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Textures
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What is a texture?



GO Ugle texture Search SafeSearch strict ¥

About 45 000,000 results (0.31 seconds) Advanced search
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Which textures are we going to
talk about in this lecture?

Stationary

Stochastic



When are two textures similar?

All these images are different instances of the same texture
We can differentiate between them, but they seem generated
by the same process



Texture Analysis

Input Image

ANALYSIS- 'Same” or

different”

generated image

True (infinite) texture
Compare textures and decide if they’re made of the
same “stuff”.



Texture Synthe3|s

mput |mage

True (infini ture  generated image

Given a finite sample of some texture, the goal is to

synthesize other samples from that same texture
— The sample needs to be "large enough®



Let's get a feeling of the
mechanisms for
texture perception



What is special about texture
perception?
e Pre-attentive texture discrimination

e Perception of sets and summary statistics
e Crowding



Nature Vol. 290 12 March 1981

REVIEW ARTICLES ‘

Textons, the elements of texture perception,
and their interactions

Bela Julesz
Bell Laboratories, Murray Hill, New Jersey 07974, USA

L3 |

Research with texture pairs having identical second-order statistics has revealed that the pre-attentive
texture discrimination system cannot globally process third- and higher-order statistics, and that
discrimination is the result of a few local conspicuous features, called textons. It seems that only the
first-order statistics of these textons have perceptual significance, and the relative phase between textons
cannot be perceived without detailed scrutiny by focal attention.

Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.




Pre-attentive texture
discrimination
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Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.



Pre-attentive texture
discrimination
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Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.



Pre-attentive texture

discrimination
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This texture pair is pre-attentively indistinguishable. Why?

Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.



PERSPECTIVE

nature .
ncuroscicnce

The uncrowded window of object recognition

Denis G Pelli & Katharine A Tillman



Crowding

Pelli, D. G., Cavanagh, P., Desimone, R., Tjan, B., & Treisman, A. (2007).
Crowding: Including illusory conjunctions, surround suppression, and
attention. Journal of Vision, 7(2):i, 1, http://journalofvision.org/7/2/i/
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PSYCHOLOGICAT. SCIENCE VOL. 12, NO. 2, MARCH 2001

Research Article

SEEING SETS:
Representation by Statistical Properties

Dan Ariely

Massachusetts Institufe of Technology




Representation of sets




Set Is this element a member of the set?




Ebbinghaus illusion
The central circle is
. . judged relative to the
set properties of the
. . . . . . circles surrounding it
@ *

Attenuated by
reducing the set
| | grouping.




Representation



What a model should account for:

1. Biological plausibility: The stages of the model should
be motivated by, and be consistent with, known
physiological mechanisms of early vision.

2. Generality: The model should be general enough that it
can be tested on any arbitrary gray-scale image.

3. Quantitative match with psychophysical data: The
model should make a quantitative prediction about the
salience of the boundary between any two textured
regions. Rank ordering of the discriminability of different
texture pairs should agree with that measured
psychophysically.

From Malik & Perona, 1990



Julesz - Textons
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Julesz - Textons
Textons: fundamental texture elements.

| >

Textons might be represented by features
such as terminators, corners, and
Intersections within the patterns...




Nature, Vol. 333. No. 6171. pp. 363-364, 26 May 1988
Early vision and texture perception

James R. Bergen* & Edward H. Adelson®*#

* SRI David Sarnoff Research Center, Princeton,
New Jersey 08540, USA
** Media Lab and Department of Brain and Cognitive Science,

Observation: the Xs
look smaller than the Ls.
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“We note here that simpler, lower-level mechanisms tuned for size may be
sufficient to explain this discrimination.”



Early vision and texture perception

& Edward H. Adelson™*

James R. Bergen™

Ls 25% shorter
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J. Malik and P. Perona Vol. 7, No. 5/May 1990/J. Opt. Soc. Am. A

Preattentive texture discrimination with early vision
mechanisms

Jitendra Malik and Pietro Perona

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,
Berkeley, California 94720

Received July 7, 1989; accepted December 28, 1989

We present a model of human preattentive texture perception. This model consists of three stages: (1) convolu-
tion of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of
responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neural-
response profiles that results in the suppression of weak responses when there are strong responses at the same or
nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can
predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this
model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of
the degree of discriminability of different texture pairs match well with experlmantﬂl measurements of discrimina-

bility in human observers.



.O Squared responses  Spatially blurred

vertical filter

Threshold squared,
blurred responses,

> then categorize
— texture based on

horizontal filter those two bits
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Texture gradient (x,y)
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Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F;...F,, and is
half-wave rectified to give the set of simple-cell responses R; . . . R,
The postinhibition responses PIR,...PIR, are computed by
thresholding the R; and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIR,.




Two big families of models

1- Parametric models of filter outputs

2- Example-based non-parametric models



The trivial texture synthesis
algorithm




Texture synthesis and
representation

Set of equivalent textures

Bl

Space of all image

Set of equivalent textures: generated by exactly the same physical process



Texture synthesis and
representation

Set of equivalent textures

‘Set of perceptually

equivalent textures

Space of all image

Set of equivalent textures: generated by exactly the same physical process
Set of perceptually equivalent textures: “well, they just look the same to me”



If matching the averaged squared filter
values is a good way to match a given
texture, then maybe matching the entire
marginal distribution (eg, the histogram) of
a filter’s response would be even better.

Jim Bergen proposed this...



Pyramid-Based Texture Analysis/Synthesis

David J. Heeger” James R. Bergen!
Stanford University SRI David Sarnoff Research Center
: . >I—

y SIGGRAPH 1994




The main idea: it works by ‘kind of’ projecting a
random Image into the set of equivalent textures

100

150

200

250

50

100 130 200

Set of perceptually
nt textures

equival

Space of all imag

t textures

et of equival

Synthetic texture




Overview of the algorithm

Match-texture (noise, texture)
IMatch—Histogram (noise,texturejl

analveis-pvyr =|Make-Pyramid (texture)
Loop for several iterations do

synthesis-pyvr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr
for s-band in subbands of synthesis-pvyvr
do
Match-Histogram (=-band, a-band)

noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (nolise,texture)

Two main tools:
1- steerable pyramid

2- matching histograms



1-The steerable pyramid
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1-The steerable pyramid
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But why do | want to represent images like this?




1-The steerable pyramid

N

Argument used by H & B: Statistical measures in the subband
representation seem to provide a “distance” between textures that

correlates with human perception better than pixel-based
representations.



1-The steerable pyramid

In general seems a good idea to have a representation that:
-Preserves all image information (we can go back to the image)

-Provides more independent channels of information than pixel values (we
can mess with each band independently)

But all this is just indirectly related to the texture synthesis task. But let
assume is good enough...



1-The

Input texture
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Overview of the algorithm

Match-texture (noise, texture)
IMatch—Histogram (noise,texturejl

analveis-pvyr =|Make-Pyramid (texture)
Loop for several iterations do

synthesis-pyvr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr
for s-band in subbands of synthesis-pvyvr
do
Match-Histogram (=-band, a-band)

noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (nolise,texture)

Two main tools:
1- steerable pyramid

2- matching histograms



2-Matching histograms

06 08

N
9% of pixels have an intensity value 75% of pixels have an intensity val

within the range[0.37, 0.41] smaller than 0.5

0

0 02 04 06 08 1

5% of pixels have an intensity value
within the range[0.37, 0.41]



2-Matching histograms

We look for a transformation
of the image Y

Y =f(Y)

Such that
Hist(Y) = Hist(f(2))

Problem: there are infinitely many functions
that can do this transformation.

A natural choice is to use f being:

- pointwise non linearity

- stationary

- monotonic (most of the time invertible)




2-Matching histograms

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Y = £ (Y)

Y=10.8 Y'=0.5
Original New
iIntensity intensity




2-Matching histograms

Y = £ (Y)

50 100 150 200 250




Another example: Matching histograms

x10*
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0 02 04 06 08 1

10% of pixels are black
: and 90% are white

0 02 04 06 08 1

5% of pixels have an intensity value
within the range[0.37, 0.41]



Another example: Matching histograms

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Y = £ (Y)

Y=10.8 Y'=1
Original New
intensity intensity
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Another example: Matching histograms
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In this example, f is a step function.



Matching histograms of a subband

100

150

250

50 100 150 200 250

50 100 150 200 250



atching histograms of a subband

4
x10

50 100 150 200 250

50 100 150 200 250 50 100 150 200 = 250




100

150

250

Texture analysis

Wavelet decomposmon (steerable pyr)

Input texture = i

m ¥ ol |
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L R | =
el
mE

20 100 150 200 230

l (histogram)

(Steerable pyr; Freeman & Adelson, 91)

= ~ w0 -~ = =

The texture is represented as a collection of
T marginal histograms.

(histogram)

,l'lc‘




Texture synthesis

Heeger and Bergen, 1995

Input texture

(histogram)

(histogram)
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Why does it work? (sort of)

100 ¢

150 ¢

200}

250t

o0 100 150 200 250
Original texture
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£ ««’.| Why does it work? (sort of)
::: _ = The black and white
- blocks appear by
thresholding (f) a
blobby image

Iteration O




Why does it work? (sort of)

The black and white blocks appear by
thresholding (f) a blobby image
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Why does it work? (sort of)

L ?._ LI
Ty 1
ey a5
R
L
LA
’-'e-.“ L B ‘-
BRI Y

- A
o '

e
s...f by
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50

100 150 200 250
QOriginal texture

Color textures

Three textures



Color textures

100 150 200 250
QOriginal texture




Color textures

This does not work

Fd ‘: y
50 100 150 200 250
Synthetic texture

50 100 150 200 250
Original texture



Color textures

Problem: we create new colors not present in the original image.

Why? Color channels are not independent.




PCA and decorrelation

150 . E 150 +
-

100 - . 4 100 L

50 E 50




are independent.

PCA and decorrelation

The texture synthesis algorithm assumes that the channels

What we want to do is some rotation

250

200

150 -

100

100

150

200

See that in this rotated space,
if | specify one coordinate the
other remains unconstrained.



PCA and decorrelation

G correlation(R,G)
E /
“"" . 1.0000 0.9303 0.6034
b ' C= 009303 09438 0.6620
L ' 0.6034 0.6620 0.5569

PCA finds the principal directions of variation of the data.
It gives a decomposition of the covariance matrix as:

0.6347 0.6072 0.4779
0.6306 -0.0496 -0.7745
0.4466 -0.7930 0.4144
By transforming the original data (RGB) using D we get:

C=DD’ D=

: = [D : y e
3 X Npixels 3x3 3 x Npixels S T

The new components (U1,U2,U3) are decorrelated.



Color textures

Rotation
Matrix
(3x3)
D’
These three textures These three textures
look similar Look less similar

(high dependency) (lower dependency)



Color textures

[

Inverse , :
Rotation 5
Matrix

D
\

Original texture
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These three textures
look similar
(high dependency)

Eotationl

Matrix

D’

|

Color texture

= m owe W W

These three textures
Look less similar
(lower dependency)

S

Inverse
Rotation




Color channels

Without PCA With PCA

v ¢ -
50 100 150 200 250
QOriginal texture Synthetic texture Synthetic texture



Color channels
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20

100 150 200 250
Original texture

Color channels

50

100 150 200 250
Synthetic texture
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Examplgg from the paper

="

A A

Figure 3: In each pair left image 1= original and right image is synthetic: stucco, iriddescent nbbon, green marble, panda fur,

slag stone, fisured vew wood.
- e Heeger and Bergen, 1995



Examples from the paper

Figure 4: In cach pair left image is original and right image is synthetic: red gravel, figured sepele wood, brocolli, bark paper,
denim, pink wall, ivy, grass. sand, surl.




Examples not from the paper

Input
texture

Synthetic
texture

But, does it really work even when it seems to work?



But, does It really work???
How to measure how well the representation
constraints the set of equivalent textures?

All the textures in this
? set have the same
parameters.

c o e



How to identify the set of equivalent textures?

This does not reveal how poor
the representation actually is.



We need a space that is more perceptual

In a perceptual space
all these noise images
are very close. But in
pixel space, they are
very far away.

How big is this set
In a pixels space?



We need a space that is more perceptual

In a perceptual space
all these noise images
are very close. But in
pixel space, they are
very far away.

How big is this set
in a perceptual space?

How big is this set
In a pixels space?



How to identify of equivalent textures?

These trajectories are
more perceptually

salient , This setis huge




How to identify the set of equivalent textures?

100}

150

A % 1 250 | AN . A
50 100 150 200 250 50 100 150 200 250
Original texture Synthetic texture

250 I



How to identify the set of equivalent textures?

These trajectories are
more perceptually ®
salient

liididiiiiiid




Portilla and Simoncelli

e Parametric representation, based on
Gaussian scale mixture prior model for
Images.

e About 1000 numbers to describe a texture.

Ok results; maybe as good as DeBonet.



Portilla and Simoncelli




Portilla & Simoncelli

Heeger & Bergen Portilla & Simoncelli



How to identify the set of equivalent textures?

Now they look good, but maybe
they look too good...

Portilla & Simoncelli



Journal of Vision
November 19, 2009 vol. 9 no. 12
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Zhu, Wu, & Mumford, 1998

* Principled approach. Based on an
assumption of heavy-tailed distributions for

an over-complete set of filters.
o Synthesis guality not great, but ok.



Zhu, Wu, & Mumford
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De Bonet (and Viola)

SIGGRAPH 1997

Multiresolution Sampling Procedure
for Analysis and Synthesis
of Texture Images
Jeremy S. De Bonet
Learning & Vision Group

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

EMAIL: jsd@ai.mit.edu
HOMEPAGE: http://www.ai.mit.edu/__jsd



DeBonet

Learn: use filter conditional statistics across scale.

e b arweede g

Ul

Figure 8: The distribution from which pixels in the synthesis pyra-
mid are sampled i1s conditioned on the “parent” structure of those
pixels. Each element of the parent structure contains a vector of the
feature measurements at that location and scale.

0
aa }fﬁ i E

ﬂﬂg

Figure 9: An input texture is decomposed to form an analysis pyra-
mid, from which a new synthesis pyramid is sampled, conditioned
on local features within the pyramids. A filter bank of local texture
measures, based on psychophysical models, are used as features.



DeBonet
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Two big families of models

1- Parametric models of filter outputs

2- Example-based non-parametric models



IEEE International Conference on Computer Vision, Corfu, Greece, September 1959

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720-1776, U.SA.
{efros leungt } @cs berkeley.edu



Efros & Leung Algorlthm

_______ NN sampllng
il

Input image

Synthesizing a pixel

Assuming Markov property, compute P(p|N(p))
— Building explicit probability tables infeasible

— Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at
random



Neighborhood Window
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Synthesis Results

rafia weave

french canvas
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More Results

white bread brick wall




Homage to Shannon
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Hole Filling
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Image Quilting [Efros & Freeman]

non-parametric
sampling

Input image

Synthesizing a block

* Observation: neighbor pixels are highly correlated

ldea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

* Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale!
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Minimal error boundary

overlapping blocks
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Texture Transfer

« Take the texture from one
object and “paint” it onto
another object

— This requires separating
texture and shape

— That's HARD, but we can
cheat

— Assume we can capture shape
by boundary and rough
shading

*Then, just add another constraint when sampling:
similarity to underlying image at that spot
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Project ideas
Non stationary texture synthesis




Project ideas: 3D textures




Project ideas: 3D textures

Can you create a 3D volume that you can navigate?
Assume that all slices should have the same statistics.
Need knowledge about alpha map?

This is not a solid texture. This is a 3D scene texture.
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