

MIT CSAIL

6.869: Advances in Computer Vision



## Lecture 8 Textures

## What is a texture?



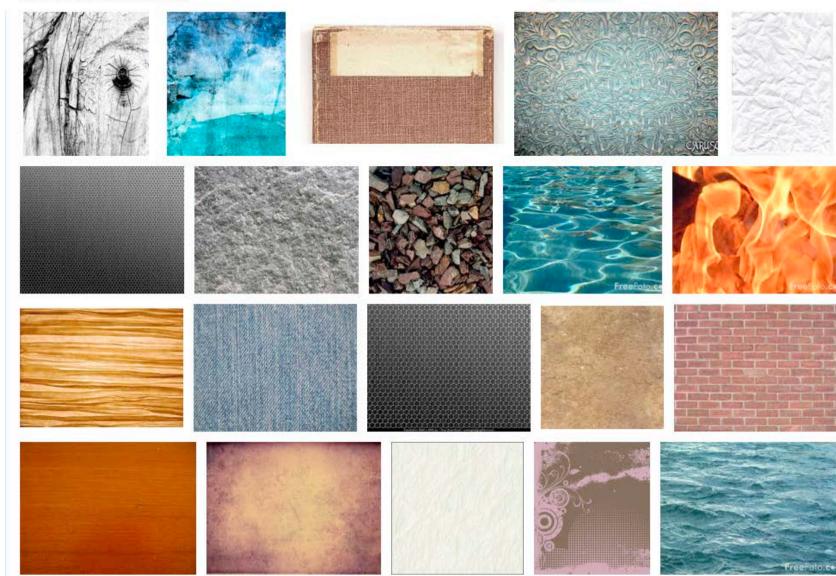
#### texture

About 45,000,000 results (0.31 seconds)

Search

#### SafeSearch strict v

#### Advanced search





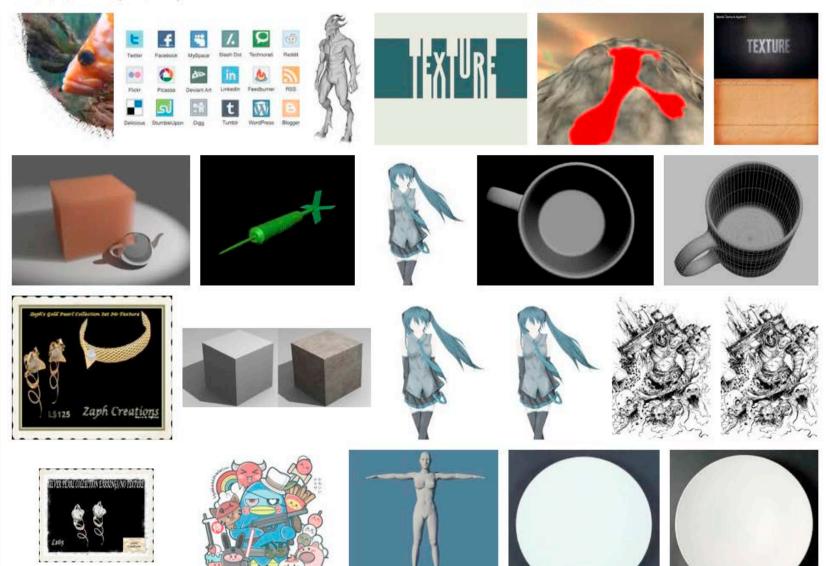
#### no texture

About 30,800,000 results (0.81 seconds)

Search S

#### SafeSearch strict v

Advanced search

















# Which textures are we going to talk about in this lecture?





Stationary

Stochastic





# When are two textures similar?



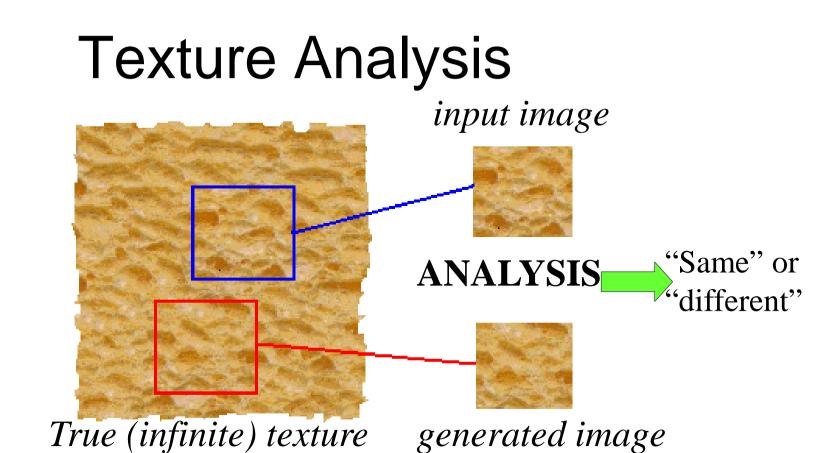






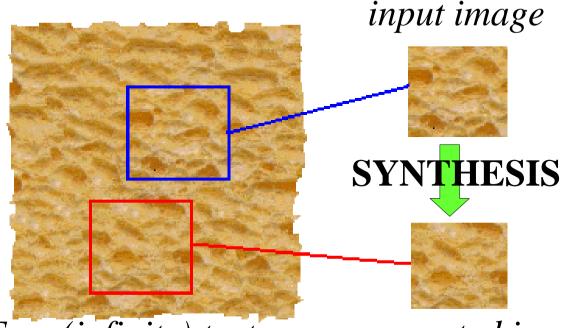


All these images are different instances of the same texture We can differentiate between them, but they seem generated by the same process



Compare textures and decide if they're made of the same "stuff".

# Texture Synthesis



*True (infinite) texture generated image* 

Given a finite sample of some texture, the goal is to synthesize other samples from that same texture

- The sample needs to be "large enough"

Let's get a feeling of the mechanisms for texture perception

# What is special about texture perception?

- Pre-attentive texture discrimination
- Perception of sets and summary statistics
- Crowding

**REVIEW ARTICLES** 

## Textons, the elements of texture perception, and their interactions

**Bela Julesz** 

Bell Laboratories, Murray Hill, New Jersey 07974, USA

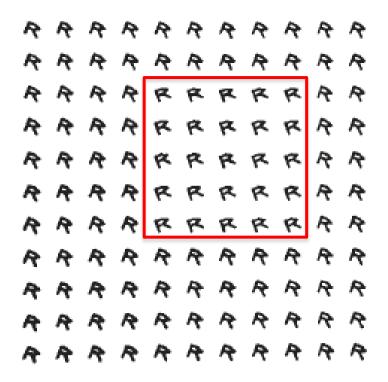
Research with texture pairs having identical second-order statistics has revealed that the pre-attentive texture discrimination system cannot globally process third- and higher-order statistics, and that discrimination is the result of a few local conspicuous features, called textons. It seems that only the first-order statistics of these textons have perceptual significance, and the relative phase between textons cannot be perceived without detailed scrutiny by focal attention.



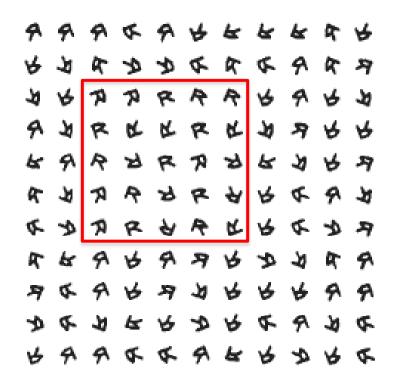
# Pre-attentive texture discrimination

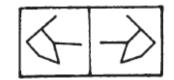


# Pre-attentive texture discrimination



# Pre-attentive texture discrimination





This texture pair is pre-attentively indistinguishable. Why?

## PERSPECTIVE

## nature

## The uncrowded window of object recognition

Denis G Pelli & Katharine A Tillman

# Crowding

Pelli, D. G., Cavanagh, P., Desimone, R., Tjan, B., & Treisman, A. (2007). Crowding: Including illusory conjunctions, surround suppression, and attention. Journal of Vision, 7(2):i, 1, http://journalofvision.org/7/2/i/ A summary-statistic representation in peripheral vision explains visual crowding

| Benjamin Balas <sup>1</sup> , |  |
|-------------------------------|--|
| Lisa Nakano <sup>2</sup> and  |  |
| Ruth Rosenholtz 3             |  |

+

A B B A Journal of Vision November 19, 2009 vol. 9 no. 12



## Where's waldo?

VOL. 12, NO. 2, MARCH 2001

#### **Research Article**

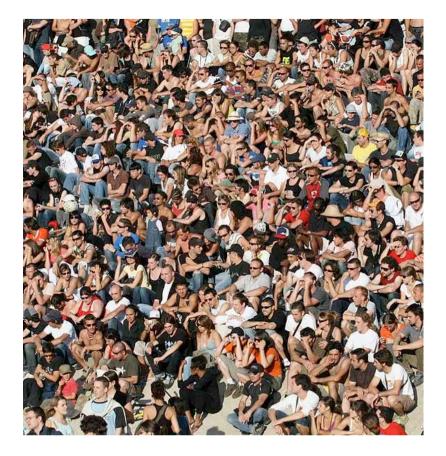
#### SEEING SETS: Representation by Statistical Properties

Dan Ariely

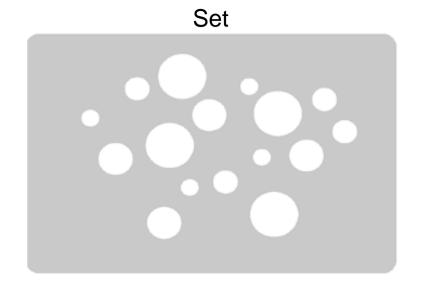
Massachusetts Institute of Technology



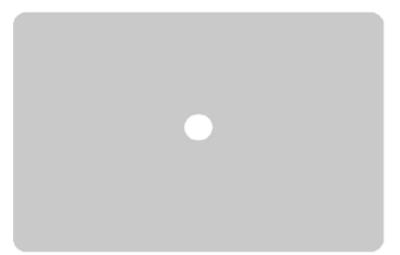
# Representation of sets



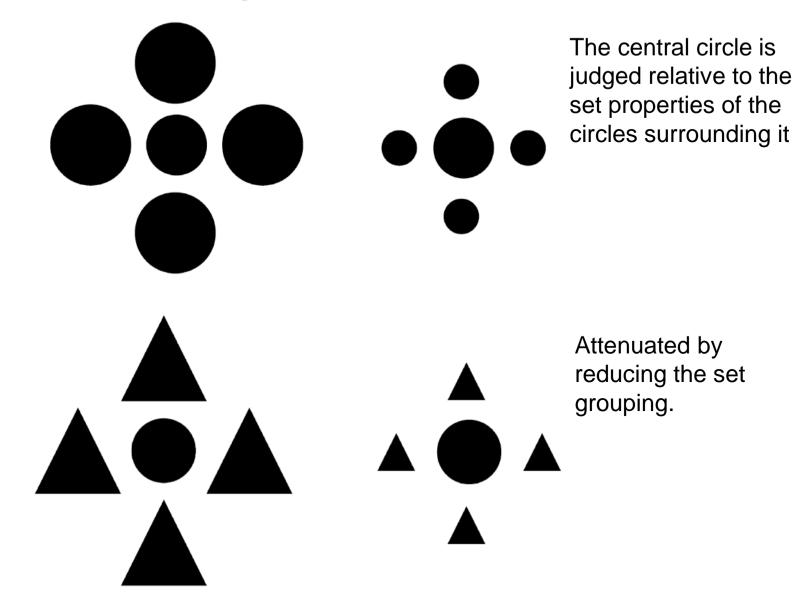




#### Is this element a member of the set?



# **Ebbinghaus illusion**



# Representation

# What a model should account for:

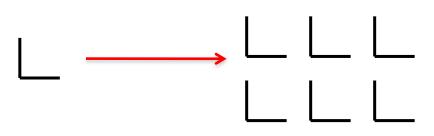
- Biological plausibility: The stages of the model should be motivated by, and be consistent with, known physiological mechanisms of early vision.
- 2. **Generality**: The model should be general enough that it can be tested on any arbitrary gray-scale image.
- 3. Quantitative match with psychophysical data: The model should make a quantitative prediction about the salience of the boundary between any two textured regions. Rank ordering of the discriminability of different texture pairs should agree with that measured psychophysically.

## Julesz - Textons

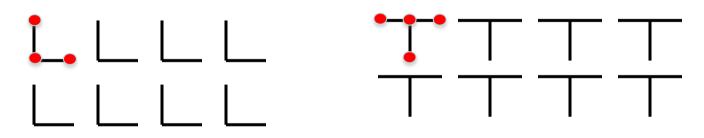
## $\Box \neg \Box \Box \Box \neg \vdash \top \bot \vdash \vdash \top$

# Julesz - Textons

Textons: fundamental texture elements.



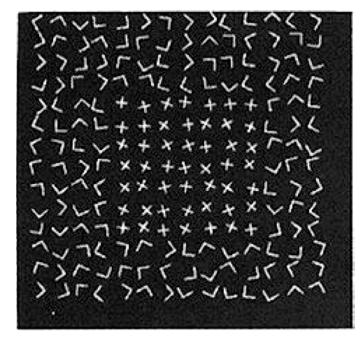
Textons might be represented by features such as terminators, corners, and intersections within the patterns...



#### Nature, Vol. 333. No. 6171. pp. 363-364, 26 May 1988 Early vision and texture perception

#### James R. Bergen\* & Edward H. Adelson\*\*

\* SRI David Sarnoff Research Center, Princeton,
New Jersey 08540, USA
\*\* Media Lab and Department of Brain and Cognitive Science,

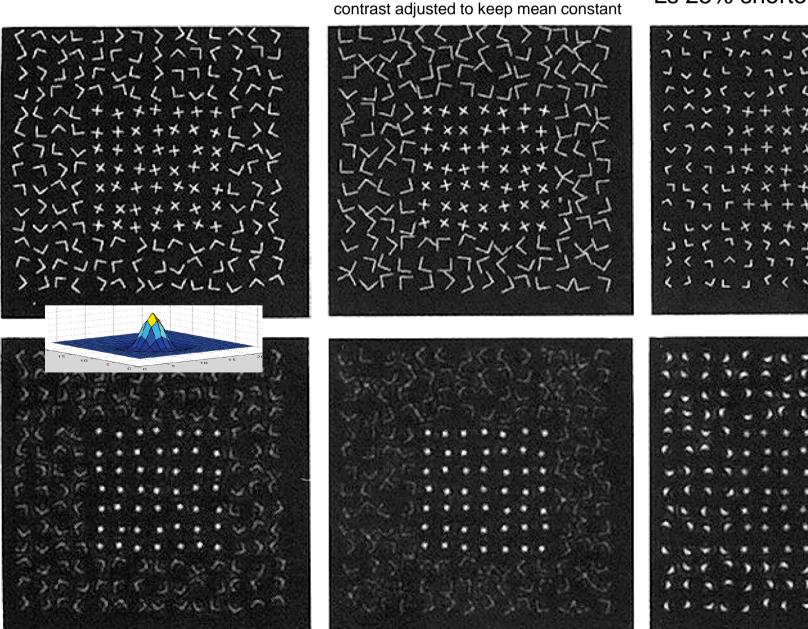


Observation: the Xs look smaller than the Ls.

"We note here that simpler, lower-level mechanisms tuned for size may be sufficient to explain this discrimination."

#### Early vision and texture perception

James R. Bergen\* & Edward H. Adelson\*\*



Ls 25% larger

Ls 25% shorter

> ト フ 」 ド ッ レ ッ イ マ ト マ ッ 71272112112 イレレトンコレトアレイハック rust ust Lugtrer 7+++++++ > \* × × \* × × \* < < > いア ヘコナキャンキャ フレ く 7 1+ X+ X+ + + M < F 76 4 6 X X + + X + X P P P ^ 77 F + + + + + × ~ ~ ~ ~ ~ ~ ~ L L V L X X X X X X X L J L JEC 7774 J76 AF 73 > < ¬ ^ 」 7 7 7 ~ Γ 」 ~ レ ^ () 1 1 1 ( ( ) ) ( ) 1 ]

#### Preattentive texture discrimination with early vision mechanisms

#### Jitendra Malik and Pietro Perona

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720

Received July 7, 1989; accepted December 28, 1989

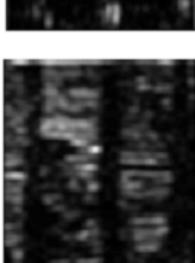
We present a model of human preattentive texture perception. This model consists of three stages: (1) convolution of the image with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses modeling outputs of V1 simple cells, (2) inhibition, localized in space, within and among the neuralresponse profiles that results in the suppression of weak responses when there are strong responses at the same or nearby locations, and (3) texture-boundary detection by using wide odd-symmetric mechanisms. Our model can predict the salience of texture boundaries in any arbitrary gray-scale image. A computer implementation of this model has been tested on many of the classic stimuli from psychophysical literature. Quantitative predictions of the degree of discriminability of different texture pairs match well with experimental measurements of discriminability in human observers.

# vertical filter



image

Squared responses



Spatially blurred



Threshold squared, blurred responses, then categorize texture based on those two bits

horizontal filter

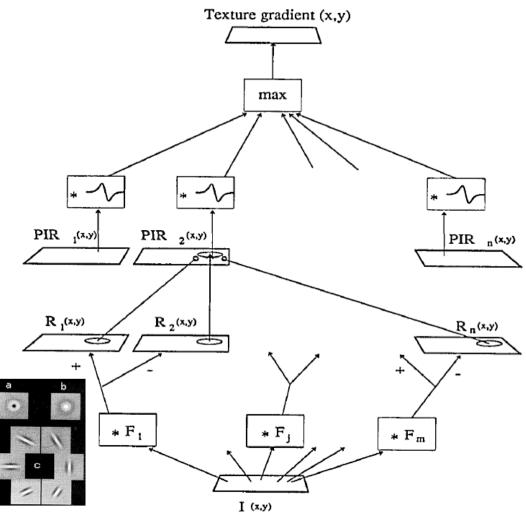
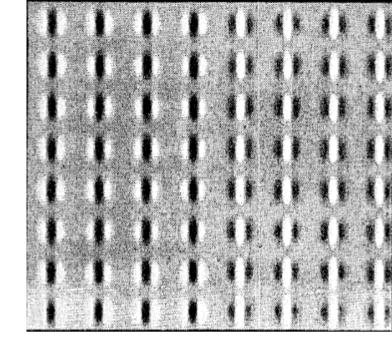
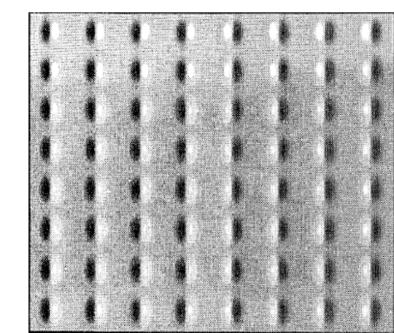


Fig. 1. Simplified schematics of our model for texture perception. The image (bottom) is filtered using the kernels  $F_1 \ldots F_m$  and is half-wave rectified to give the set of simple-cell responses  $R_1 \ldots R_n$ . The postinhibition responses  $PIR_1 \ldots PIR_n$  are computed by thresholding the  $R_i$  and taking the maximum of the result over small neighborhoods. The thresholds depend on the activity of all channels. The texture gradient is computed by taking the maximum of the responses of wide odd-symmetric filters acting on the postinhibition responses  $PIR_i$ .





# Two big families of models

1- Parametric models of filter outputs

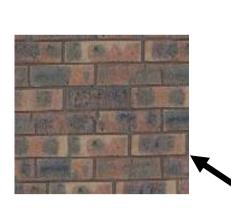
2- Example-based non-parametric models

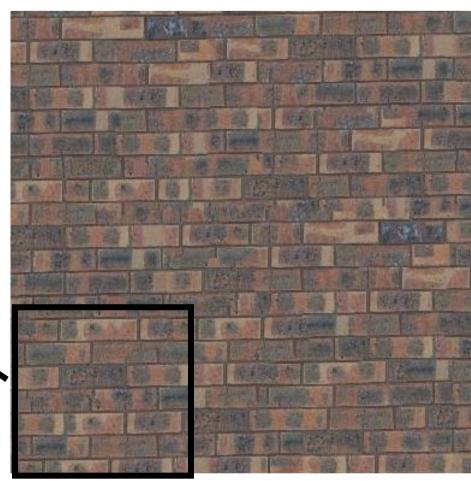
# The trivial texture synthesis algorithm











# Texture synthesis and representation



Set of equivalent textures

Space of all images

Set of equivalent textures: generated by exactly the same physical process

# Texture synthesis and representation



Set of equivalent textures

Set of perceptually equivalent textures

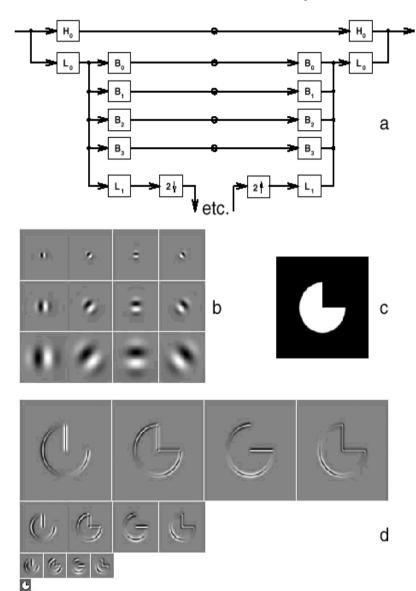
Space of all images

Set of equivalent textures: generated by exactly the same physical process Set of perceptually equivalent textures: "well, they just look the same to me" If matching the averaged squared filter values is a good way to match a given texture, then maybe matching the entire marginal distribution (eg, the histogram) of a filter's response would be even better.

Jim Bergen proposed this...

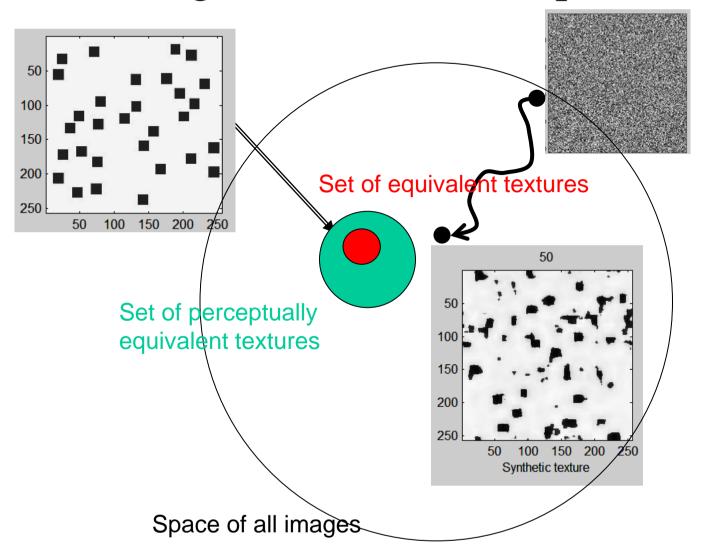
### **Pyramid-Based Texture Analysis/Synthesis**

David J. Heeger\* Stanford University James R. Bergen<sup>†</sup> SRI David Sarnoff Research Center



### SIGGRAPH 1994

The main idea: it works by 'kind of' projecting a random image into the set of equivalent textures



## Overview of the algorithm

```
Match-texture(noise,texture)

Match-Histogram (noise,texture)

analysis-pyr = Make-Pyramid (texture)

Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr

for s-band in subbands of synthesis-pyr

do

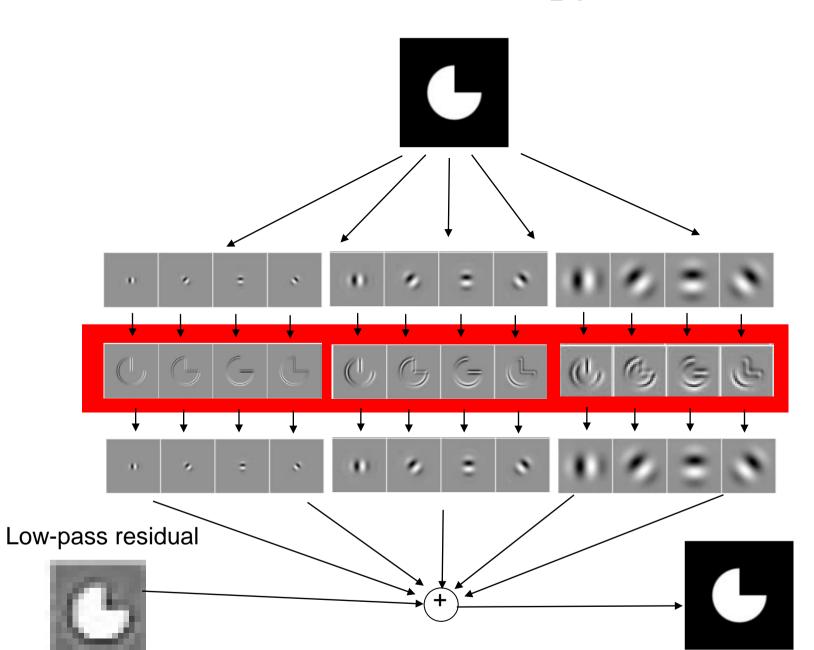
Match-Histogram (s-band,a-band)

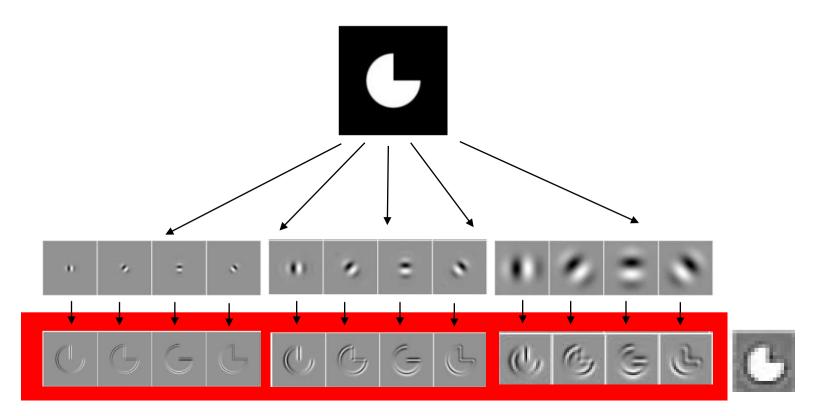
noise = Collapse-Pyramid (synthesis-pyr)

Match-Histogram (noise,texture)
```

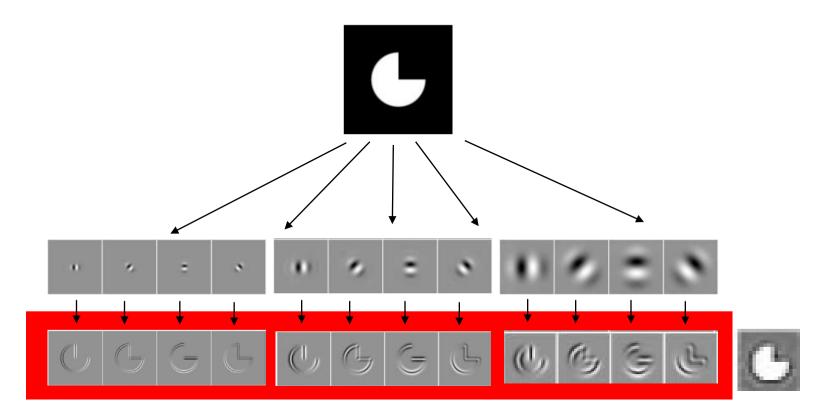
Two main tools:

- 1- steerable pyramid
- 2- matching histograms





But why do I want to represent images like this?



**Argument used by H & B**: Statistical measures in the subband representation seem to provide a "distance" between textures that correlates with human perception better than pixel-based representations.

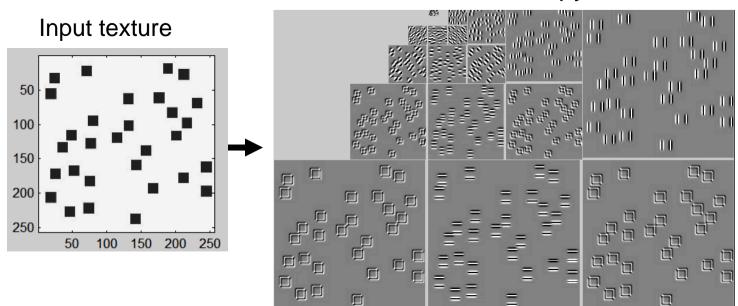


In general seems a good idea to have a representation that:

-Preserves all image information (we can go back to the image)

-Provides more independent channels of information than pixel values (we can mess with each band independently)

But all this is just indirectly related to the texture synthesis task. But let assume is good enough...



Steerable pyr

## Overview of the algorithm

```
Match-texture(noise,texture)

Match-Histogram (noise,texture)

analysis-pyr = Make-Pyramid (texture)

Loop for several iterations do

synthesis-pyr = Make-Pyramid (noise)

Loop for a-band in subbands of analysis-pyr

for s-band in subbands of synthesis-pyr

do

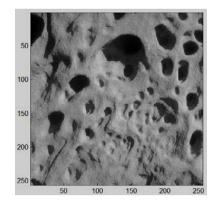
Match-Histogram (s-band,a-band)

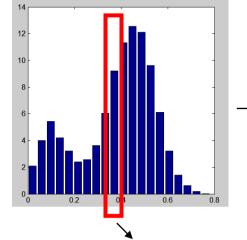
noise = Collapse-Pyramid (synthesis-pyr)

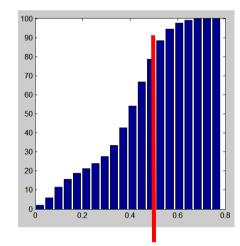
Match-Histogram (noise,texture)
```

Two main tools:

- 1- steerable pyramid
- 2- matching histograms

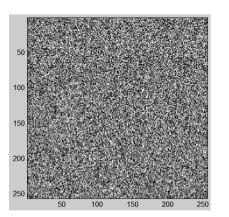


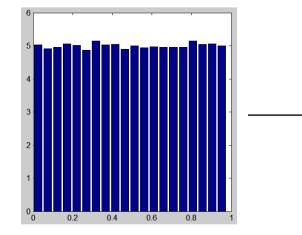


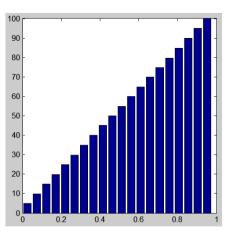


9% of pixels have an intensity value within the range[0.37, 0.41]

75% of pixels have an intensity val smaller than 0.5

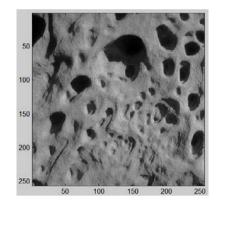


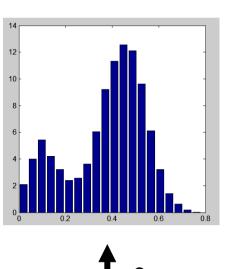




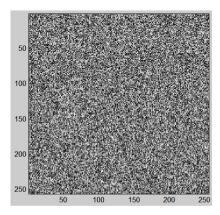
5% of pixels have an intensity value within the range[0.37, 0.41]

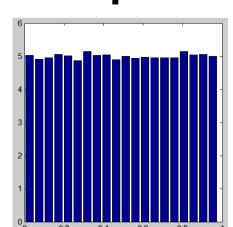
### Z(x,y)











We look for a transformation of the image Y

$$Y' = f(Y)$$

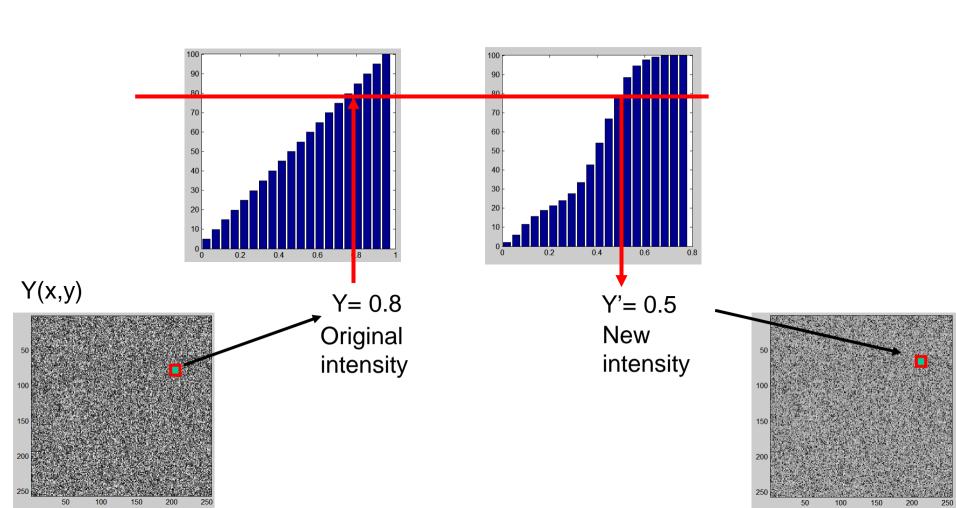
Such that Hist(Y) = Hist(f(Z))

**Problem**: there are infinitely many functions that can do this transformation.

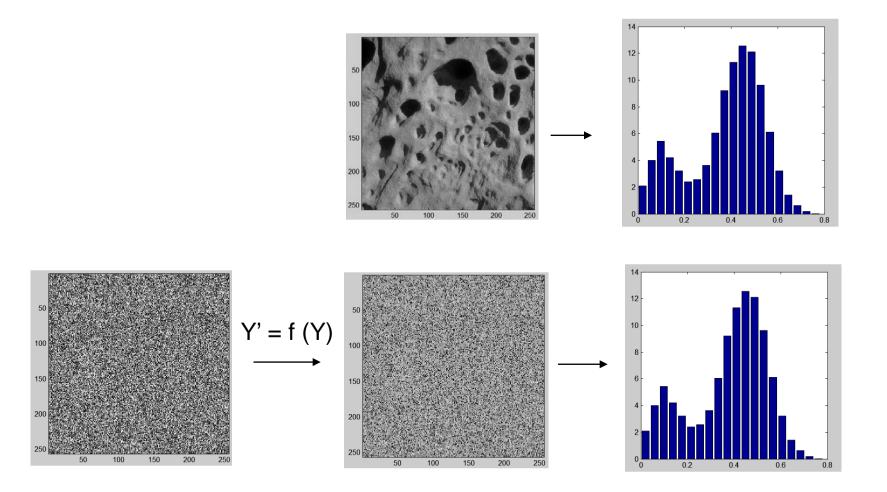
A natural choice is to use *f* being:

- pointwise non linearity
- stationary
- monotonic (most of the time invertible)

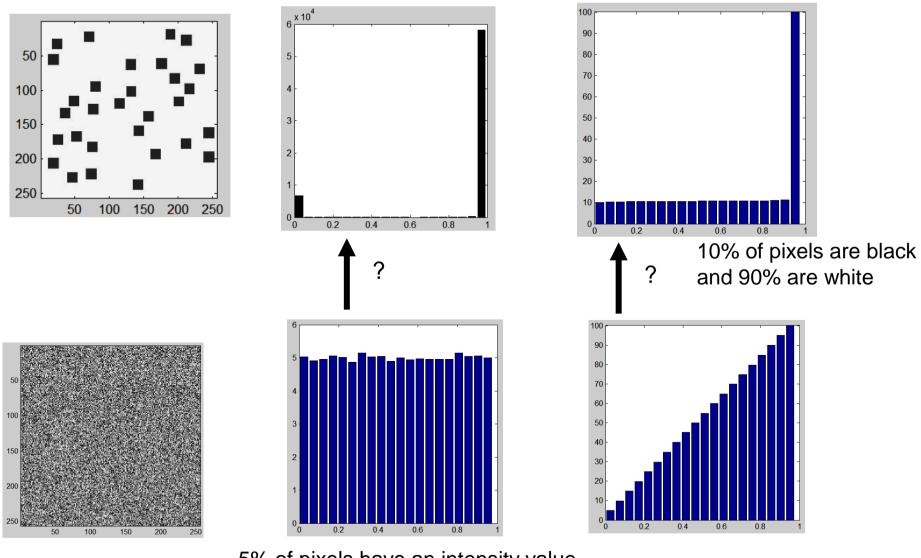
The function f is just a look up table: it says, change all the pixels of value Y into a value f(Y).



Y' = f(Y)



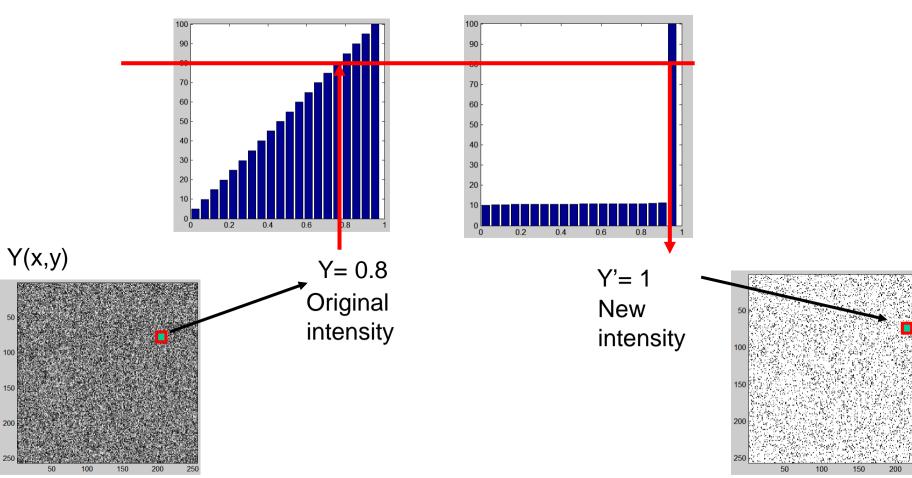
## Another example: Matching histograms



5% of pixels have an intensity value within the range[0.37, 0.41]

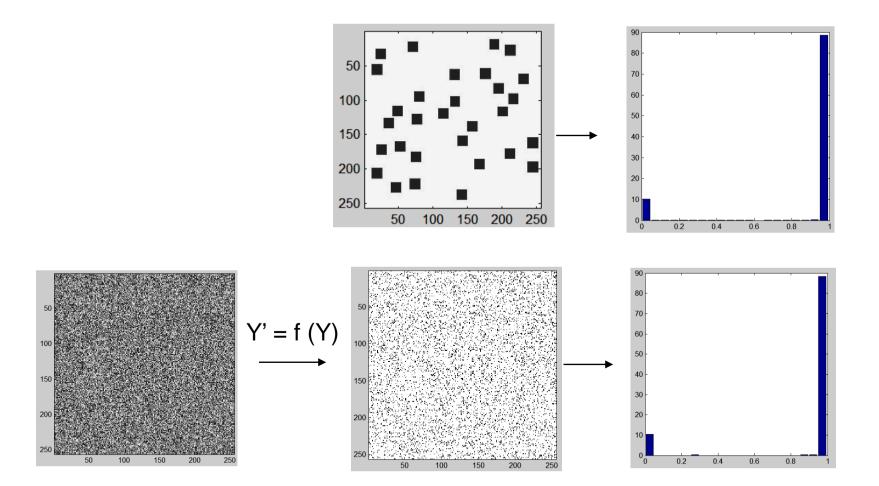
## Another example: Matching histograms

The function f is just a look up table: it says, change all the pixels of value Y into a value f(Y).



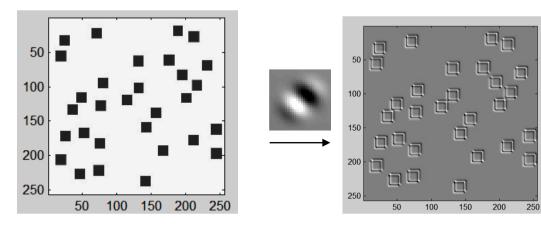
Y' = f(Y)

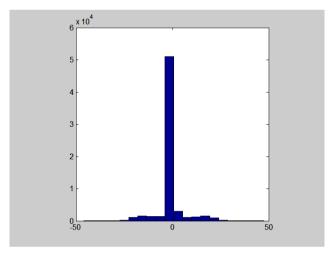
## Another example: Matching histograms

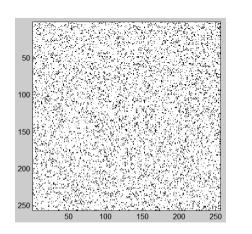


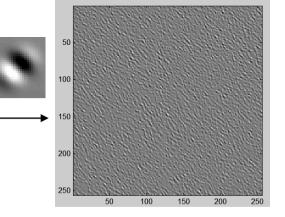
In this example, f is a step function.

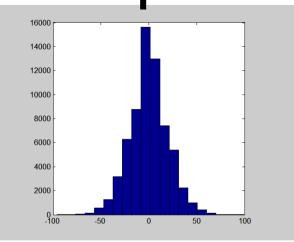
## Matching histograms of a subband



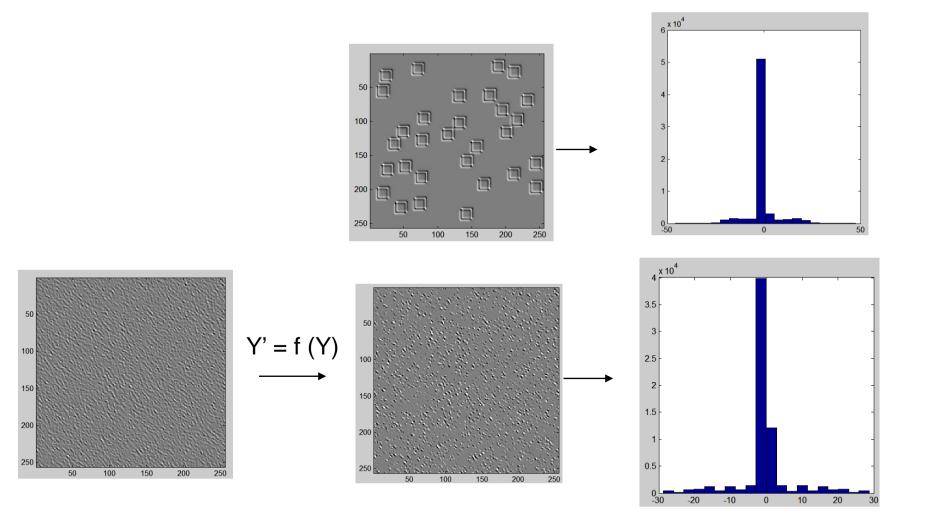




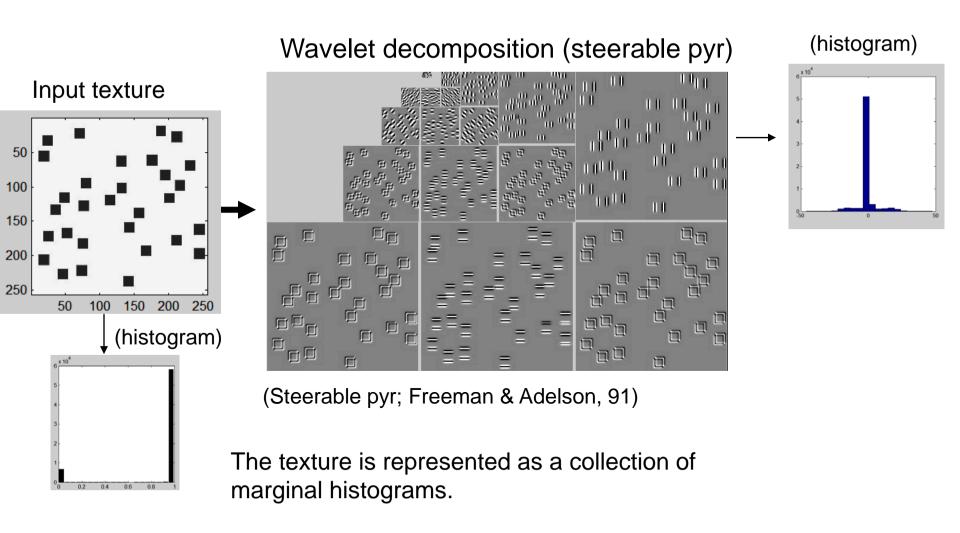




## Matching histograms of a subband

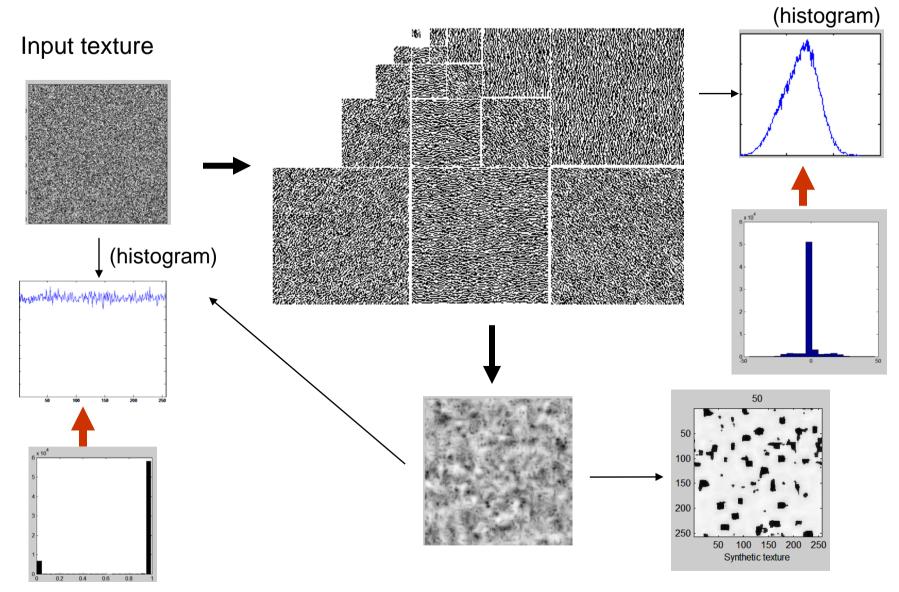


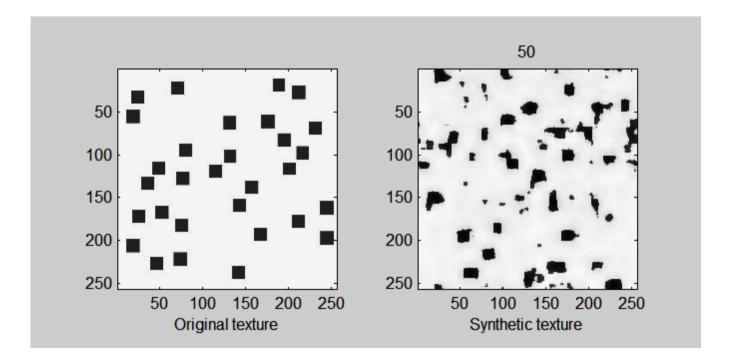
# **Texture analysis**

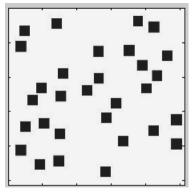


# **Texture synthesis**

#### Heeger and Bergen, 1995

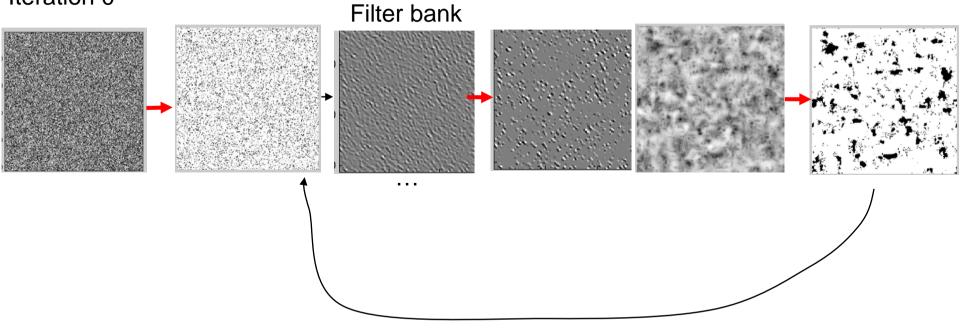




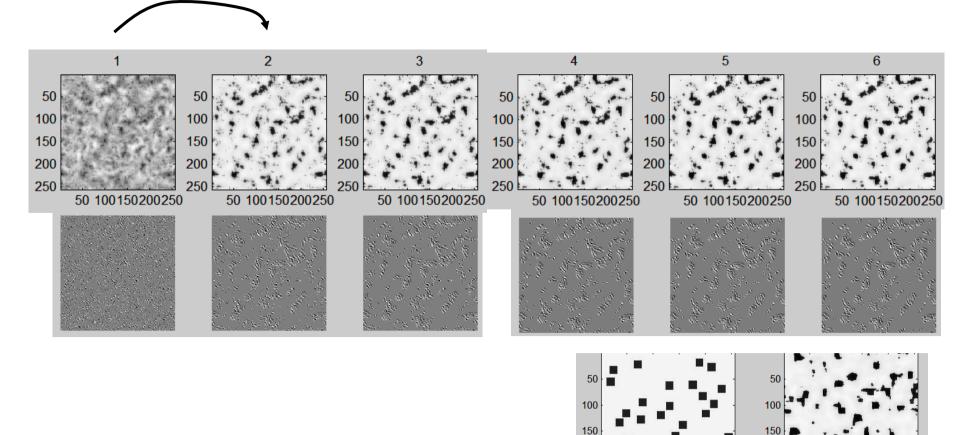


The black and white blocks appear by thresholding (f) a blobby image

#### Iteration 0



The black and white blocks appear by thresholding (f) a blobby image



200

250

50

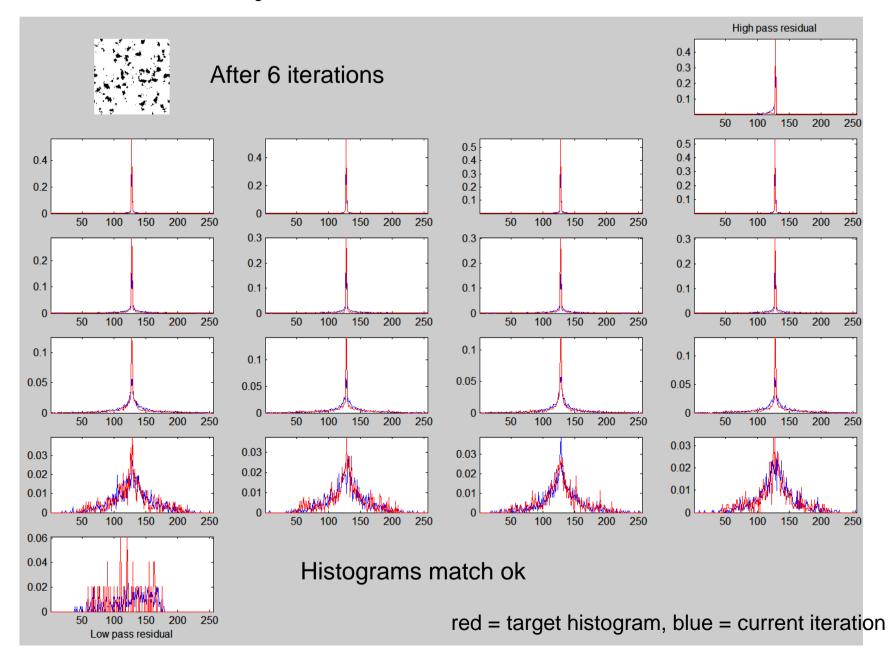
100 150 200 250

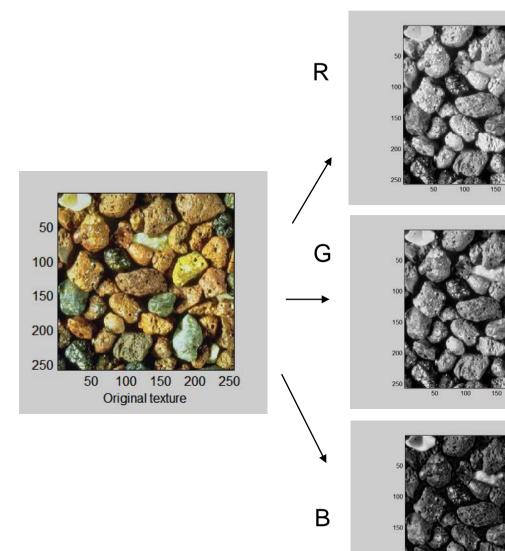
Original texture

50 100 150 200 250 Synthetic texture

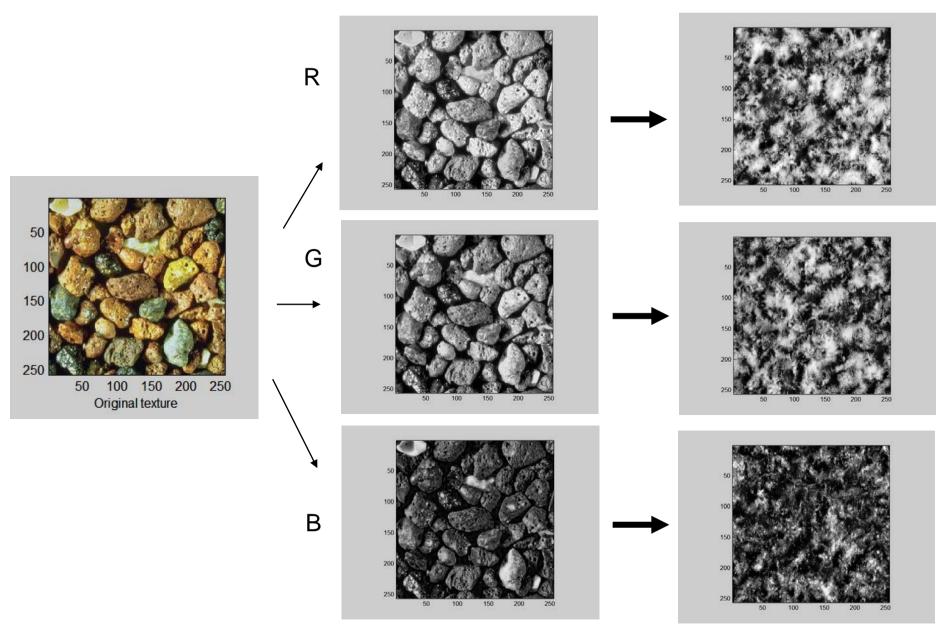
200

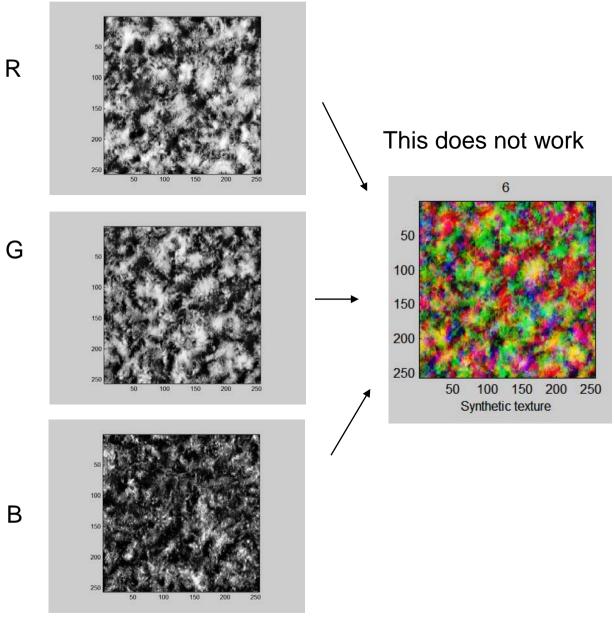
250

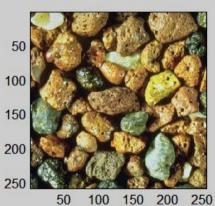




#### Three textures



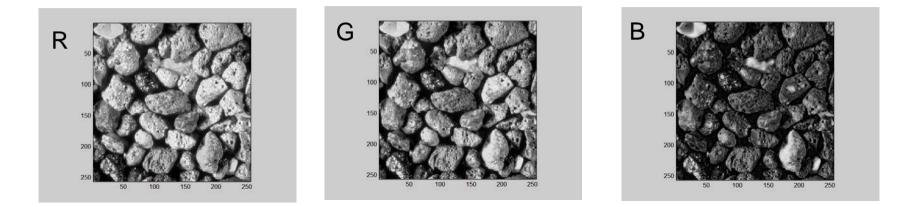




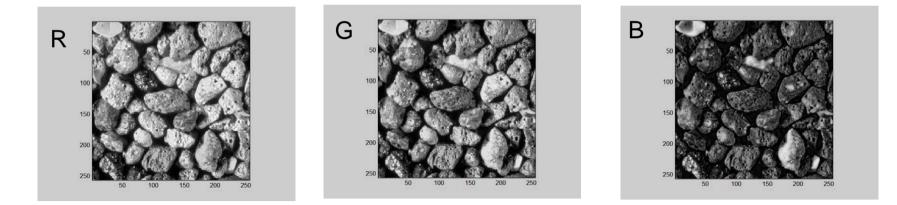
<sup>50 100 150 200 25</sup> Original texture

Problem: we create new colors not present in the original image.

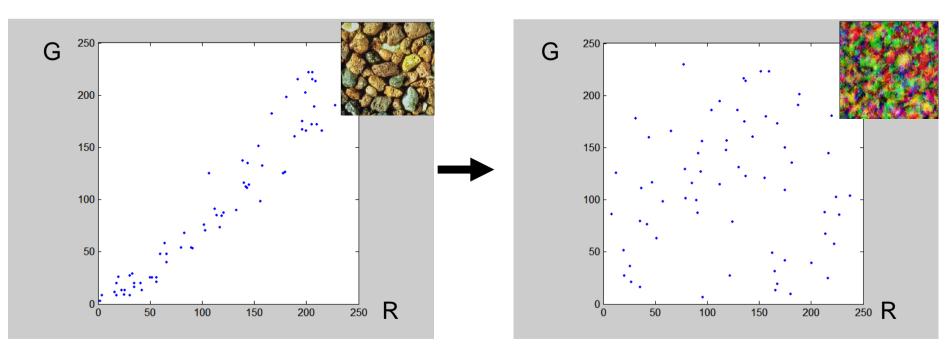
Why? Color channels are not independent.



## PCA and decorrelation



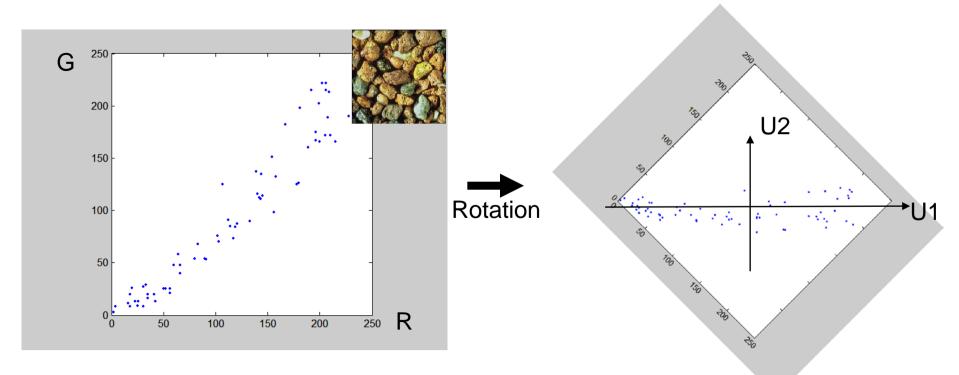
In the original image, R and G are correlated, but, after synthesis,...



## PCA and decorrelation

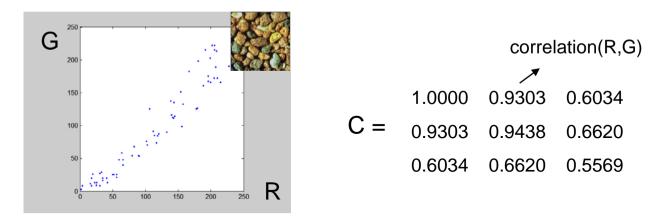
The texture synthesis algorithm assumes that the channels are independent.

What we want to do is some rotation

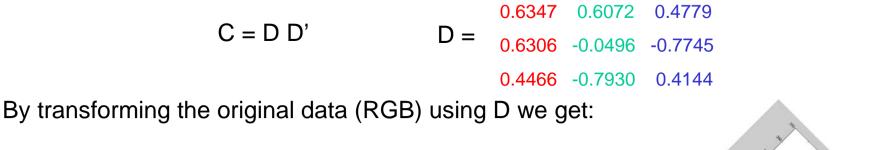


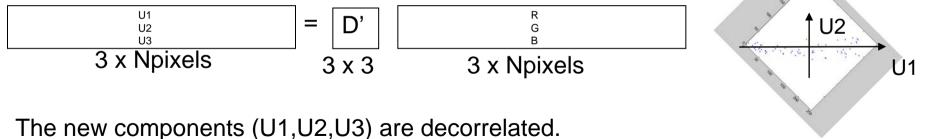
See that in this rotated space, if I specify one coordinate the other remains unconstrained.

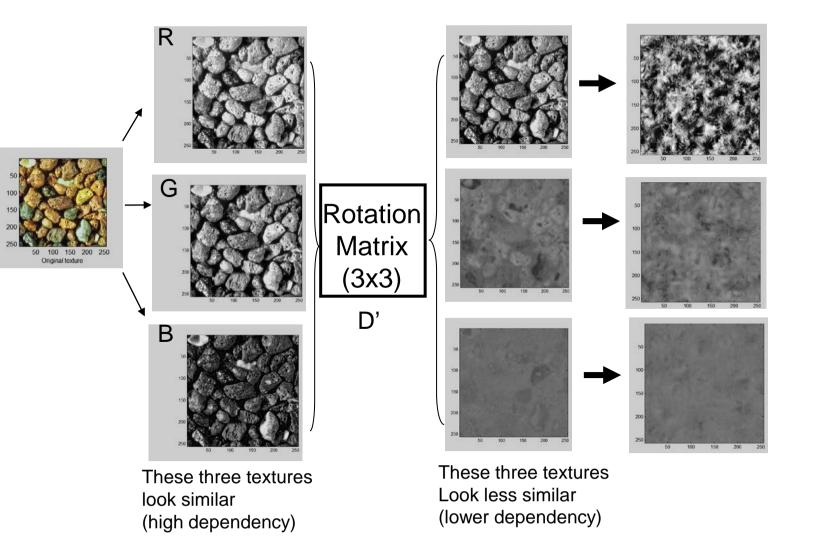
## PCA and decorrelation

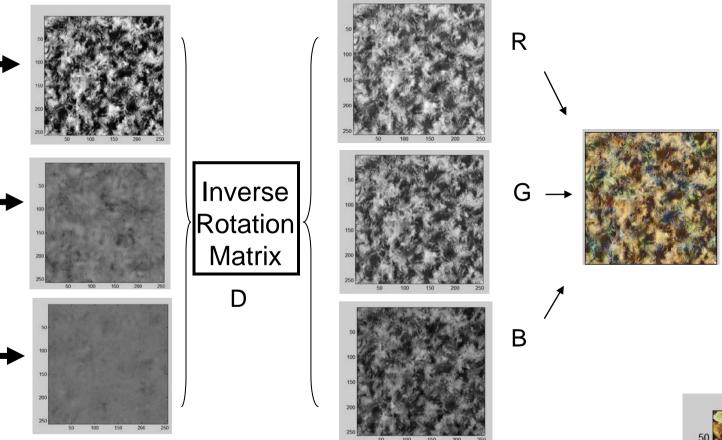


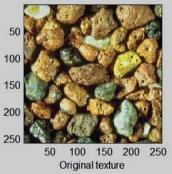
PCA finds the principal directions of variation of the data. It gives a decomposition of the covariance matrix as:

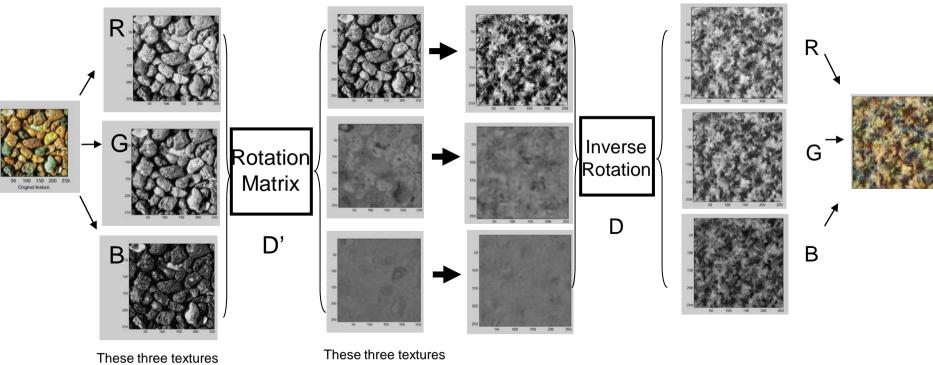






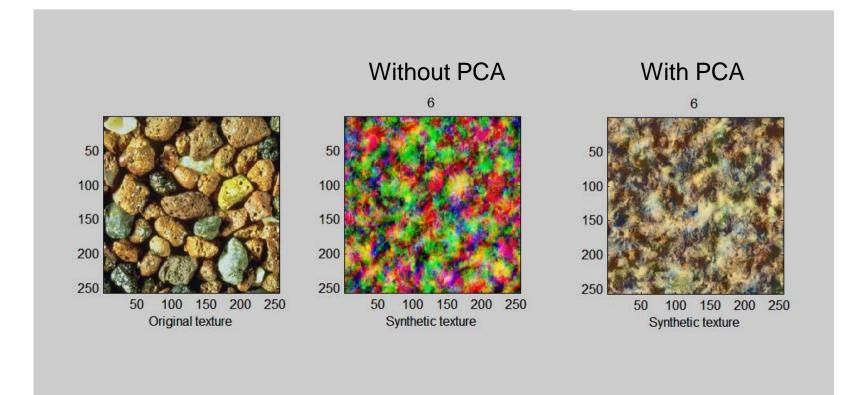




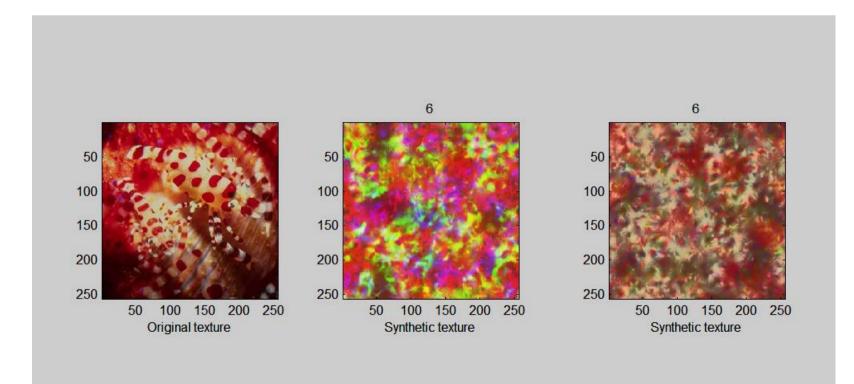


look similar (high dependency) These three textures Look less similar (lower dependency)

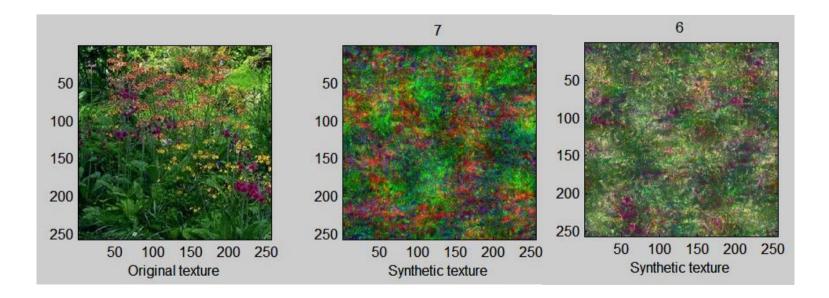
### Color channels



#### Color channels



#### Color channels



### Examples from the paper



Figure 3: In each pair left image is original and right image is synthetic: stucco, iridescent ribbon, green marble, panda fur, slag stone, figured yew wood.

#### Heeger and Bergen, 1995

### Examples from the paper



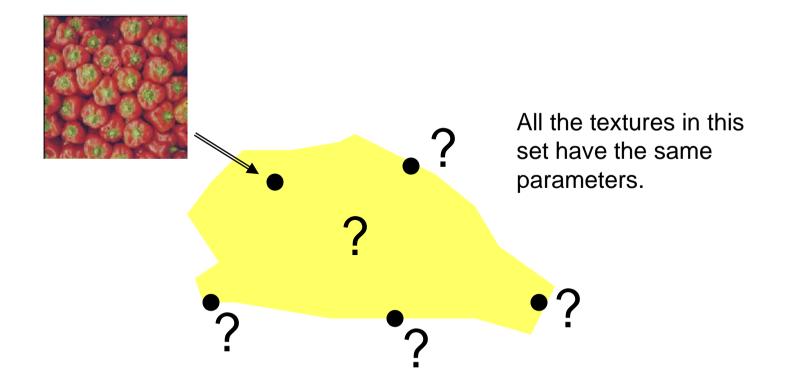
Figure 4: In each pair left image is original and right image is synthetic: red gravel, figured sepele wood, brocolli, bark paper, denim, pink wall, ivy, grass, sand, surf.

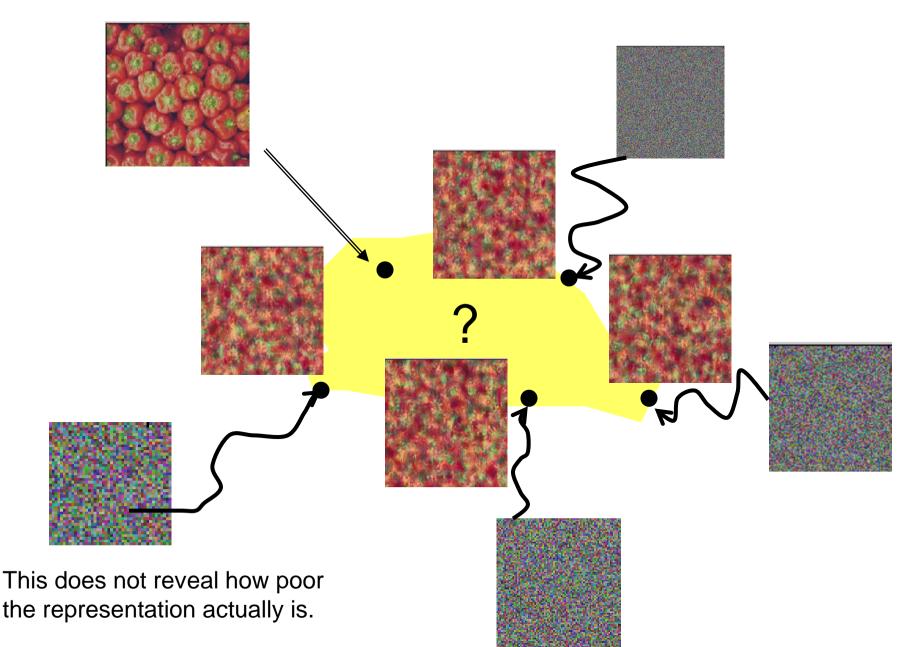
### Examples not from the paper



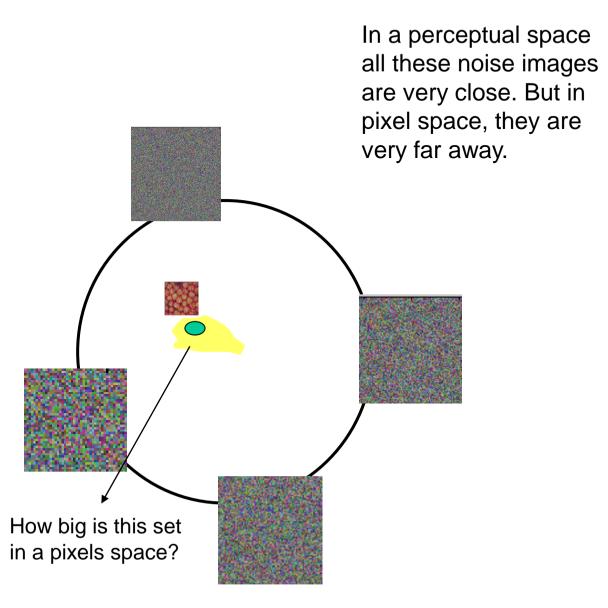
But, does it really work even when it seems to work?

But, does it really work??? How to measure how well the representation constraints the set of equivalent textures?

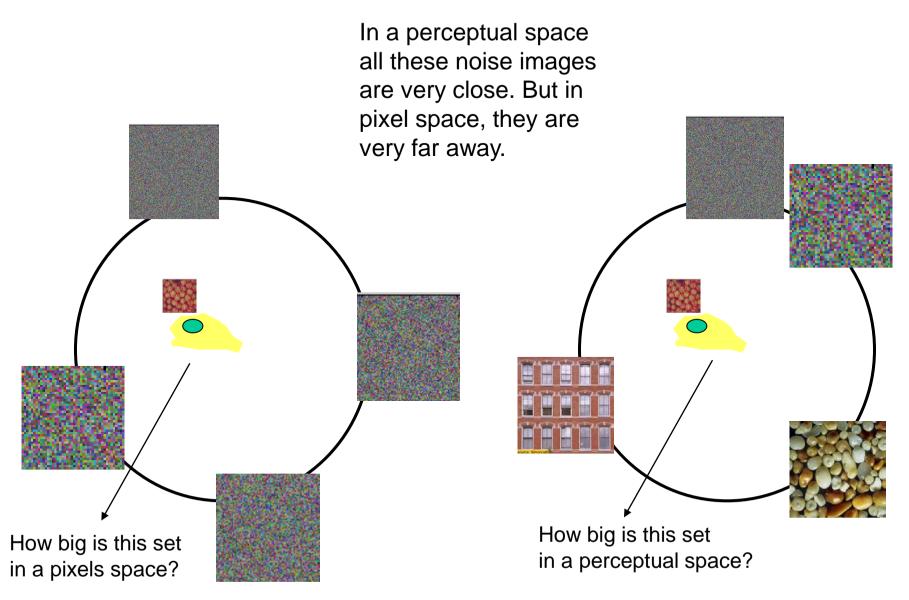


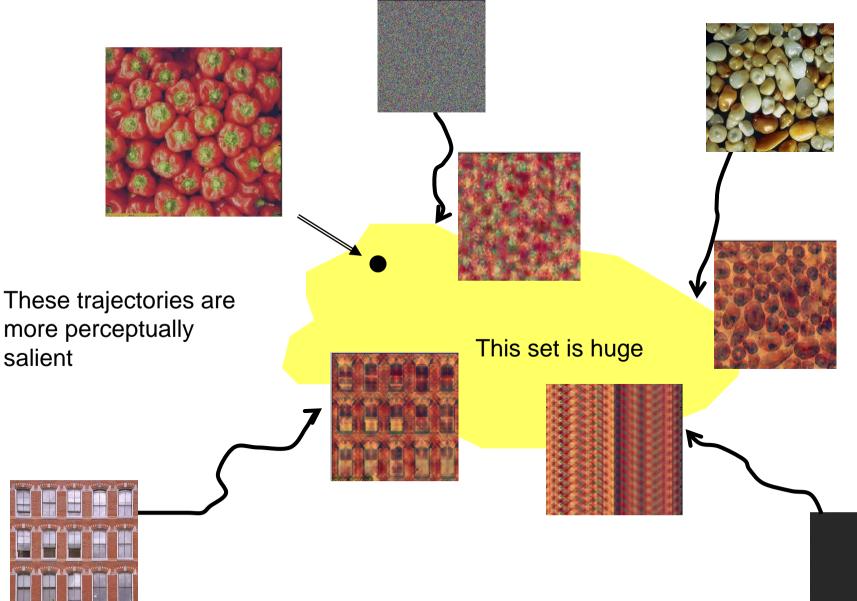


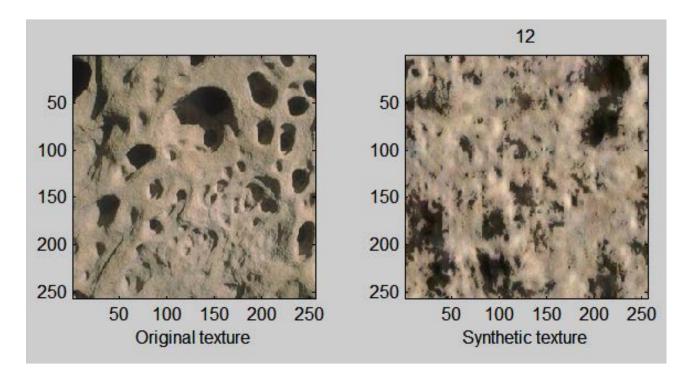
### We need a space that is more perceptual

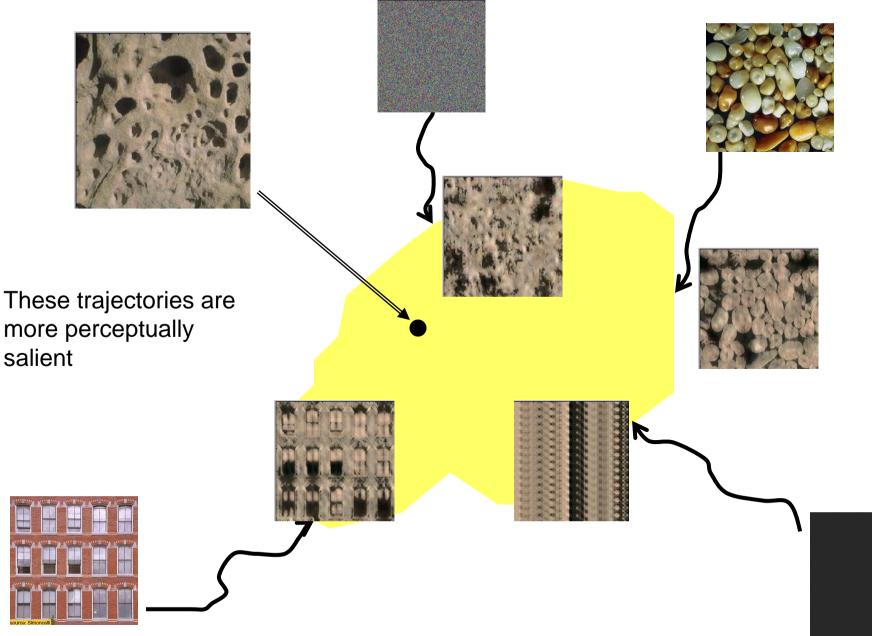


### We need a space that is more perceptual









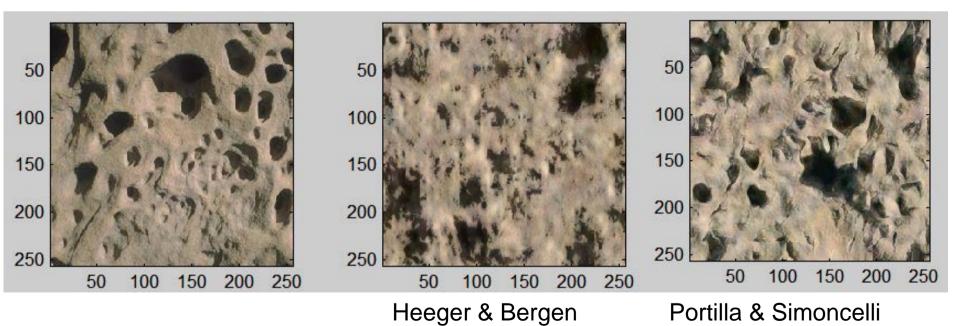
# Portilla and Simoncelli

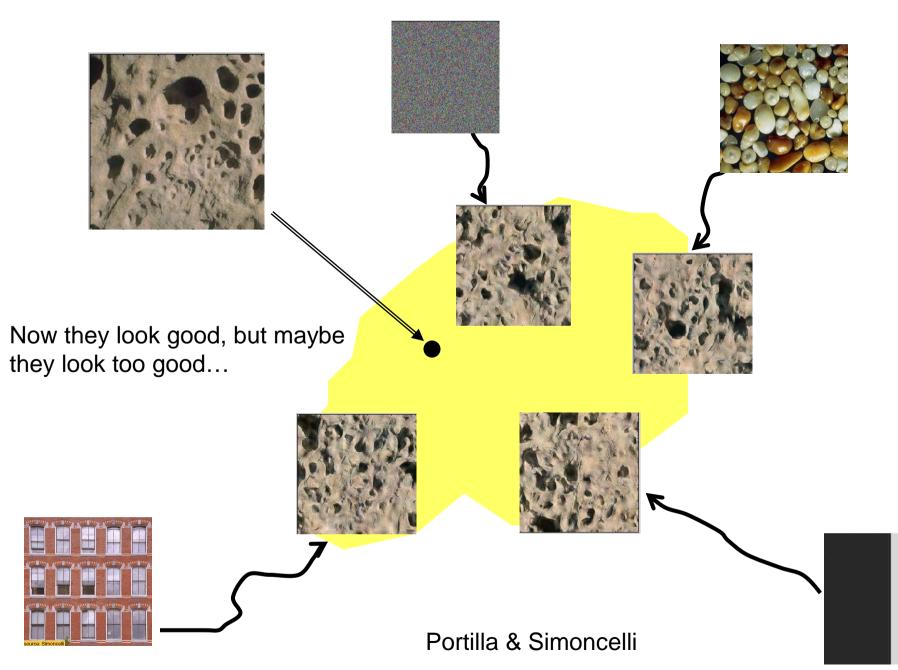
- Parametric representation, based on Gaussian scale mixture prior model for images.
- About 1000 numbers to describe a texture.
- Ok results; maybe as good as DeBonet.

## Portilla and Simoncelli



## Portilla & Simoncelli





A summary-statistic representation in peripheral vision explains visual crowding

| Benjamin Balas <sup>1</sup> , |  |
|-------------------------------|--|
| Lisa Nakano <sup>2</sup> and  |  |
| Ruth Rosenholtz 3             |  |

+

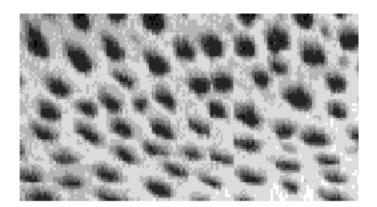
A B B A Journal of Vision November 19, 2009 vol. 9 no. 12

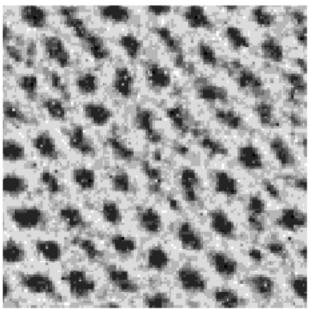


# Zhu, Wu, & Mumford, 1998

- Principled approach. Based on an assumption of heavy-tailed distributions for an over-complete set of filters.
- Synthesis quality not great, but ok.

## Zhu, Wu, & Mumford





Ь

a

Cheetah

Synthetic

### De Bonet (and Viola) SIGGRAPH 1997

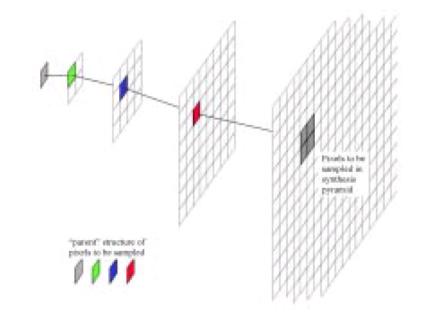
#### Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images

Jeremy S. De Bonet – Learning & Vision Group Artificial Intelligence Laboratory Massachusetts Institute of Technology

EMAIL: jsd@ai.mit.edu HOMEPAGE: http://www.ai.mit.edu/\_jsd

## DeBonet

#### Learn: use filter conditional statistics across scale.



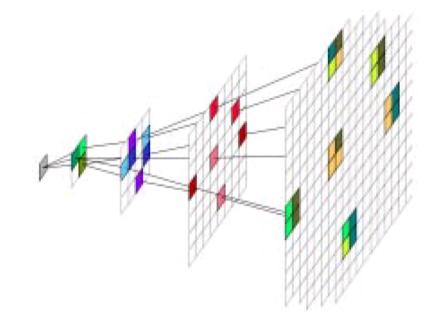
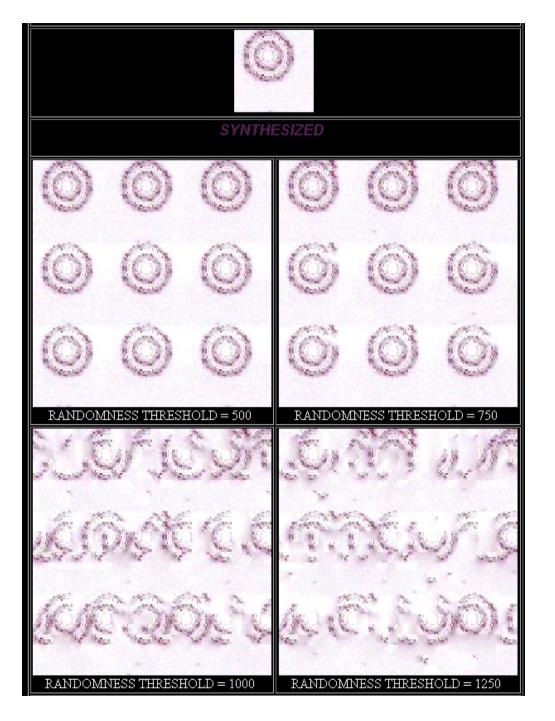
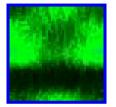


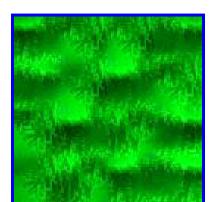
Figure 8: The distribution from which pixels in the synthesis pyramid are sampled is conditioned on the "parent" structure of those pixels. Each element of the parent structure contains a vector of the feature measurements at that location and scale.

Figure 9: An input texture is decomposed to form an analysis pyramid, from which a new synthesis pyramid is sampled, conditioned on local features within the pyramids. A filter bank of local texture measures, based on psychophysical models, are used as features.



### DeBonet



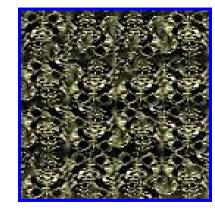








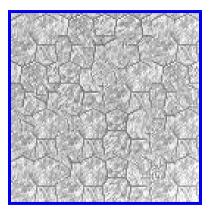
















# Two big families of models

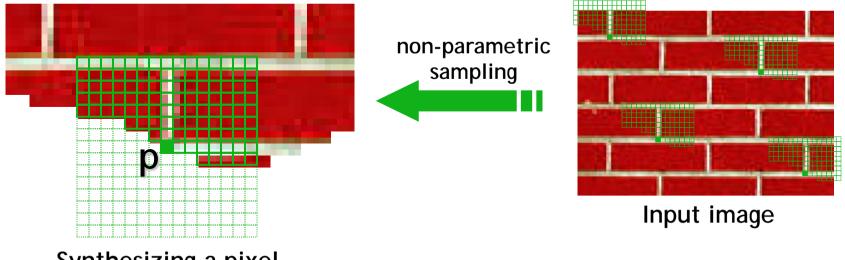
1- Parametric models of filter outputs

2- Example-based non-parametric models

#### **Texture Synthesis by Non-parametric Sampling**

Alexei A. Efros and Thomas K. Leung Computer Science Division University of California, Berkeley Berkeley, CA 94720-1776, U.S.A. {efros,leungt}@cs.berkeley.edu

# Efros & Leung Algorithm

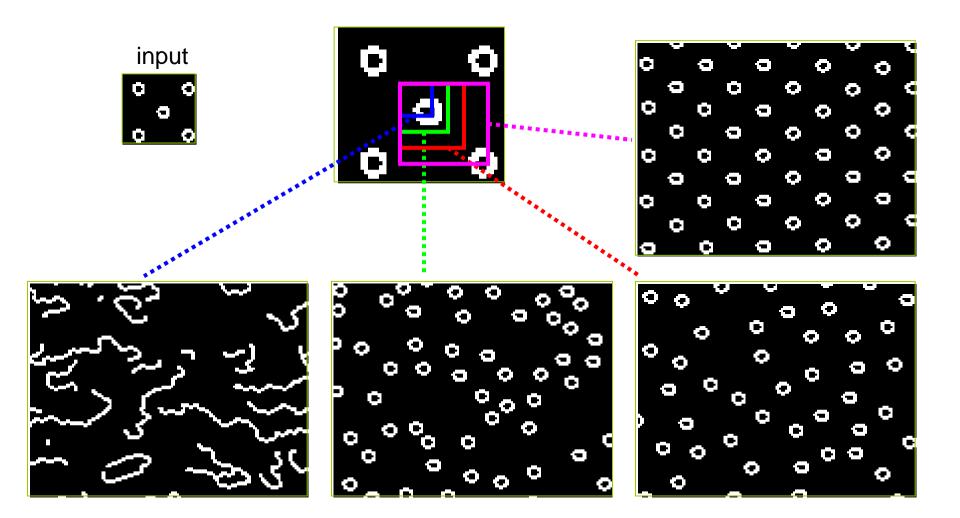


Synthesizing a pixel

### Assuming Markov property, compute P(p|N(p))

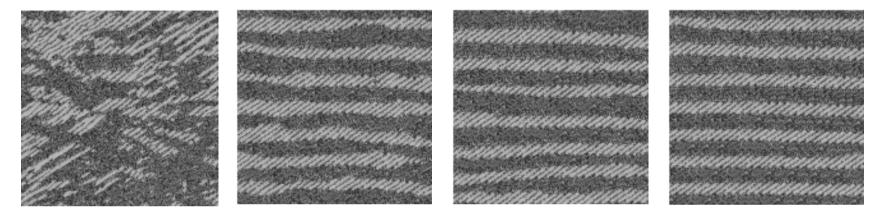
- Building explicit probability tables infeasible
- Instead, we search the input image for all similar neighborhoods — that's our pdf for p
- To sample from this pdf, just pick one match at random

## **Neighborhood Window**

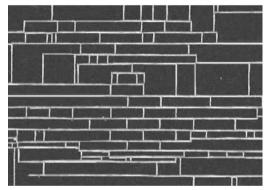


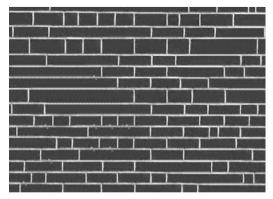
# Varying Window Size







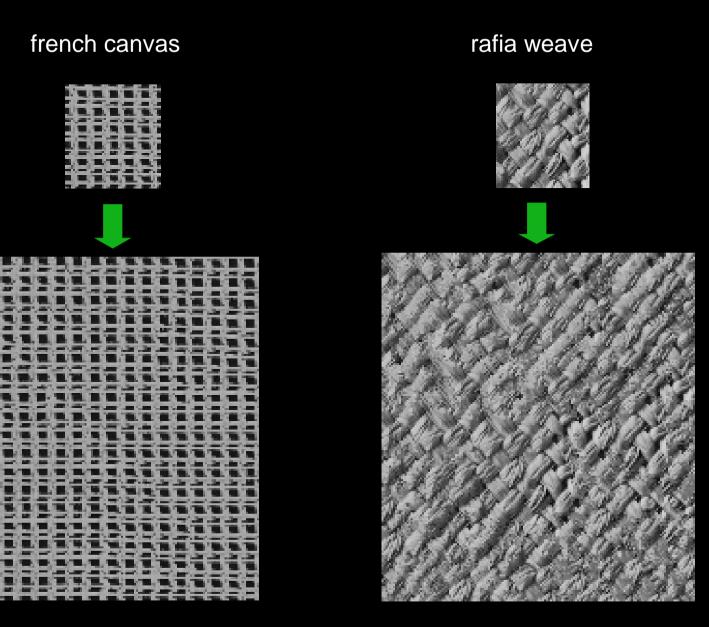




|                | בייריב   |   |
|----------------|----------|---|
| <u> </u>       | 그는       |   |
|                | <u> </u> |   |
|                | TT       | , |
| <u>1, 1, 1</u> |          |   |
|                |          |   |
| ┶┓─└╸          |          |   |

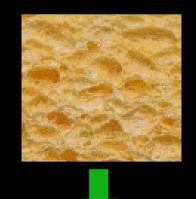
Increasing window size

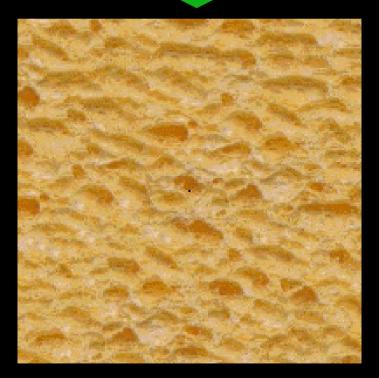
## Synthesis Results



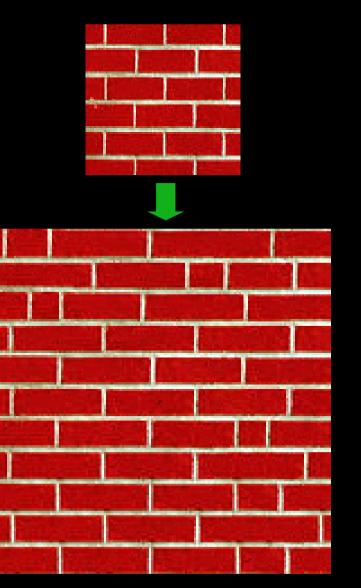
### More Results

#### white bread



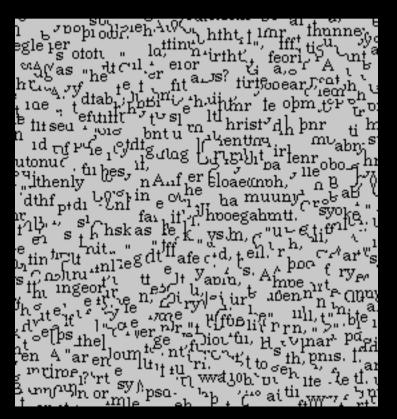


#### brick wall



### Homage to Shannon

r Dick Gephardt was fai rful riff on the looming : nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs s, that the legal system h g with this latest tanger



thaim. them . "Whephartfe lartifelintomimen el ck Clirticout omaim thartfelins fout s aneste the ry onst wartfe lck Gephtoomimeationl sigab Chiooufut Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Włeontongal s k Cirtioouirtfepelong pme abegal fartfenstemem tiensteneltorydt telemephinsperdt was agemen ff ons artientont Cling peme asırtfe atiıh, "Boui s nal s fartfelt sig pedr‡rdt ske abounutie aboutioo tfeonewas you abownthardt thatins fain, ped, ains. them, pabout wasy arfuut couitly d, ln A h ole emthrängboomme agas fa bontinsyst Clinüt i ory about continst Clipeoµinst Cloke agatiff out ( stome minemen fly ardt beoraboul n, thenly as t G cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbaut cout congagal comininga: mifmst Clivy abon 'al coountha.emungairt tf oun Vhe looorystan loontieph. intly on, theoplegatick ul tatiezontly atie Diontiomt wal s f tbegàe ener <u>mthahgat's enenhinhas fan, "intchthory abons y</u>

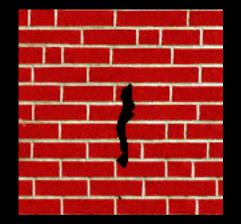
## Hole Filling

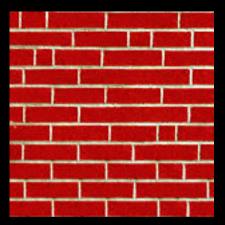




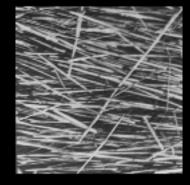


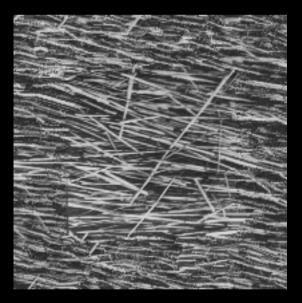






## Extrapolation

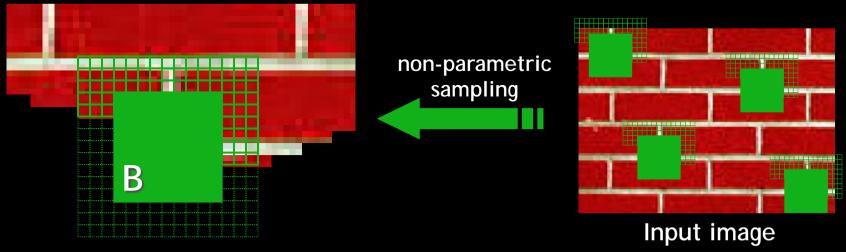








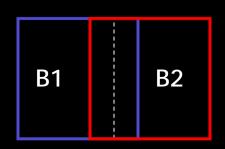
## Image Quilting [Efros & Freeman]

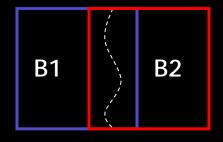


Synthesizing a block

- <u>Observation</u>: neighbor pixels are highly correlated Idea: unit of synthesis = block
  - Exactly the same but now we want P(B|N(B))
  - Much faster: synthesize all pixels in a block at once
  - Not the same as multi-scale!

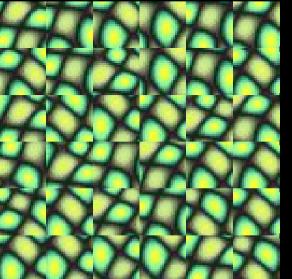


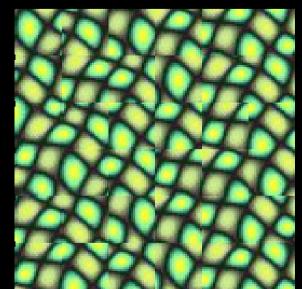


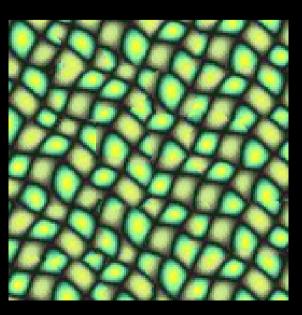


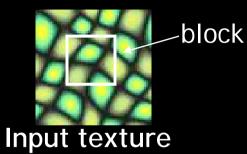
Random placement of blocks Neighboring blocks constrained by overlap

Minimal error boundary cut



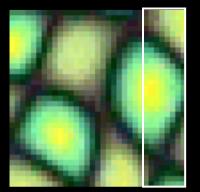


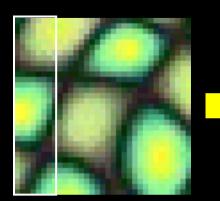


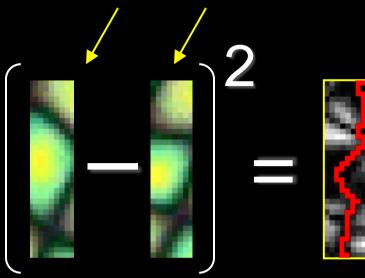


### Minimal error boundary

#### overlapping blocks

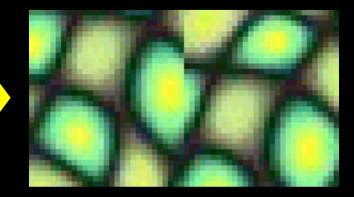


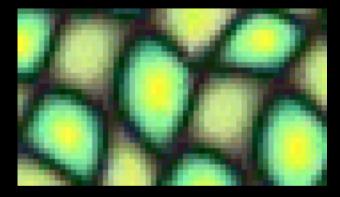




overlap error

#### vertical boundary

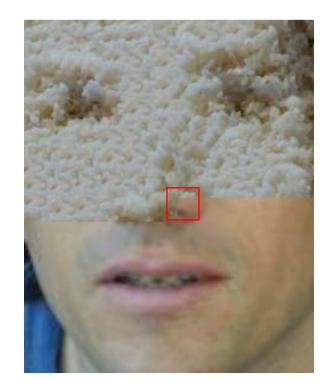




min. error boundary

# **Texture Transfer**

- Take the texture from one object and "paint" it onto another object
  - This requires separating texture and shape
  - That's HARD, but we can cheat
  - Assume we can capture shape by boundary and rough shading



 Then, just add another constraint when sampling: similarity to underlying image at that spot



#### parmesan



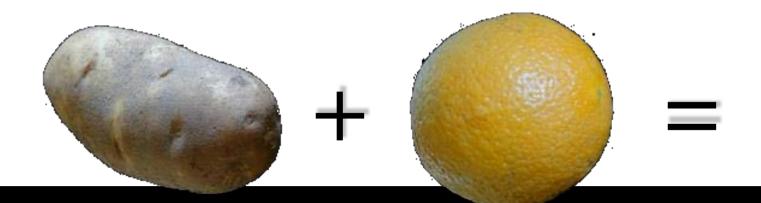


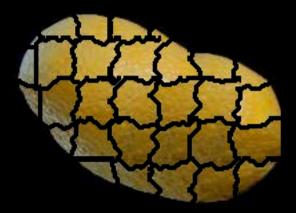




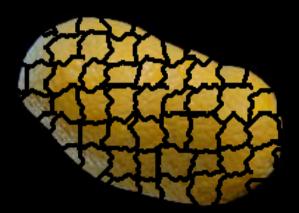




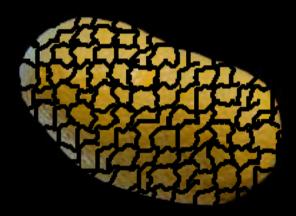




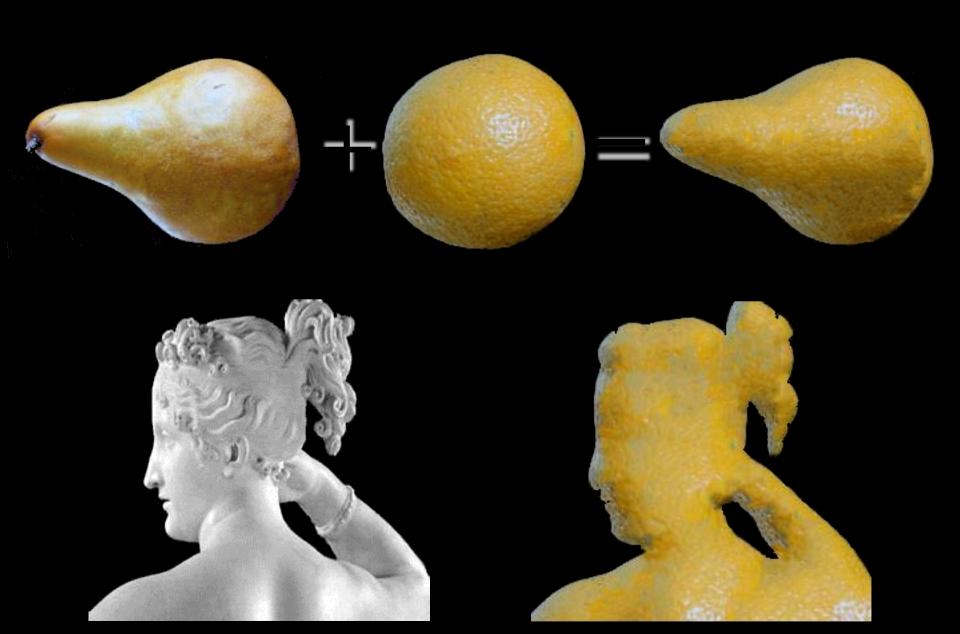






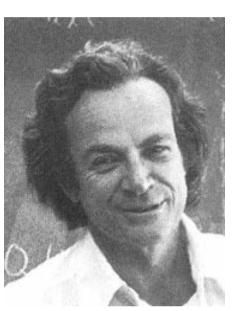






#### Source texture



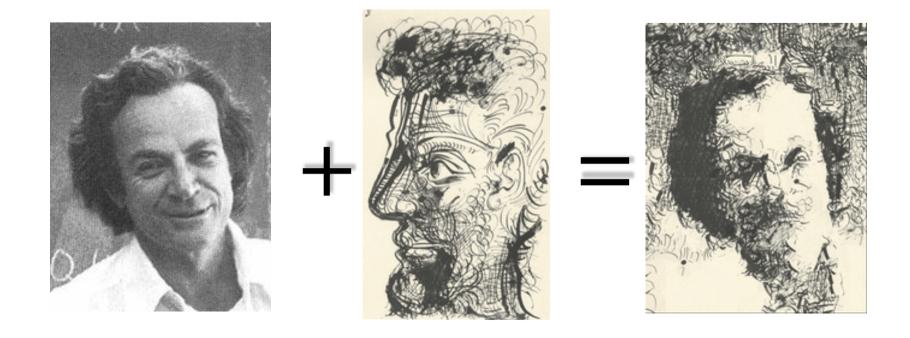


#### Target image

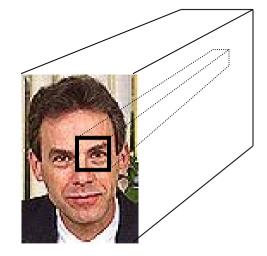
#### Source correspondence image

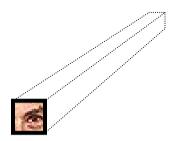


#### Target correspondence image

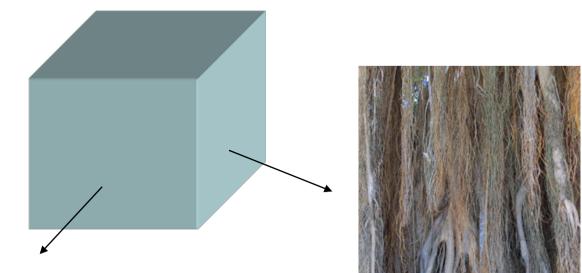


### Project ideas Non stationary texture synthesis

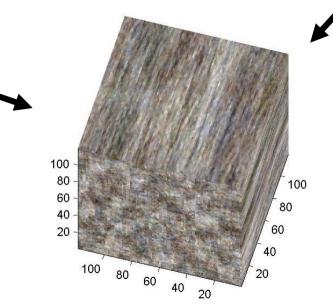




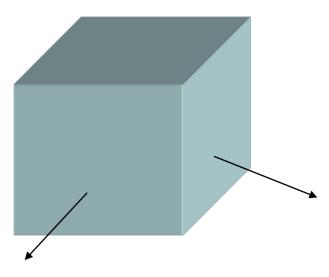
### Project ideas: 3D textures







## Project ideas: 3D textures







Can you create a 3D volume that you can navigate? Assume that all slices should have the same statistics. Need knowledge about alpha map?

This is not a solid texture. This is a 3D scene texture.