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representation



A “simple” segmentation problem




It can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped Iearnig of novel objects. J Vis, 3(6), 413-422



Discover the camouflaged object

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Discover the camouflaged object

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422


















Any guesses?







Segmentation Is a global process
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What are the occluded numbers?



Segmentation Is a global process

What are the occluded numbers?

Occlusion is an important cue in grouping.



... but not too global

) S




Magritte, 1957



Groupings by Invisible Completions




1970s: R. C. James



2000s: Bev Doolittle



Perceptual organization

and pieces of visual information
that are available in the retinal
Image are structured into the
larger units of perceived objects
and their interrelations”

Stephen E. Palmer, Vision
Science, 1999



Gestalt principles

There are hundreds of different grouping laws



Not grouped

Proximity

similanty

Similarity

Common Fate

Common Region



Parallelism

Symmetry

Continuity

Closure

Familiar configuration



Familiarity




Familiarity




Influences of grouping
a b

Grouping influences other
perceptual mechanisms such
as lightness perception

http://web.mit.edu/persci/people/adelson/publications/gazzan. dir/koffka.html
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Cc

Variations on the corrugated plaid. (a) The two patches appear nearly the same.
(b) The patches appear quite different. (c) The patches appear quite different, but
there is no plausible shaded model. (d) Possible grouping induced by junctions.

E. H. Adelson, Lightness Perception and Lightness lllusions



 Edges
— Canny edge detector
—Pb

e Segmentation
— Clustering
— Spectral methods




Finding edges



What Is an edge?




What IS an edge’?
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I[EEE TRAMSACTIONS ON PATTERN ANALYSIS AMD MACHIME INTELLIGENCE., VOL. PAMI-S. NO, 6, NOVEMBER 148G 6Ty

A Computational Approach to Edge Detection

JOHN CANNY, MEMBER, IEEE

John Canny (S’81-M’82) was born in Adelaide,
Australia, in 1958. He received the B.Sc. degree
in computer science and the B.E. degree from
Adelaide University in 1980 and 1981, respec-
tively, and the S.M. degree from the Massachu-
setts Institute of Technology, Cambridge, in 1983.

He is with the Artificial Intelligence Labora-
tory, M.I.T. His research interests include low-
level vision, model-based vision, motion planning
for robots, and computer algebra.

Mr. Canny is a student member of the Asso-
ciation for Computing Machinery.




Ainding edges in the image

Edge strength

Edge orientation:

Edge normal:

Image gradient:
dl ol
VI=|—,—
dr Oy
Approximation image derivative:

2~ I(ay) -1z -1,y)

E(z,y) = [VI(z,y)|

o1 /0y

d(x,y) = £VI = arctan o1/0z

VI
VI
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inding edges in the image




A better way of computing derivatives:

(X, X ——X2+Z2
hx(x1 y) — (0,}( y) = ﬁe 20
_A(xy) xS
hy(X,Y) — Py = ﬁe

Scale



1 pixel 3 pixels 7 pixels

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

Forsyth, 2002
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Edge normal

Angle: arctan




Gradient magnitudes at scale 1 Gradient magnitudes at scale 2

Issues:
1) The gradient magnitude at different scales is different; which should
we choose?
2) The gradient magnitude is large along thick trail; how
do we identify the significant points?
3) How do we link the relevant points up into curves?
4) Noise.

The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

Forsyth, 2002



We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression). These points should form a curve. There are

then two algorithmic issues: at which point is the maximum, and where is the
next one?

Forsyth, 2002



Forsyth, 2002

2
(radient
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Non-maximum
suppression

At g, we have a
maximum if the
value is larger
than those at
both p and atr.
Interpolate to
get these
values.



Examples:
Non-Maximum Suppression

00t

Ooo il
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courtesy of G. Loy

Non-maxima

Original image Gradient magnitude suppressed

Slide credit: Christopher Rasmussen



Forsyth, 2002

&
(radient

Predicting
the next
edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
rors).




Gradient magnitude

Closing edge gaps

 Check that maximum value of gradient
value Is sufficiently large

— drop-outs? use hysteresis

e use a high threshold to start edge curves and a low
threshold to continue them.
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Not an edge

Pixel number in
<4 Labeled as edge  —p linked list along
gradient maxima



Example: Canny Edge Detection

gap is gone

Original

image connected

weak edges
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edges

Isn’t it way to early to be thresholding, based
on local, low-level pixel information alone?
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530 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL 28, NO. 5, MAY 2004

Learning to Detect Natural Image Boundaries
Using Local Brightness, Color,
and Texture Cues

David R. Martin, Member, IEEE, Charless C. Fowlkes, and Jitendra Malik, Member, IEEE

Abstract—The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements.
We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In
order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground
truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present
precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are

1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is
required to detect boundaries in natural images.
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Slides credit: Jitendra Malik



Slides credit: Jitendra Malik
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Slides credit: Jitendra Malik 53



| e 3
Slides credit: Jitendra Malik
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Dataflow

Py

Boundary Cues

Cue Combination

) ‘Brlghtness
gk -13:: S ‘ Color ‘ =) . —)
: —) ‘Texture “ i\

~\
\

Challenges: texture cue, cue combination

Goal: learn the posterior probability of a boundary

P,(X,y,0) from local information only

Slides credit: Jitendra Malik
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Brightness and Color Features

e 1976 CIE L*a*b* colorspace

e Brightness Gradient BG(X,y,r,0)
— 2 difference in L* distribution

e Color Gradient CG(x,y,r,0)

— 2 difference in a* and b*
distributions

Slides credit: Jitendra Malik
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Texture Feature

o Texture Gradient TG(X,y,r,0)
— 2 difference of texton histograms
— Textons are vector-quantized filter outputs

Slides credit: Jitendra Malik 58



P, Images

Slides credit: Jitendra Malik
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Do this two points belong to the same region?




Segmentation



Issues

« How do we decide that two pixels are
likely to belong to the same region?

« How many regions are there?



Segmentation as clustering

Cluster together (pixels, tokens, etc.) that belong
together...

Agglomerative clustering

— attach closest to cluster it is closest to
— repeat

Divisive clustering

— split cluster along best boundary

— repeat

Dendrograms
— yield a picture of output as clustering process continues



Clustering Algorithms

Algorithm 15.3: Aggomerative dustering, or clustering by mergng

Make each point a separate cluster
TIntil the clustering iz satizfactory
MMearge the two clugters with the
smallest inter-cluster distance
and

Algorithm 15.4: Divisive clustering, or clustering by splitting

Zongtruct a gingle cluster containing all points
Tntil the clustering iz satisfactory
split the cluster that yields the two
components with the largest inter-cluster digtance
and




Dendrogram obtained by

Data set agglomerative clustering
A
6
L
L .5
4 1 S
l. =
o2 2
3
] il
23456




A simple segmentation algorithm

« Each pixel is described by a vector
z=1[r,g,blor[Yuyv] ...

 Run a clustering algorithm (e.g. Kmeans)
using some distance between pixels:

D(pixel ;, pixel ) = || z;—z; ||



K-Means

Algorithm 15.5; Clustering by K-Means

Chooze & data pointe to act ag cluster centers
TIntil the cluster centers are unchanged
Allocate each data point to cluster whose center iz nearast
Mow enzure that every cluster haz at leagt
one data point; possible techniques for doing this include |
supplying empty clusters with a point chogen at random from
pointzs far from their cluster center,
F.eplace the cluster centers with the mean of the elements
in their clust ers.
end




K-means using
color alone,
11 segments.




Including spatial relationships

Augment data to be clustered with spatial
coordinates.

(Y ) -
U | ~color coordinates
L=|vVy |~
X

Y/

~spatial coordinates




K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K...




Mean Shift Segmentation

Segmented "landscape 1" Segmented "landscape 27

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



ahro0NPE

Mean Shift Algorithm

Mean Shift Algorithm

Choose a search window size.

Choose the initial location of the search window.
Compute the mean location (centroid of the data) in the search window.
Center the search window at the mean location computed in Step 3.

Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

Two issues:

(1) Kernel to interpolate
density based on sample
positions.

(2) Gradient ascent to mode.



Mean Shift Segmentation

Mean Shift Segmentation Algorithm

Convert the image into tokens (via color, gradients, texture measures etc).
Choose initial search window locations uniformly in the data.

Compute the mean shift window location for each initial position.

Merge windows that end up on the same “peak” or mode.

The data these merged windows traversed are clustered together.

ahro0NPE

NORMALIZED DENSITY

0-
&0




Window in image domain
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Center of mass of pixels within
both image and range domaln

Apply mean shift jointly in the image
(left col.) and range (right col.) domains

Intensities of pixels within :

|mag|e domé!ﬂ W|Pdow
1 :

0

Window in
range domain

Center of mass of pixels within
both image and range domain

windows
*‘.J?HH—l (6)
= (1)




180

Fig. 4. Visualization of mean shift-based filtering and segmentation for gray-level data. (a) Input. {b) Mean shift paths for the pixels on the plateau and
on the line. The black dots are the points of convergence. (c) Filterng result (%, k) = (8,4). (d) Segmentation result.

Comaniciu and Meer, IEEE PAMI vol. 24, no. 5, 2002



Mean Shift color&spatial Segmentation
Results:

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean Shift color&spatial Segmentation Resu

Origmmal “fagaras”

segmented

ts:



A different way of thinking about
segmentation...



Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V: Image pixels

E: connections between
pairs of nearby pixels

Segmentation = graph partition



Graphs Representations

_abcde_
3 01001
b bi1 0 000
o cil0 0001

c®
e d{o 0 0 0 1
A el1 0110

Adjacency Matrix

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



A Weighted Graph and its

Representation
Affinity Matrix
1 1 3 0 0
1 1 4 0 .2
3 4 1 6 .7
W =
0 0 6 1 1
0 2.7 1 1




Affinity between pixels

Similarities among pixel descriptors

W; = exp(-|| z,-z||?/ o?)
N o = Scale factor...
it will hunt us later




Affinity between pixels

Similarities among pixel descriptors

W= exp(-ll z -z [|*/ 0?)

| ~N o = Scale factor...
Interleaving edges it will hunt us later

Wi;i=1-maxPb
Line between iand j

With Pb = probability of boundary




Feature grouping by “relocalisation” of eigenvectors of the
proximity matrix
British Machine Vision Conference, pp. 103-108, 1990

Guy L. Scott H. Christopher Longuet-Higgins
Robotics Research Group University of Sussex
Department of Engineering Science Falmer
University of Oxiord Brighton

- Wy=exp(ll -7 |[*/ %)

1B B With an appropriate ¢
& A B C
] Al100]063]003
A ® W= [ B [ 063 ]1.00]00
C | 003 ] 0.0 1.00

The eigenvectors of W are:

by Iy Ly
Eigenvalues | 1.63 | 1.00 | 0.37

L A [ =071 [-0.01 [J0.71
Three points in feature space 0 n NS IR EE
C | 004 1 1.00 1§-0.03

The first 2 eigenvectors group the points
as desired...



Example eigenvector

points

Affinity matrix

1]

[ = o

=) )

oz

[EEL=)

eigenvector




Example eigenvector

o . * +« « | points ot R
L . 1 (=S * 1

st eigenvector

Affinity matrix




Scale affects affinity

W= exp(-l| z -z [|*/ 0?)

: c=.2




Minimum Cut

A cut of a graph G is the set of edges S such that removal of
S from G disconnects G.

Cut: sum of the weight of the cut edges:




Minimum Cut

V . .
Minimum cut is the cut of

minimum weight

\

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Minimum Cut and Clustering

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Drawbacks of Minimum Cut

 Weight of cut Is directly proportional to the
number of edges In the cut.

ooo |0 o .

Cuts with
oo O ® lesser weight
O 0 than the

e |\ O
Ideal Cut

Ideal cut

/'

* Slide from Khurram Hassan-Shafigue CAP5415 Computer Vision 2003



Normalized cuts

Write graph as V, one cluster as A and the other as B

Ncut(A,B) = Cut(A,B) N cut(A,B)

assoc(A,V) assoc(B,V)

cut(A,B) is sum of weights with one end in A and one end in B

assoc(A,V) is sum of all edges with one end in A.



Solving the Normalized Cut
problem

o Exact discrete solution to Ncut is NP-complete
even on regular grid,
— [Papadimitriou’97]

 Drawing on spectral graph theory, good
approximation can be obtained by solving a
generalized eigenvalue problem.

[Malik]



Normalized Cut As Generalized
Eigenvalue problem

cut(A, B) . cut(A,B) Diizzwij
assoc(A,V) assoc(B,V) J
_(+x)" (D-W)(1+x) . (1-x)"(D-W)(1-X) o in>o D(i,i)
- kiDL -kt Y D)

Ncut(A,B) =

after simplification, Shi and Malik derive

Nout(A B Y- PWIY i y. e{L-b},y"D1=0.
y' Dy

W = affinity matrix [Malik]



Normalized cuts

"(D-W)y

Ncut(A, B)= 2. ~withy efL,-b},y"D1=0.
max (D W )y ) subj ecttogy Dy =1)

* Instead, solve he generalized efgenva ue proble

EB-Wy=4By

« They show that the 2™ smallest eigenvector solution y is a good
real-valued approx to the original normalized cuts problem. Then
you look for a quantization threshold that maximizes the criterion --
- I.e all components of y above that threshold go to one, all below
go to -b

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



.

Grouping algorithm

(Given an image or image sequence. set up a weighted graph G = (V. E). and set the
weight on the edge connecting two nodes being a measure of the similarity between

the two nodes.

. dolve (D — W)x = ADx for eigenvectors with the smallest eigenvalues.
3. Use the eigenvector with second smallest eigenvalue to bipartition the graph.

4. Decide if the current partition should be sub-divided, and recursively repartition the

segmented parts if necessary.



Global optimization

 In this formulation, the segmentation
becomes a global process.

e Decisions about what Is a boundary are
not local (as iIn Canny edge detector)



Boundaries of image regions
defined by a number of attributes

— Brightness/color

— Texture

— Motion

— Stereoscopic depth
— Familiar configuration

[Malik]



Example

Affinity:

1 X0

=X (2

1 Fia-Fiie

T 3

£

Wiy = ¢
0
\ J \

otherwise

brightness

1
Location




(5) (6)

N\

(8) (%)

Figure 12: Subplot (1) plots the smallest eigenvectors of the generalized eigenvalue system

(11). Subplot (2) - (9) shows the eigenvectors corresponding the 2nd smallest to the 9th
smallest eigenvalues of the system. The elgenvectors are reshaped to be the size of the

Hmnage.



Brightness Image Segmentation

e
converge. On the 100 x 120 test images shown here, the “
normalized cut algorithm takes about 2 minutes on Intel
Pentium 200MHz machines.
A multiresolution implementation can be used to reduce
this running time further on larger images. In our current
experiments, with this implementation, the running time on
a 300 x 400 image can be reduced to about 20 seconds on
Intel Pentium 300MHz machines. Furthermore, the bottle-
neck of the computation, a sparse matrix-vector

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf



Results on color segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
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File Edit Y%ew &Go Bookmarks Tools  Help
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P setting Started |5 Latest Headlines

Berkeley Segmentation Dataset: Test Image #101085 [color]

S Color Segmentations

Contains a large
dataset of images
with human
“ground truth”
labeling.
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