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What are we tuned to?

The visual system is tuned to process structures
typically found in the world.



The visual system seems to be tuned to a set of images:

Demo inspired from D. Field



Remember these images



Did you saw this image?




Remember these images

Test 2



Did you saw this image?
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Separating images into components







Separating images into components




Separating images into components
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Noise on the image
VS.

The noise in the world, it is called texture by its friends
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Separating images into components







Separating images into components







Prototypical vision problem

Observe some product of two numbers, say 1.0
What were those two numbers?
le, 1 =ab. Find aand b.

Compare this with the prototypical graphics
problem: here are two numbers; what is their
product?



R N W b

l=ab

hyperbola of feasible solutions
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Bayesian approach

Want to calculate: max Pl(a,b|y=1)
a,

Bayes rule

Use P(a, b | y=1) £k P(y=1]a, b) P(a, b)

/ \

Posterior probability Likelihood function Prior probability

29



Bayesian approach
Use P(a, b | y=1) =k P(y=1]a, b) P(a, b)

Likelihood function

_(1-ab)®

P(y :1| a-1b) — ke 20° EE A R R O T

Prior probability

_(a=h)’
P(a,b)=ke 2 ifa>0, b>0

=0 otherwise

30



Statistical modelmg of i images




To appear in:

Handbook of Video and Image Processing, 2nd edition

ed.

Alan Bovik, (©Academic Press, 2005.

4.7 Statistical Modeling of Photographic Images

Eero P. Simoncelli

New York University
January 18, 2005




Statistical modeling of images

p(M) = | [ p((z,y))




Statistical modeling of images

p(D) = ][ p(z.y))

Assumptions:
 Independence: All pixels are independent.
o Stationarity: The distribution of pixel intensities does not depend on image location.
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Sampling new images

p(@) = | | p((z,9))

o -t A" w B [$)]

x104

p(I(x,y))

100 200




Sampling new images

p(@) = | | p((z,9))

|, 2 p(I(z, 1))

100 200

Sample



The importance of distribution of
Intensities

p(I(z,y)) \\\ p(I(z,y))

0
0 Intensity, I 20
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0 Intensity.I 4




Statistical modeling of images




Statistical modeling of images

C(Ax, Ay) =p|I(x + Ax,y + Ay), I(z,y)]




y+ Ay), Iz, y)]

)

C(Ax,Ay) = p|[I(x + Ax
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Dead leaves models

Introduced in the 60’s by Matheron (67) and popularized by Ruderman (97)

From Lee, Mumford and Huang 2001



Fourier Characteristics of Images

0.0 py

0.0 1.0 2.0

Log,,spatial frequency (cycles/picture)

Fig. 8. Amplitude spectra for the six images A-F, averaged across
all orientations. The spectra have been shifted up for clarity. On
these log-log coordinates the spectra fall off by a factor of roughly
1/f (a slope of -1). Therefore the power spectra fall off as 1/f2.

D. J. Field, "Relations between the statistics of natural images and
the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379- (1987)
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Fourier Characteristics of Images

Spectra \ v,
Field (87)
. Natural scenes
(6000 images)
y
Vy v
Vx

Man-made scenes
(6000 images)

Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412.



Randomizing the phase




Contrast sensitivity

Contrast Sensitivity Function

Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles / degree of visual angle

0.1 1 10
Low Spatial frequency (cycles/degree)

High
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Laplacian

a b

An illusion by Vasarely, left, and a bandpass filtered version, right.

http://web.mit.edu/persci/people/adelson/publications/gazzan.dir/vasarely.html



Gaussian model

We want a distribution that captures the correlation structure typical of natural images.

Let C be the covariance matrix of the imag: co c1 co N |
Cn—1 Co 1 €2 :
1 T—1 Cn—1 C C
p(I) = exp (_51 C I) =1 n—1 0 A
u . T . . (&)
1
| 1 s Cn_—1 Cp i

Stationarity assumption: Symmetrical circulant matrix

Diagonalization of circulant matrices: C = EDE'

The eigenvectors are the Fourier basis
The eigenvalues are the squared magnitude of the Fourier coefficients

A ) 1
D= | I(v)| ~ Top




Sampling new images

p(I) = exp (;ITC_II)

Sample



Sampling new images

Note: The average of many hair images will not give a distribution for hair images.
| believe we will get clouds again...
This representation does not encode other correlations like:

“all hairs should follow a similar orientation”



Denoising
Decomposition of a noisy image
e ':‘ ,_. 4 I': 'ﬂ " .
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Denoising

Decomposition of a noisy image

T e __ ; :.: ':Zf':: s

White Gaussian noise:N(0, 6,2 Natural image
Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

mIaxp(I\In) = max | p(I,|I) X p(I)

I :
likelihood prior




Denoising

Decomposition of a noisy image

ST __ ; :_: B

White Gaussian noise: N(0, c,2)

Natural image

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):

mIaxp(I\In) — mIaX

p(In|I)

likelihood

— INax

exp(—[L, — 1 /oy)

I

X




Denoising

max p(IlL,) = mIa,X

p(I,|T)

likelihood

p(I)

prior

— IllaX

exp(— L, — I /oy,)

I

The solution is:

1
exp (—§ITC—11

)

I =C (C + gi]]) -1 I,, (note thisis a linear operation)

This can also be written in the Fourier domain, with C = EDET:

T Afv]*

I(v) = Y,

L,
oy oz




Decomposition of a noisy image













Statistical modeling of images
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Observation: Sparse filter response







Reconstruction from derivatives

F=HG

If we have multiple filter outputs:

If the transformation H is not invertible, we can compute the pseudo-inverse:

N
G = (HTH) T HTF



Reconstruction




Editing the edge image







Intrinsic images

D

DISTANCE i} REFLECTANCE

{e} ORIGINAL SCENE

(d} ORIENTATION {VECTORI (o] ILLUMINATION



Separating images into components







Table 1

The Hature of Edges

Raglon Intrinals Edges
Intenaities Edze Type Reglon Types Intrinsic Values
LA L3 D N B I
Conatant | Conatant | Occludinmg A B shadowed EDGE EDGE EDGE
aenae unknown RARB | IA IB
Conatant | Yarying 1 Shadow A shadowed EDGE
B illusinated = RA RB | IA IB
2 A ocoludea B A shadowed EDGE EDGE EDGE EDGE
B illusinated DA D3 HA HA IA
Yarving Yarylng Inconsliatent
with domaln
Constant | Tangency | B occludes A A shadowed EDZE EDCE EDGE EDGE
B illuminated DA DA NB RA RB I~ IB
Yarying | Tangency | B occludes A A B illuzinated | EDGE EDGE EDGE EDGE
DA D2 | KB RB 18 IA
Tangency | Tangeacy Kot aeen froa
general position

Table 1 catalogs the possible appearances and
interpretations of an edge between two regions,

A and B. H. G. Barrow and J. M. Tenenbaum
In this table, "Constant™” means

constant intensity along the edge, "Tangency”

means that the tangency condition is met, and



RECOVERING INTRINSIC
SCENE CHARACTERISTICS
FROM IMAGES

Technical Note 157

April 1978

By: Harry G. Barrow
J. Martin Tenanbaum
Artificial intellipence Center

The research reported herein was supported by the National Science Foundation, under
NSF Grant No. ENG76-01272,

To appear in Computer Vision Systems, A.Hansen and E. Riseman, eds.. thcademic
Press, New York, in press).
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Forming an Image

@ llluminate the surface to get:

Surface (Height Map) Shading Image

The shading image Is the interaction of the shape
of the surface and the illumination 75

Slide: Marshal Tappen



@ Painting the Surface

N

s

Scene Image

Add a reflectance pattern to the surface.
Points inside the squares should reflect

76

IeSS I Iq ht Slide: Marshal Tappen



Goal

,_\\ a 'l

Image Shading Image Reflectance
Image

77

Slide: Marshal Tappen



Retinex

E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971

Journal of the

OPTICAL SOCIETY
of AMERICA

VoLumE 61, NuMBER 1 Januvary 1971

Lightness and Retinex Theory

Epwix H. Laxp* anp Jouxw J. McCann
Polaroid Corporation, Cambridge, Massachusetls 02130
(Received 8 September 1970)

The reflectance tends to be constant across space except for abrupt changes at the
transitions between objects or pigments. Thus a reflectance change shows itself as
step edge in an image, while illuminance changes gradually over space. By this
argument one can separate reflectance change from illuminance change by taking
spatial derivatives: High derivatives are due to reflectance and low ones are due to
illuminance.



Retinex

Again, we are trying to solve an ill-posed problem:

24 = ?X7?

From M. Tappen, PhD



Retinex

=T 2w =
{,'—:4 sl = C’E o0l
E 0| E ',_.’:', 1=k
?&D £l ?udn - , ?&E 10l
Rt E . =
Bl \ml =T4] a0 o
(=] ) [w]
= i =
Image Column Image Column Image Column
(a) One column from the ob-  (b) The derivative of the plot  (¢) The estimate of the log
served image. from (a). shading From M. Tappen, PhD
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From M. Tappen, PhD









Craik-O'Brien-Cornsweet effect

Luminance

Position






Knill and Kersten's illusion




This illusion highlights
the importance of
scene interpretation.

<— The effect is gone

<— and it comes back when
the gradient is not explained
by the shape.




Denoising
Decomposition of a noisy image
e ':‘ ,_. 4 I': 'ﬂ " .
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Pixel representation, noisy
image histogram
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bandpassed representation image
histogram
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Pixel domain noise image and
histogram
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Bandpass domain noise image and
histogram




Noise-corrupted full-freq and bandpass images
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Bayesian MAP estimator for clean bandpass coefficient values

Let X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

4

® 10
By Bayes theorem :
B =
PXly) =k P(y[x) P(X) .|
PO
5 =
P(y|x) Al

P(Xly)

I:I ] | | | | |
-250 -200 -150 -100 -50 I a0 100 150 200 A0



Bayesian MAP estimator

Let X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

w107

Cl

By Bayes theorem

P(Xly) = kK P(y|x) P(x)

B

=]
T
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-250 -200 -150 -100 -50 I a0 100 150 200 A0



Bayesian MAP estimator

Let X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

w107

Cl

By Bayes theorem

P(Xly) = kK P(y|x) P(x)

B
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I:I ] | | | -
-250 -200 -150 -100 -50 I a0 100 150 200 A0



y = 25 y = 115
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For small y: probably it is due to noise and y should be set to O
For large y: probably it is due to an image edge and it should be kept untouched



MAP estimate, X, as function of
observed coefficient value, y
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Figure 2:; Bayesian estimator (symmetrized) for
the signal and nolse histograms shown n figure 1.
Superimposed on the plot 1s a straight line indicat-
mg the identity function.

_ _ o Simoncelli and Adelson, Noise Removal via
http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise. pdf Bayesian Wavelet Coring



http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf

With Gaussian noise of (1) Denoised with
std. dev. 21.4 added, Gaussian model,
glvmg PSNR 22 06 PSNR=27.87

original

(2) Denoised
with wavelet
marginal model,
PSNR=29.24

http://www.cns.nyu.edu/pub/eero/simoncelli05a-preprint. pdf
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