
Lecture 4 
 Statistical Image Models 



What are we tuned to? 

The visual system is tuned to process structures 
typically found in the world.  



The visual system seems to be tuned to a set of images: 

Demo inspired from D. Field 



Remember these images 



Did you saw this image? 



Test 2 

Remember these images 



Did you saw this image? 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Visual Worlds 



Separating images into components 



X 



Separating images into components 



Separating images into components 

+ 



Noise on the image  
vs. 

noise in the world 

The noise in the world, it is called texture by its friends  



Noise or texture? 



Separating images into components 



- 



Separating images into components 



+ 
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Prototypical vision problem 

• Observe some product of two numbers, say 1.0 
• What were those two numbers? 
• Ie, 1 = ab.  Find a and b. 

 
• Compare this with the prototypical graphics 

problem: here are two numbers;  what is their 
product? 
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hyperbola of feasible solutions

a

b
1 = a b
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Bayesian approach 

Use P(a, b | y = 1) = k P(y=1|a, b) P(a, b) 
 

Likelihood function Prior probability Posterior probability 

Want to calculate:  max P(a, b | y = 1) 

Bayes rule 

a,b 
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Bayesian approach 
Use P(a, b | y = 1) = k P(y=1|a, b) P(a, b) 

 Likelihood function 

 

P(y =1 | a,b) = ke
−

(1−ab )2

2σ 2

a 
b 

a 
b 

P(a, b | y = 1)  

a 
b 

a=b=1 

Prior probability 

 

P(a,b) = ke
−

(a−b )2

2σ 2
If a>0, b>0 

= 0   otherwise 



Statistical modeling of images 





Statistical modeling of images 

The pixel 



Statistical modeling of images 

Assumptions: 
• Independence: All pixels are independent. 
• Stationarity: The distribution of pixel intensities does not depend on image location. 



Fitting the model 

Pixel intensity 

C
ou

nt
s 



Sampling new images 

Sample 



Sampling new images 

Sample 



The importance of distribution of 
intensities 



Statistical modeling of images 

The pixel 



Statistical modeling of images 

The pixel 

Another pixel 



∆ = 1 ∆ = 2 

∆ = 10 ∆ = 40 C 

∆ 

horizontal 

vertical 



Dead leaves models 
 Introduced in the 60’s by Matheron (67) and popularized by Ruderman (97) 

From Lee, Mumford and Huang 2001 



Fourier Characteristics of Images 

D. J. Field, "Relations between the statistics of natural images and  
the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379- (1987)  

Spectra 

1/va 

Low spatial frequencies 

High SF 
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Power spectra 
fall off as 
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vy 

Spectra 

1/fa 

Field (87)  

vy vx 

vy vx 

Natural scenes 
(6000 images) 

Man-made scenes 
   (6000 images) 
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Torralba and Oliva, Statistics of Natural Image Categories. Network: Computation in Neural Systems 14 (2003) 391-412. 

Fourier Characteristics of Images 



Randomizing the phase 



Contrast Sensitivity Function 
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Invisible 

visible 

Blackmore & Campbell (1969) 

Maximum sensitivity 
~ 6 cycles / degree of visual angle 

Low High 



Laplacian 

An illusion by Vasarely, left, and a bandpass filtered version, right. 

http://web.mit.edu/persci/people/adelson/publications/gazzan.dir/vasarely.html 



Gaussian model 
We want a distribution that captures the correlation structure typical of natural images. 

Let C be the covariance matrix of the image: 

Diagonalization of circulant matrices: C = EDET 

Stationarity assumption: Symmetrical circulant matrix 

The eigenvectors are the Fourier basis 
The eigenvalues are the squared magnitude of the Fourier coefficients 

D= 
… 

2 

2 



Sampling new images 

Sample 



Sampling new images 

Note: The average of many hair images will not give a distribution for hair images. 
I believe we will get clouds again… 
This representation does not encode other correlations like:  
    “all hairs should follow a similar orientation” 



Denoising 

= + 

Decomposition of a noisy image  



Denoising 

= + 

Decomposition of a noisy image  

Natural image White Gaussian noise: N(0, σn
2) 

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):  

x 

likelihood prior 



Denoising 

= + 

Decomposition of a noisy image  

Natural image White Gaussian noise: N(0, σn
2) 

Find I(x,y) that maximizes the posterior (maximum a posteriory, MAP):  

x 

likelihood prior 

x 



Denoising 

x 

likelihood prior 

x 

This can also be written in the Fourier domain, with C = EDET: 

The solution is: 

(note this is a linear operation) 



= + 

Decomposition of a noisy image  





x = 



= + 

= + 



Statistical modeling of images 

A small neighborhood 



Edges 



[-1 1] 



[-1 1] 

 

⊗

g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1] 



[-1 1]T 

 

⊗

g[m,n] 

h[m,n] 

= 

f[m,n] 

[-1, 1]T 



Observation: Sparse filter response 



Back to the image 

? 



Reconstruction from derivatives 
F = H G 

c = c 

1 -1 

1 -1 

1 -1 

1 -1 

1 -1 

1 -1 

1 -1 

1 

If the transformation H is not invertible, we can compute the pseudo-inverse: 

G = (HTH)-1 HT F ^ 

[-1 1] 

[-1 1]T 

c 

c 

= c 

If we have multiple filter outputs: 



Reconstruction 

[1 -1] 

[1 -1]T 



Editing the edge image 

[1 -1] 

[1 -1]T 



Thresholding edges 



Intrinsic images 



Separating images into components 



X 
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Forming an Image 

Surface (Height Map) 

Illuminate the surface to get: 

The shading image is the interaction of the shape 
of the surface and the illumination 

Shading Image 

Slide: Marshal Tappen 
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Painting the Surface 

Scene 

Add a reflectance pattern to the surface. 
Points inside the squares should reflect 
less light 

Image 

Slide: Marshal Tappen 
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Goal 

Image Shading Image Reflectance 
Image 

Slide: Marshal Tappen 



Retinex 
E.H. Land, J.J. McCANN - Journal of the Optical society of America, 1971 

The reflectance tends to be constant across space except for abrupt changes at the 
transitions between objects or pigments. Thus a reflectance change shows itself as 
step edge in an image, while illuminance changes gradually over space. By this 
argument one can separate reflectance change from illuminance change by taking 
spatial derivatives: High derivatives are due to reflectance and low ones are due to 
illuminance. 



Retinex 

= x 

24 =  ? x ? 

From M. Tappen, PhD 

Again, we are trying to solve an ill-posed problem: 



Retinex 

log  

 

⊗ [1 -1] 

 

⊗ [1 -1]T 

From M. Tappen, PhD 

From M. Tappen, PhD 



 





Craik-O'Brien-Cornsweet effect 





Knill and Kersten's illusion 



Knill and Kersten's illusion 

The effect is gone 

This illusion highlights 
the importance of 
scene interpretation. 

and it comes back when 
the gradient is not explained 
by the shape. 



Denoising 

= + 

Decomposition of a noisy image  



Pixel representation, noisy 
image histogram 



bandpassed representation image 
histogram 

 



Pixel domain noise image and 
histogram 

 



Bandpass domain noise image and 
histogram 

 



Noise-corrupted full-freq and bandpass images 

 

But want 
the 
bandpass 
image 
histogram 
to look like 
this 



P(x) 

Bayesian MAP estimator for clean bandpass coefficient values 

Let x = bandpassed image value before adding noise. 
Let y = noise-corrupted observation. 
 
By Bayes theorem 

P(x|y) = k P(y|x) P(x) 

P(y|x) 

P(x|y) P(x|y) 

P(y|x) 

y 

y = 25 



Bayesian MAP estimator 
Let x = bandpassed image value before adding noise. 
Let y = noise-corrupted observation. 
 
By Bayes theorem 

P(x|y) = k P(y|x) P(x) y 

P(y|x) 

P(x|y) 

y = 50 



Bayesian MAP estimator 
Let x = bandpassed image value before adding noise. 
Let y = noise-corrupted observation. 
 
By Bayes theorem 

P(x|y) = k P(y|x) P(x) y 

P(y|x) 

P(x|y) 

y = 115 



P(x) 
P(y|x) 

y 

y = 25 

P(x|y) 

y 

P(y|x) 

P(x|y) 

y = 115 

For small y: probably it is due to noise and y should be set to 0 
For large y: probably it is due to an image edge and it should be kept untouched 



MAP estimate,     , as function of 
observed coefficient value, y 

y

x̂

x̂

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf 
Simoncelli and Adelson, Noise Removal via 
Bayesian Wavelet Coring  

http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf
http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf


 

original 

With Gaussian noise of 
std. dev. 21.4 added, 
giving PSNR=22.06 

(1) Denoised with 
Gaussian model, 
PSNR=27.87 

(2) Denoised 
with wavelet 
marginal model, 
PSNR=29.24 

http://www.cns.nyu.edu/pub/eero/simoncelli05a-preprint.pdf 
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