seat seat
sea seat
seat seat seat seat

Similar objects, and similar spatial layout

Different lighting, different materials, different “stuff”




What can be an alternative to
objects?



Scene emergent features

“Recognition via features that are not those of individual objects but “emerge” as
objects are brought into relation to each other to form a scene.” — Biederman 81
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FIG. 8.23. Downtown Buffalo. Drawn by Robert Mezzanotte by converting
objects in a photograph to basic rectilinear or cylindrical bodies.
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FIG. B.24, Office, drawn by Robert Mezzanotie.

From “on the semantics of a glance at a scene”, Biederman, 1981



Examples of scene emergent features
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Suggestive edges and junctions Simple geometric forms

Brunet & Potter, 1969
Oliva & Torralba, 2001

Blobs Textures ~ Sketch



Ensemble statistics

Ariely, 2001, Seeing sets: Representation by statistical properties
Chong, Treisman, 2003, Representation of statistical properties
Alvarez, Oliva, 2008, 2009, Spatial ensemble statistics

Set

Conclusion: observers had
Test more accurate representation of
the mean than of the individual
members of the set.




Global image descriptors



Global image descriptors

Bag of words Spatlally organized textures
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M. Gorkani, R. Picard, ICPR 1994
A. Oliva, A. Torralba, IJCV 2001

Sivic et. al., ICCV 2005

Fei-Fei and Perona, CVPR 2005 level 0 level 1 level 2
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S. Lazebnik, et al, CVPR 2006

R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age,
ACM Computing Surveys, vol. 40, no. 2, pp. 5:1-60, 2008.



Gist descriptor

Oliva and Torralba, 2001

" .... « Apply oriented Gabor filters
over different scales

___i .--. - Average filter energy
l l.- In each bin
emime EEIEIES

orientations
scales
X 16 bins

!!Il BRI o mensons

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004;
Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...
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Gist descriptor

Steerable
pyramid




Gist descriptor

Steerable

V = {energy at each orientation and
scale} = 6 x 4 dimensions
= 80 features
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Oliva, Torralba. 1JCV 2001



Oliva & Torralba (2001)



Global features

“The viewer is presented with a ‘potential image’, that is, a complex multipli_éity of possible images,
none of which ever finally resolves”.




Textons

Kmeans over a set of

_ vectors on a collection
Vector of filter responses of images

at each pixel

I >

Filter bank

Malik, Belongie, Shi, Leung, 1999



Textons

Filter bank K-means (100 clusters)

Malik, Belongie, Shi, Leung, 1999

best match

# occurences @

in image
universal textons

%2 = 417 x 103

# occurences
inimage

label = beach universal textons Wa|ke|’, Ma“k, 2004



Bag of words

Bag of words model
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Bag of words &
spatial pyramid matching

Sivic, Zisserman, 2003. Visual words = Kmeans of SIFT descriptors

S. Lazebnik, et al, CVPR 2006



Histogram Intersection

Histogram

intersection A (H(X), H(Y)) — Z min (H(X)ja H(Y)j)

Adapted from Kristen Grauman



SVM

A Support Vector Machine (SVM) learns a classifier with the form:

M

H(x) = Z O Ym K (T, )

m—1

Where {x., Y.}, form =1 .. .M, are the training data with x,, being
the input feature vector and y,, = +1,-1 the class label. k(x, x,,) is the kernel and
it can be any symmetric function satisfying the Mercer Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, X.,) = X X,
 Radial basis function: k(x, x,) = exp(—|x = X,,|?/5?).
 Histogram intersection: k(x,x.,) = sumi(min(x(i), X.,(i)))



Learning Scene Ca
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The 15-scenes benchmark

I

Oliva & Torralba, 2001
Fei Fei & Perona, 2005
Lazebnik, et al 2006

Kitchen

Store



store
livingroom
kitchen

industrial - -

bedroom

office [ - :

tall building
street

open country
mountain
inside city
highway

forest |
coast [
suburb |

Scene recognition

100 training samples per class

SVM classifier in both cases

- -Pyramid matching |
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SUN Dataset Project

We want:

 Large variety of scene categories (we want them all)
* Lots of objects categories

« Multi-object scenes

1. We take all scene words
from a dictionary

% WordNet

chhonary

2. We download images 3. We segment all
and clean the categories the images

"

Google

Image Search

altavista

flickr

Krista Ehinger  Jianxiong Xiao

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010


http://av.rds.yahoo.com/_ylt=A9ibyK4d.QpFu5UA7EFuCqMX;_ylu=X3oDMTBvcjFrYm5wBHBndANhdl9pbWdfaG9tZQRzZWMDbG9nbw--/SIG=11d79a3nr/EXP=1158433437/**http://www.altavista.com/
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Performance with 400 categories
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Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Training images

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Training images Correct classifications

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Training images Correct classifications Miss-classifications
Monastery Cathedral Castle

Airplane cabin

Subway | Stage Restaurant

Airport terminal

Alley

- Athletic
field

Harbor Coast

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; maybe 2010



Categories or a continuous space?

Check poster by Malisiewicz, Efros



Categories or a continuous space?

From the city to the mountains in 10 steps
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Objects in context




Is local information enough?
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Is local information even enough?



Is local information even enough?

¢ Information Contextual features

Distance



The system does not care about the
scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

... even if there is one indeed.



The multiple personalities of a blob



The multiple personalities of a blob




ABBC









Look-Alikes by Joan Steiner
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The importance of context

Cognitive psychology
— Palmer 1975
— Biederman 1981

Computer vision

— Noton and Stark (1971)

— Hanson and Riseman (1978)
— Barrow & Tenenbaum (1978)
— Ohta, kanade, Skai (1978)

— Haralick (1983)

— Strat and Fischler (1991)

— Bobick and Pinhanez (1995)
— Campbell et al (1997)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-1S-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-1S-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-1S-DAY BRIGHT
SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE
RGB-I1S-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-15-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT!
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE-CONTAINS({complete-ground)
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUECONTAINS(geometricfhorizon) A
- CLIQUE-CONTAINS(skyline)
GROUND TIME-IS-DAY DARK




Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

TYPE]

Biederman’s violations (1981):

I. Support (e.g., a floating fire hydrant), The object does not appear to be resting on a surface.
2. Interposition (e.g., the background appearing through the hydrant). The objects undergoing this

#

violation appear to be transparent or passing through another object.

3. Probability {c.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.

4. Pasition (¢.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur
in that scene, but it is unlikely to be in that particular position.

5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large
or too small relative to the other objects in the scene.

—




CONDOR system

Strat and Fischler (1991)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-1S-OVERCAST A TIME-IS-DAY A WHITE
RGB-15-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-1S-AVAILABLE n CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT!/
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE—CONTAINS(compIete—ground]
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
— CLIQUE-CONTAINS(skyline)
GROUND TIME-1S-DAY DARK
Guzman (SEE), 1968 *  Brooks (ACRONYM), 1979
Noton and Stark 1971  Marr, 1982
Hansen & Riseman (VISIONS), 1978 « Ohta & Kanade, 1978

Barrow & Tenenbaum 1978 ¢

Yakimovsky & Feldman, 1973



An Age of Scene Understanding

(a) Bottom-up process (b) Top-down process (c) Result

[Ohta & Kanade 1978]

Guzman (SEE), 1968 * Brooks (ACRONYM), 1979
Noton and Stark 1971 e Marr, 1982

Hansen & Riseman  Ohta & Kanade, 1978
(VISIONS), 1978 « Yakimovsky & Feldman, 1973

Barrow & Tenenbaum 1978



objects image

p(O | 1) a p(l|O) p(O)

O\

Object model Context model
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Object model Context model

Full joint
Scene model Approx. joint
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p(O | 1) a p(l|O) p(O)

O\

Object model Context model
Full joint l \
Scene model Approx. joint

p(O) = X IIp(O1|S=s) p(S=s)

street




p(O | 1) a p(l|O) p(O)

O\

Object model Context model

Full joint
Scene model Approx. joint



Context models

@

Independent model

Objects are correlated via Dependencies among objects
the scene




Context models

Independent model

Dependencies among objects

102
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b Global precedence

L% Forest Before Trees: The Precedence of Global Features in Visual
3 Perception
o Navon (1977)
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Global and local representations

building

=g Urban street scene

sidewalk

]




Global and local representations

building

=g Urban street scene

[ Image index: Summary statistics,
\ configuration of textures

histogram =P Urban street scene

-

features




An integrated model of Scenes,
Objects, and Parts

Scene
S

Context,
Scene recognition

@ anr

> 4__>‘\\\
/ﬁ N @
Scene
@ features
M=4|

Multiclass and pose invariant
object detection,




Context-based vision system for
place and object recognition

We use 17 annotated sequences for training

= i i e

Office 610 Corridor 6b Corridor 6¢ Office 617

 Hidden states = location (63 values)
Observations = v&, (80 dimensions)
Transition matrix encodes topology of environment

Observation model is a mixture of Gaussians centered on
prototypes (100 views per place)

Torralba, Murphy, Freeman and Rubin. ICCV 2003



Our mobile rig

Torralba, Murphy, Freeman, Rubin. 2003



Place recognition demo
E)—C(0

t=930 truth = 400-flG-visionArea

/ \

Input image (120x160) Shows the category and the identity of
The place when the system is confident.
Runs at 4 fps on Matlab.



|dentification and categorization of known places

»
» W«

Building 400 Outdoor Al-lab

A4

Thistle corridor
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200 side street

Draper street
200 out street
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kitchen floor &
elevator 200/6
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An integrated model of Scenes,
Objects, and Parts

Scene

P(N.y | S = street)

01 5 N @
P(Ngy | S = park)

] Scene
gist
| features

‘01 5 N

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.



Application of object detection for
Image retrieval

Results using the keyboard detector alone




Application of object detection for
Image retrieval

Results using the key o9|
B .
¥ . ] ; +? : :
e *i 01 + e'Detector: S
O PR o
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Results using both th S I IS SO S U S N
il
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o1rfF SR LR RECIERY global (auc=0.90)| -
3 3 both (auc=0.91) |
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false alarm rate



Object retrieval: scene features vs. detector

Results usmg the keyboard detector alone

0.95
09 r
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055 ® @cttle
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Area under ROC retrieval set

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.



Localizing the object
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An integrated model of Scenes,
Objects, and Parts

Scene
S

Scene
gist
features



Predicting object location

Train_in.g set (cars) Z|g = Z (A, g+b,) w.(g)




Predicting location

Predicted Y

Predicted X

L

Torralba & Sinha, 2001; Murphy, Torralba, Freeman, 2003; Hoeim, Efros, Hebert. 2006



screens . keyboard

car pedestrian



An integrated model of Scenes,
Objects, and Parts

We train a multiview car detector.

p(d|F=1) =N(d | py, o)
p(d | F=0) = N(d | po, o)




An integrated model of Scenes,
Objects, and Parts

Scene

Scene
gist
features




a) input image b) car detector output c) location priming c) integrated model output




Two tasks

Object localization
1{}{} T I T T T T T
; - N ; . | ====== Detector alone
& ' ;| e |ntegrated model

.| == == |ntegrated model

with context oracle

Precision
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Object presence detection
—— ' ’




A car out of context ...
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A car out of context ...
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3d Scene Context

Image
Horizon\ Plane
Position ‘ Camera

Object Image
Height

Camera
Height

3D Object &

Object World -
Height '

Object World
Height

Image World

Hoiem, Efros, Hebert ICCV 2005



3d Scene Context

meters

20.3 0 20.3
meters

Hoiem, Efros, Hebert ICCV 2005



3D City Modeling using Cognitive Loops

(a) (b) (c) (d)
Figure 6. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (c) temporal
integration on reconstructed map. (d) estimated 3D car locations, rendered back into the original image.

N. Cornelis, B. Leibe, K. Cornelis, L. Van Gool. CVPR'06



Context models

@

Independent model

Objects are correlated via Dependencies among objects

the scene



1) Generate candidate objects
(run a detector, or segmentation)

M possible object labels
N regions

Label: c, = [1...M] with k=[1...N]
Scores: s, = vector length M

2) For each candidate, get a list of
possible interpretations with
their probabilities

p(cy=m|sy)

3) Goal: to assign labels c, to each
candidate so that they are in
contextual agreement. We
want to optimize the joint
probability of all the labels:

P(CL =My, .oy Cy =My Sy, -y Sy)

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



Goal: to assign labels ¢, to each We want to optimize the joint probability of
candidate so that they are in all the labels:

contextual agreement.

M possible object labels
N regions

p(c;=my, ...,Cy=My| Sy, ---s SN)

Label: ¢, = [1...M] with k = [1...N] Solution 1: Assume objects are
Scores: s, = vector length M

independent:

Uding p(c,=my,..., C\=My|Sy,..., S\) :i:HNp(Ci:mﬂsi)

() @ @

Independent model

Problem: it does not makes use of the
correlation between objects in the world.
This is fine if the detectors are perfect.
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Goal: to assign labels ¢, to each We want to optimize the joint probability of
candidate so that they are in all the labels:

contextual agreement.

M possible object labels
N regions

p(c;=my, ...,Cy=My| Sy, ---s SN)

Label: ¢, = [1...M] with k = [1..\] Solution 2: Assume objects are fully
Scores: s, = vector length M dependent: @

ilding p(Cy=my,..., C\=My|Sy,..., S\) = @‘@

h _ —- _p(Sl,...,SNlclzml,...,CN:mN) p(Clzml,...,CN:mN)

Z(Sq,-.-Sy)
i:ENp(Silci:mi) p(C;=my,....C=my)
Z(Sq,-.-Sy)

Z(sy,...8) = 22 T1 p(slc=m) p(c;=m,,...,cy=my)

All [c4,...,c\] assignments

Problem: learning p(c;=mj,...,cy=my) will
need a lot of data. Recognition can be slow.
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Goal: to assign labels c, to each
candidate so that they are in
contextual agreement.

M possible object labels
N regions

Label: ¢, = [1...M] with k =[1...N]
Scores: s, = vector length M

We want to optimize the joint probability of
all the labels:

p(c;=my, ...,Cy=My| Sy, ---s SN)

Solution 3: Approximated model of
dependencies:

i ' N p(C]_:m]_s---; Cszlel,..., SN) =

i:ng(S‘IC‘:mi) p(c;=mjy,...,.C=My)

Z(Sq,-..Sy)

p(c,=my,...,.Cy=my) = eXp(El.C.I_)N(CFmi, Cj:mj))

®(c;i=m;, ¢;=m;) = co-ocurrence matrix on
training set (count how many times two
objects appear together).

Problem: learning p(c,=mg,...,cy=my) will

be easier, but recognition may still be slow.
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MSRC training data

®(c;=m;, ¢;=m,) = co-ocurrence matrix on  buildinge Ll g

1118933823153 147 7 3 |

training set (count how many times two teef AL B L
) cow -
objects appear together). sheep EEE TS S
333943° 4 8615184 .3
gemplane 6 14 8 1515
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suDING [l TREE BUILDING

BUILDING
BUILDING
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ODbjects In context

Torralba, Sinha (2001) Torralba Murphy Freeman (2004)

Fink & Perona (2003)

A eve C. face I %
feature feature - -
from from face -
-l'a“' i l 1 r'
image [ “image Sudderth, Torralba,
Wilsky, Freeman (2005)
B. face D. eye
feature feature i
from from eye
raw detection
ymase image
. Herizon g‘::‘.?:
Kumar, Hebert (2005) 3 - I >




Object-Object Relationships

 Fink & Perona (NIPS 03)

Use output of boosting from other objects at previous
Iterations as input into boosting for this iteration

A eve C. face E. mouth
feature feature feature

from from face from eye

raw detection detection
Hhage image image
B. face D. eve F. face Shea B (
feature feature feature A ? \

from from eve from month = | §

. _ - " [ | ‘ul ¥
Taw detection df:'tectlml F$ u #i |
Hnase image lmage A%l ¥

- =

Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows
of raw i1mages for legibility). The windows” scale 1s defined by the detected object
size and by the map mode (local or contextual). C. faces are detected using face
detection maps H %, exploiting the fact that faces tend to be horizontally aligned.



Pixel labeling using MRFs

Enforce consistency between neighboring
labels, and between labels and pixels

P(L,z) = P(L)P(z|L) = [—H H %J(LZ,L )][H P(x;|L;)]

Carbonetto, de Freitas & Barnard, ECCV’04



O

Beyond nearest-neighbor grids

e Most MRF/CRF models assume nearest-
neighbor graph topology

 This cannot capture long-distance
correlations

Y T Ty fj____{j____{)
L L L e

i i Y Y Yy
N L L L L

Y P Yy Y oy
L Nt L) ol L




Dynamically structured trees

 Each node pick its parents
(Storkey& Williams, PAMI'03)

= i .-"-:_.55 :
ot By Bl .

]

Rl

’;1

i

1oing onnetsnne

‘ ll

nl
i
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(Pollak, Siskind, Harper & Bouman ICASSP’03)




Object-Object Relationships

Use latent variables to induce long distance correlations
between labels in a Conditional Random Field (CRF)

: (Global
R.E'EID:'.:'I]. Features
F-f atures BT
o0 - 1
Local 'vx\ C}C} e S~ s
Classifier \\ \x o e
A % ! = g I.:.
QDOOo0OQEoOQO VoL CUodeo0oR o =
000000000000 D000 000000 TA-EE YRy W ”
OooCoRoOOQDo00 Ej_igooalg{g_oooag Hidden T e L -
olooolc000oTOT D0 00 0{0iC0I000Q! Variables ;
00ooOD000000 sl RelfsEolloleRoHeReRals] R —.
0OQooOoODOO0000 oood0dooooool
OOoooDO000000 DOO0000T0000
DOGnOO00ODOn o000 BnO00On Label
Modes
Input Image Label Field EEM

He, Zemel & Carreira-Perpinan (04)



Object-Object Relationships

[Kumar Hebert 2005]



3d Scene Context

Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid

Support? [Hoiem, Efros, Hebert ICCV 2005]




Using stuff to find things

Heitz and Koller, ECCV 2008

In this work, there is not labeling for stuff. Instead, they look for clusters of
textures and model how each cluster correlates with the target object.




W @ and @ Classifying

even scene and object recognition

event: Rowing
] , (.

Athlete i

;hlkwwnglxﬁn
> Water |

=\

Hoad of the Charles, Octoker, 2003 — Head of the Charlem, October, 2003 o

scene: Lake

L-JLi& L. Fei-Fei, ICCV 2007
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| scene:Bocce court

Slide by Fei-fei L.-J. Li & L. Fei-Fei ICCV 2007



Grammars

Soena Tl
object
i - BUILDING kY
e w S A
comtatn %
' or
sub-regign - made-of .
ILE) (CONCRETE .
U004 as-propey oot
(pixel) L INEAR- BRIGHT) (GREY) BLUE
BOUNDAR
defined-by

INTENSTTY}SATURATION) (HUE)

Guzman (SEE), 1968

Noton and Stark 1971

Hansen & Riseman (VISIONS), 1978
Barrow & Tenenbaum 1978

Brooks (ACRONYM), 1979

[Ohta & Kanade 1978] Marr, 1982
Yakimovsky & Feldman, 1973




Grammars for objects and scenes

(ﬁ] And-Or grﬂph Slruslure:

Ciack £

| NI

Example: parsing (Tu et al, 2000-2004)

S.C. Zhu and D. Mumford. A Stochastic Grammar of Images.
Foundations and Trends in Computer Graphics and Vision, 2006.



Who needs context anyway?
We can recognize objects even out of context
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