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Bayesian approach
UseP(a,b | y=1) =k P(y=1]|a, b) P(a, b)

Likelihood function

_(1-ab)®

P(y=1|ab)=ke 2

Prior probability

_(a=h)’
P(a,b)=ke 20 ifa>0, b>0

=0 otherwise




Statistical modeling of images

C(Ax, Ay) =p|I(x + Ax,y + Ay), I(z,y)]




Gaussian model

We want a distribution that captures the correlation structure typical of natural images.

Let C be the covariance matrix of the imag: co c1 co N |
Ch—1 €Cp cq C9 :
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Stationarity assumption: Symmetrical circulant matrix

Diagonalization of circulant matrices: C = EDET

The eigenvectors are the Fourier basis
The eigenvalues are the squared magnitude of the Fourier coefficients

A 2 1
D= | I(v)| ~ Tof




Statistical modeling of images




Intensity histogram  [1 -1] filter output [1 -1] output histogram

" Réd — true pdf
.2l Black — best Gaussian fit
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A model for the distribution of
filter outputs

T Réd—true pdf
.sl Black — best Gaussian fit |

exp(-x?/2c2)

p(x) =
2nG2
exp(-|x/s|")
p(X) =
2s/rT(1/r)
r~0.8 (<2

Note: this is not a good model for ALL filter outputs



r=0.5

Generalized Gaussian

exp(-|x/s|")
2s/rT"(1/r)

p(x) =

r=1 r=2
Laplacian distribution  Gaussian distribution

r=10

a

Uniform distribution
r -> infinite



The wavelet marginal model

A small neighborhood

)

p(D) = 111 phxy)
k_ T,y

All pixels and all outputs are independent Filter outputs







shown below
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Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as

Decomposition
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Reconstruction
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Images from: http://www.cis.upenn.edu/~eero/steerpyr.html



Steerable Pyramid

We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as
shown below

Decomposition Reconstruction
O o m E O
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Sampling images

Gaussian model Wavelet marginal model

i

Fig. 3. Example image randomly drawn from the Gaus- Fig. 6. A sample image drawn from the wavelet

marginal model, with subband density parameters cho-

sian spectral model, with v = 2.0. : : _
sen to fit the image of Fig. 7.
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Fig. 5. Example basis functions derived by optimizing a
marginal kurtosis criterion [see 35].




Denoising
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Denoising with the marginal wavelet model

Let X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.
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By Bayes theorem
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Denoising with the marginal wavelet model

Let X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.
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By Bayes theorem

P(xly) ~ P(y[x) P(x)
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Denoising with the marginal wavelet model

Let X = bandpassed image value before adding noise.
Let y = noise-corrupted observation.

w107
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By Bayes theorem

P(xly) ~ P(y[x) P(x)
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Denoising with the marginal wavelet model

y =25
| P(x)
i P(y[X)
T Pxly)
| y

W] — ra Jan} - m m -1 o [ix}
T T T T T T T T

y =115
P(x) |
P(yI¥)

For small y: probably it is due to noise and y should be set to O
For large y: probably it is due to an image edge and it should be kept untouched



MAP estimate, X, as function of
observed coefficient value, y
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Figure 2:; Bayesian estimator (symmetrized) for
the signal and nolse histograms shown n figure 1.
Superimposed on the plot 1s a straight line indicat-
mg the identity function.

Simoncelli and Adelson, Noise Removal via
http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf Bayesian Wavelet Coring



http://www-bcs.mit.edu/people/adelson/pub_pdfs/simoncelli_noise.pdf

With Gaussian noise of (1) Denoised with
std. dev. 21.4 added, Gaussian model,
glvmg PSNR 22 06 PSNR=27.87

original

(2) Denoised
with wavelet

marginal model,
PSNR=29.24

http://www.cns.nyu.edu/pub/eero/simoncelli0O5a-preprint.pdf



Gaussian scale mixtures

Note correlations between
the amplitudes of each
wavelet subband.

Fig. 7. Amplitudes of multi-scale wavelet coefficients for
the “Einstein” image. Each subimage shows coefficient
amplitudes of a subband obtained by convolution with
a filter of a different scale and orientation, and subsam-
pled by an appropriate factor. Coefficients that are spa-
tiallv near each other within a band tend to have similar
amplitudes. In addition, coefficients at different orienta-
tions or scales but in nearby (relative) spatial positions
tend to have similar amplitudes.

http://www.cns.nyu.edu/pub/eero/simoncelli0O5a-preprint.pdf



Statistics of pairs of wavelet coefficients

Contour plots of the joint histogram of various wavelet coefficient pairs
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Conditional distributions of the corresponding wavelet pairs

Fig. 8. Empirical joint distributions of wavelet coefficients associated with different pairs of basis functions, for a single
image of a New York City street scene (see Fig. 1 for image description). The top row shows joint distributions as contour
plots, with lines drawn at equal intervals of log probability. The three leftmost examples correspond to pairs of basis func-
tions at the same scale and orientation, but separated by different spatial offsets. The next corresponds to a pair at adjacent
scales (but the same orientation, and nearly the same position), and the rightmost corresponds to a pair at orthogonal orien-
tations (but the same scale and nearly the same position). The bottom row shows corresponding conditional distributions:
brightness corresponds to frequency of occurance, except that each column has been independently rescaled to fill the full

rﬁt%?//\?\;v&wgﬁg%ﬁfedu/pub/eero/simoncelli05a-preprint.pdf



Gaussian scale mixtures

1 ST 12
exp(—=X (zA) "X
(272') / ‘ ZA\ ‘]7/ Gaussian scale

mixture model

P(X) = |

. Observed ._simulation
Wavelet
coefficient _
probability A mixture of
Gaussians of ol—dl b e e =
scaled (b) Simulated
covariances

Z Is a spatially varying hidden variable
that can be used to

(a) Create the non-gaussian histograms -
from a mixture of Gaussian densities, and (c) Observed (d) Simulated

(b) model correlations between the Fig. 9. Comparison of statistics of coefficients from an

neighboring wavelet coefficients. example image subband (left panels) with those gener-
ated by simulation of a local GSM model (right panels).




With Gaussian noise of (1) Denoised with
std. dev. 21.4 added, Gaussian model,
glvmg PSNR 22 06 PSNR=27.87

original




Separating reflections from a single image using local features

Anat Levin Assaf Zomet Yair Weiss

Figure 1: (a) Original input image (constructed by summing
the two images in b). (b) the correct decomposition. (c)-
(g) alternative possible decompositions. Why should the
decomposition in (b) be favored?

very simple cost function: it favors decompositions which
have a small number of edges and corners. Surprisingly,
this simple cost function gives the “right” decompositions
for challenging real images.'

. . (a) n
(b) ()
(d) (e)

Figure 2: An input image and some decompositions




Applications

e Detecting fake images | b e

ERRLY Vb i = AT
P i "--'I ',! ‘111'4'1 HS'IL__ ,“'i} il

e Camera shake removal




Visual Worlds

Prof. Hany Farid,
Dartmouth University




How do you tell if an image is fake?

Real or Fake?

What do you think? Is the photo fake? Or could it possibly be real?

=iy -] EMAIL
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FARK IT

Archive

http://www.life.com/archive/realfake



Image circulated on internet

1*_ S \

Retrass And Astiar Aetivist Jane Fanda Speaks 13 3 crowd of Vielaaes Velersas 49 Actvint and et
Vigtmam Vet Jehn Keiry (LEFT) Extens snd pripases 10 speak neat conceming the war i Vietnam (AP Paswe)
http://www.cs.dartmouth.edu/farid/publications/deception09.pdf
http://www.cs.dartmouth.edu/farid/publications/significance06.pdf



http://www.cs.dartmouth.edu/farid/publications/deception09.pdf
http://www.cs.dartmouth.edu/farid/publications/significance06.pdf

Update: Fonda, Kerry and Photo Fakery (free reg. required) -
Photographer Ken Light describes the experience of discovering his
1970 photograph of John Kerry circulating in altered form on the
Internet. "as far as I know, John Kerry never shared a
demonstration podium with Jane Fonda, and the fact that a widely
circulated photo showed him doing s0 — until it was exposed in
recent weeks as a hoax — tells us more about the troublesome
combination of Photoshop and the Internet than it does about the
prospective Democratic candidate for president.” {Washington
Fost)




IEEE Transactions on Signal Processing, 53(2):845-850, 2005

How Realistic 1s Photorealistic?

Siwel Lyu and Hany Farid
Department of Computer Science
Dartmouth College
Hanover, NH 03755
Email: {lyu,farid }(@cs.dartmouth.edu

Abstract— Computer graphics rendering software is ca-
pable of generating highly photorealistic images that can
be impossible to differentiate from photographic images.
As a result, the unique stature of photographs as a defini-
tive recording of events is being diminished (the ease with
which digital images can be manipulated is, of course,

There has been some work in evaluating the photorealism
of computer graphics rendered images from a human
perception point of view (e.g., [10], [9]. [11]). To our
knowledge, however, no computational techniques exist
to differentiate between photographic and photorealis-

tim asanmean §o smaathoad Fre A fFFAasasmtintianoe lhatrrans sboata



Input image
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Representation of color input image In
wavelet subbands
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Filter bank

Separable Quadrature Mirror Filters
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Each output is called subband



Histograms of wavelet subband coefficients
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There are correlations between subband
coefficients
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Figure 2.10: A natural image (left) and the histograms of the linear prediction errors of coefficient
magnitudes for all subbands in a three-scale QMF pyramid decomposition of the image on the left.

Hypothesis: there is something different in the correlation between wavelet

coefficients between real images and computer generated images.



Summary of features used for image

classification
H D V
we—ei[ [ [ |
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coefficient statistics (108) error statistics (108)



fractal




Projection of measured features into a 3-d space: well
separated even in that low-dimensional space

a

First 3 principal
components

noise tal discs natural



Photographic training set:
downloaded from www.freefoto.com

photographic (40,000)




Photorealistic training set:

photorealistic (6, 000)



Classifier 1: LDA. Simple, amenable to analysis

linear discriminant analysis (LDA)



Classifier 2: SVM. State of the art.

linear SVM non-linear SVM



Easily classified photographic images

Fig. 4: Easily classified photographic images.



Easily classified photorealistic images

Fig. 5: Easily classified photorealistic images.



Incorrectly classified photographic images

Fig. 6: Incorrectly classified photographic images.



Incorrectly classified photorealistic images

Fig. 7: Incorrectly classified photorealistic images.



www.fakeorfoto.com

CG Real LG Real LG Real LG Real CG Real

LG Real LG Eeal LG Real LG Real LG Real
@Alias ity | Qs

@2001-2003 Alias



Results of algorithm

Photographic images Photorealistic images

Incorrect

Fig. 9: Images from www.fakeorfoto.com Shown in (a) and (c) are correctly and incorrectly classified
photographic images, respectively. Shown in (b) and (d) are correctly and incorrectly classified photorealistic images,

respectively.



Taking a picture...

What the camera give us... How do we correct this?

(- @ivuT 2 Wil My
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Close-up

Slides R. Fergus



Why does picture appear blurry?



Let’'s take a photo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Blurry result

Slides R. Fergus



Slow-motion replay

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Slides R. Fergus



Slow-motion replay

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Motion of camera

Slides R. Fergus



Image formation process

: | kernel
Blurry image Sharp image
N y g ) C P g J
Y Y
Input to algorithm Desired output
Convolution

Model is approximation operator



Why is this hard?

Simple analogy:
11 is the product of two numbers.
What are they?

No unigue solution:
11=1x11
11=2x5.5
11 =3 x 3.667

Need more information !!!!
Slides R. Fergus



Multiple possible solutions

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

/ Sharp image Blur kernel
" 4 -
Blurry image
—
\ L8




Natural image statistics

Characteristic distribution with heavy talls

Histogram of image gradients

Gradient

Slides R. Fergus



Blury images have different statistics

Gradient

Slides R. Fergus



Parametric distribution

Use parametric model of sharp image statistics
Slides R. Fergus



Existing work on image deblurring

Software algorithms:

— Extensive literature in signal processing community

— Mainly Fourier and/or Wavelet based

— Strong assumptions about blur
- not true for camera shake

R

Assumed forms of blur kernels

— Image constraints are frequency-domain power-laws
Slides R. Fergus



Existing work on image deblurring

Hardware approaches

Image stabilizers Dual cameras Coded shutter

. e
—

Ben-Ezra and Raskar et al.
Nayar 2004 SIGGRAPH 2006

Our approach can be combined with these hardware methods



Three sources of iInformation

T AN M

i 3

(stimated sharp image

2. Image prior:

Estimated

blur kernel/

Distribution of
gradients

Input blurry image |

3. Blur prior:

Positive
&
Sparse




Three sources of information

y = observed image b = blur kernel x = sharp image

p(b,z|ly) =k p(ylb,z) p(x) p(b)
Posterior 1. Likelihood  2.Image 3. Blur

(Reconstruction prior prior
constraint)



1. Likelihood p(y|b, x)

.......................................................................................................................................................................

Reconstruction constraint:

p(ylb, z) = [1; N (y;|z; ® b, 02)
(2;Qb—y;)?
x [[;e  20°

i - pixel index



2. Image prior p(x)

y = observed image b = blur x = sharp image

_ _ 2
(Q’J’) H% Ec—l WCN(f(mZ)‘O&Sc)
Mixture of Gaussians fit to [ — Sharp
- - - - - - ' Parametric
empirical distribution of model
image gradients
C C

L.
[
2
=3
=
= -
Q
-

i - pixel index
c - mixture component index
Gradient

f - derivative filter



3. Blur prior p(b)

.......................................................................................................................................................................

y = observed image b = blur x = sharp image

p(b) =T1; X5 7g E(bj|Ag)

Mixture of Exponentials o
i Most elements near zero |
— Positive & sparse /
— No connectivity constraint =
al A few can be large
j - blur kernel element \

1 1 1 1 1 1 1 1 ;
0 0.m 0.0z 003 0.04 0.05 0.08 0.07 0.08 0.09 01

d - mixture component index b



How do we use this information?

Obvious thing to do:
— Combine 3 terms into an objective function

— Run conjugate gradient descent

— This is Maximum a-Posteriori (MAP)



Results from MAP estimation
| b T

Input blurry
Image




Variational Bayesian method

Keeps track of uncertainty in estimates of image and blur by
using a distribution instead of a single estimate

Helps avoid local maxima and over-fitting



Overview of algorithm

1. Pre-processing

2. Kernel estimation

- Multi-scale approach

3. Image reconstruction

- Standard non-blind deconvolution routine



Preprocessing

Convert to
grayscale

Bayesian inference
too slow to run on
whole image

Infer kernel
from this patch

\4

Remove gamma
correction

A\ 4

User selects patch
from image




Initialization

Blurry patch

Convert to
grayscale

v

Remove gamma
correction

Initial image estimate

\4

User selects patch
from image

Initialize 3x3
blur kernel

Initial blur kernel




Inferring the kernel: multiscale method

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Convert to

grayscale

Upsample
estimates

\ 4

Loop over scales —

Remove gamma
correction

A\ 4

\ 4

User selects patch
from image

Variational |

\ 4

Initialize 3x3

A

Bayes

blur kernel

Use multi-scale approach to avoid local minima:




Image Reconstruction

Convert to Remove gamma
grayscale correction

v

\4

User selects patch

from image
Loop over scales
“1 S Upsample | Variational | Initialize 3x3
. ' ) : kernel
' Eull resolution estimates Bayes blur kerne
blur estimate
Non-blind deconvolution Deblurred

\4

(Richardson-Lucy) image




Results on real Iimages

Submitted by people from their own photo collections

Type of camera unknown

Output does contain artifacts

— Increased noise
— Ringing

Compares well to existing methods



. Original photograph




Blur kernel




A 1

T(/I:atlab’s deconvbl md




Close-up of garland

Original

Matlab’s
deconvblind

Our output




Origipal photograph




Matlab’'s deconvblind

A ]




Photoshop sharpen more




_ Our output Blur kernel




[
| Close-up of image | |Blur kernel




Original photograph







Original photograph




Our output




Matlab’s deconvbl ind







S

Blur kernel




Close-up of bird

-




Original photograph




Blur kernel

output




Image artifacts & estimated kernels

Image patterns

Note: blur kernels were inferred from large image patches,
NOT the image patterns shown



Bayesian methods

101
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