
Chapter 20

Lecture 20: Object recognition

20.1 Introduction

In its simplest form, the problem of recognition is posed as a binary classification task, namely distin-
guishing between a single object class and background class. Such a classification task can be turned
into a detector by sliding it across the image (or image pyramid), and classifying each local window.

Classifier based methods have defined their own family of object models. Driven by advances in
machine learning, a common practice became to through a bunch of features into the last published
algorithm. However, soon became clear that such an approach, in which the research gave up into trying
to have a well defined physical model of the object, hold a lot of promise. In many cases, the use of a
specific classifier has driven the choice of the object representation and not the contrary. In classifier-
based models, the preferred representations are driven by efficiency constraints and by the characteristics
of the classifier (e.g., additive models, SVMs, neural networks, etc.).

20.2 Neural networks

Although neural networks can be trained in other settings than a purely discriminative framework, some
of the first classifier based approaches used neural networks to build the classification function. Many
current approaches, despite of having a different inspiration, still follow an architecture motivated by
neural networks.

20.2.1 Neocognitron

The Neocognitron, developed by Fukushima in the 80 [8], consisted on a multilayered network with
feed-forward connections. Each stage was composed of cells that received excitatory and inhibitory
inputs from the previous stage. The output of each cell was passed through a rectifying non-linearity.
The Neocognitron network already had many of the features that make current approaches on neural
networks successful. The network was trained to recognize handwritten numerals from 0 to 9. Training
multilayered neural networks is a very challenging task and is the focus of a lot of research. In the
Neocognitron, training was performed greedily, from the lower stages to the higher stages. Training of
one stage was only initiated after finishing the training of the previous stage. The training of each layer
was performed with different stimuli. For instance, the first layer was trained to extract line segments.
Each layer was seeded with digit patches of increasing complexity. The final result was a system that
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performed digit recognition and that was tolerant to style changes or presence of noise. The network
could also learn on a unsupervised setting.

20.2.2 Face detection

One important detector based in neural networks was proposed by Rowley, Baluja, Kanade 1998 [17].
This detector was trained for face detection.

20.2.3 Convolutional Neural Networks

One example of large neural network are convolutional neural networks. For instance, Le Net 7 has
90,857 trainable parameters and 4.66 Million connections. Each output unit is influenced by a receptive
field of 96x96 pixels on the input.

20.3 Boosting

Boosting was introduced by Freund and Schapire [7, 19, 18] in the machine learning literature as a way
to combine many weak classifiers to produce a strong classifier. Tieu and Viola (NIPS 2000) were the
first to make popular boosting in computer vision as an algorithm for training classifiers and feature
selection. They used in the framework of image retrieval, and has since then been used in many systems
for object detection. The success of boosting among the computer vision community was also motivated
by the simplicity of the learning algorithm and its robustness to irrelevant features and overfitting.

We start with a brief review of boosting for binary classification problems as this is the most common
formulation for most object detection systems[19, 18]. Boosting is an iterative procedure that adds one
simple classifier at each step in order to build a dictionary of visual features. We start with a weak
learning algorithm able to classify the training data correctly more that 50% of the time. In the first
iteration, the learning algorithm is applied to the training data. In the second iteration the same weak
learning algorithm is applied but with a larger weight given to the training examples that were incorrectly
classified by the previous feature. And so on. The strong classifier is obtained as a linear combination of
the weak classifiers. This boosting learning algorithm is iterated until a desired level of performance is
reached.

The final strong classifier is a weighted combination of weak classifiers. Boosting provides a simple
framework to sequentially fit additive models of the form

H(f) =
M∑

m=1

hm(f),



where f is the input feature vector, M is the number of boosting rounds. In the boosting literature, the
hm(f) are the weak learners, and H(f) is called a strong learner. The simplest weak learner is the stump.
A stump picks one dimension from the feature vector and applies a threshold to it. When using stumps
boosting can also be interpreted as a feature selection algorithm. Once the training is finished, we do
not need to compute the features from the vector f that were not selected by boosting. There is a large
variety of boosting algorithms that differ on the cost function and the optimization algorithm selected
to optimize the cost function on the training set (Adaboost, Real Adaboost, LogitBoost, Gentleboost,
BrownBoosting, FloatBoost [23], etc.)

20.3.1 Boosting classifiers

Boosting [7, 19, 18] provides a simple algorithm to sequentially fit additive models of the form:

H(f) =
M∑

m=1

hm(f),

where f is the input feature vector, M is the number of boosting rounds. In the boosting literature, the
hm(f) are often called weak learners, and H(f) is called a strong classifier. Boosting optimizes the
following cost function:

J = E
[
e−yH(f)

]
where y is the class membership label (±1). The term yH(f) is called the “margin”, and is related to
the generalization error. The cost function is a differentiable upper bound on the misclassification rate
[18]. There are many ways to optimize this function, each yielding to a different flavor of boosting. We
provide pseudocode for “Gentle AdaBoost”, because it is simple to implement and numerically robust:

Initialize the weights wi = 1/N for the training samples i = 1 . . . N .
for m = 1 to M do
• Fit hm(f) by minimizing

∑N
i=1wi(yi − hm(fi))2.

• Update weights wi := wie
−yihm(fi).

end for
Output: H(f) =

∑M
m=1 hm(f)

It is common to define the weak learners to be simple functions (regression stumps) of the form
hm(f) = aδ(fn > θ) + bδ(fn ≤ θ), where fn denotes the n’th component (dimension) of the feature
vector f , θ is a threshold, δ is the indicator function, and a and b are regression parameters. At each
iteration, we search over all possible features n to split on, and for each one, we search over all possible
thresholds θ induced by sorting the observed values of fn; given f and θ, we can estimate the optimal a
and b by weighted least squares. In this way, the weak learners perform feature selection, since each one
picks a single component f .

The strong classifier H(x) = logP (y = 1|x)/P (y = −1|x) is the log-odds of being in class +1,
where y is the class membership label (±1). Hence P (y = 1|x) = σ(H(x)), where σ(x) = 1/(1+e−x)
is the sigmoid or logistic function.

20.3.2 A simple object detector

Boosting is the basic learning component for many object detection approaches. Therefore, we will use
this scheme to introduce a simple algorithm for object detection.
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Figure 20.3: Examples from Naquet and Ullman [21].

As discussed in the introduction, when trying to find an object in an image, applying normalized
correlation with a template of the object does not work in general images. However, if instead of a global
template for the object we use a small patch from the object template, the results start looking more
encouraging. Figure 20.3 shows the result of using a small patch from the chair image (Fig. 20.3.a),
and applying normalized correlation to detect occurrences of similar image patches within the test image
(Fig. 20.3.b). The output (Fig. 20.3.c) shows that this particular image patch is good at detecting vertical
image edges, in particular, it responds strongly near chair legs (although not exclusively). A small image
patch is able to detect better candidates for image locations near chairs than the global template. This idea
was discussed by Naquet and Ullman [21]. They show that intermediate size image patches (they used
the terminology ”fragment” to denote patches extracted from object images) were the most informative
for object detection (big patches are too specific and therefore have poor generalization, while very small
patches are too general and are not able to provide much discriminant information).

As it is shown in Fig. 20.3.c, a single patch, although informative, would not be sufficient to perform
reliable object detection. However, an algorithm that used several patches corresponding to different



object parts voting together could provide a reliable strategy. If one thinks of a single patch of a very
weak detector, then the boosting algorithm can be used to select which patches to use, and how to weight
them together in order to build a reliable detector using unreliable components. Using the boosting
notation introduced in the previous section, each patch will constitute one of the weak learners hm(f),
and the final strong detector will be H(f) =

∑M
m=1 hm(f).

When working with images, the elements of the vector f correspond to different image features, and
the strength and efficiency of the final strong classifier comes from the art of selecting the appropriate set
of features. In the case of image patches, each component of the feature vector, fn, is a function of the
normalize correlation between the object patch n and the image at one location.

In order to train an object detector, we first need a database of annotated images. For each image
in the training set we need to record a bounding box around each instance of the object that we need to
detect. Then, we resize the training images so that the object have the same size across all the training
images. When resizing the images it is important not to change the aspect ratio of the images. There-
fore, the scaling can be performed so that the vertical dimension of the object bounding boxes has a
standardized length (e.g., 32 pixels). With this normalized training set, the resulting detector will only
be able to detect objects present in the test images that are matched in size to the training set. In order to
detect objects at other scales, the algorithm will need to scan several image scales by resizing the input
image by small steps and running the detection algorithm at each scale. When creating a training set it is
important to be careful with the images collected and with the annotations.

Once we have a training dataset, the next step is to build a dictionary of image features. For the
example here we will use a modified version of the patches described before. We first convolve each
image with a bank of filters (shown in Fig. 20.4.a). These filters were chosen by hand. After ltering the
images, we then extract image fragments from one of the ltered outputs (chosen at random). The size and
location of these fragments is chosen randomly, but is constrained to lie inside the annotated bounding
box. (This approach is similar to the random intensity patches used in [21].) We record the location
from which the fragment was extracted by creating a spatial mask centered on the object, and placing a
blurred delta function at the relative offset of the fragment. This process is illustrated in Fig. 20.4. We
repeat this process for multiple lters and patches, thus creating a large dictionary of features. Thus the
nth dictionary entry consists of a lter, wn, a patch fragment Pn , and a Gaussian mask gn . We can create
a feature vector for every pixel in the image in parallel as follows:

fn = [|I ∗ wn| ⊗ Pn] ∗ gn

where ∗ represents convolution, ⊗ represents normalized cross-correlation and fn(x) is the nth com-
ponent of the feature vector at pixel x. Each feature component fn can be visualized as an image
(Fig. 20.4.b). The intuition behind this is as follows: the normalized cross-correlation detects places
where the filtered patch Pn occurs, and these vote for the center of the object using the gn masks.

Our training data for the classifier is created as follows. We compute a bank of features for each
labeled image, and then sample the resulting filter jets at various locations: once near the center of the
object (to generate a positive training example), and at about 20 random locations outside the objects
bounding box (to generate negative training examples): see Fig. 20.4.c. We repeat this for each training
image. These feature vectors and labels are then passed to the classier. We perform 200 rounds of
boosting (this number can be chosen by monitoring performance on the validation set). Training a
classifier might take several hours; the vast majority of this time is spent computing the feature vectors
(in particular, performing the normalized cross correlation).

The boosting procedure selects at each round the single filtered template, a threshold and a set of
weights that best reduces the exponential loss.



b) Creating the dictonary of filtered patches
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a) Filters

Figure 20.4: a) The bank of 13 filters. From left to right, they are: a delta function, 6 oriented Gaussian
derivatives, a Laplace of Gaussian, a corner detector, and 4 bar detectors. b) Creating a random dictionary
entry consisting of a lter w , patch P and Gaussian mask g. Dotted blue is the annotated bounding box,
dashed green is the chosen patch. The location of this patch relative to the bounding box is recorded in the
g mask. c) We create positive (X) and negative (O) feature vectors from a training image by applying the
whole dictionary of N features to the image, and then sampling the resulting jet of responses at various
points inside and outside the labeled bounding box.
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Figure 20.5: Features selected by boosting to detect frontal views of computer monitors. The figure also
show a schematic representation of the learned object model by placing the features selected in their
respective location with respect to the object center.

The resulting features which are chosen for the frontal screen detector are shown in Fig. 20.5. The
features are shown in the order selected by boosting. The figure also show a schematic representation of
the learned object model by placing the features selected in their respective location with respect to the
object center. The first three features are tuned to respond to the top of the screen. As we include more
features, other parts of the screen start contributing to the detector output. Figure 20.6 shows the output
of the different features that contribute to the frontal screen detector, as well as the cumulative response
of the final detector.

Once the classifier is trained, we can apply it to a novel image at multiple scales, and nd the locations
for which the response is above the detection threshold. As all the locations are classified independently,
when the target is present in one location, the classifier might produce detections in multiple nearby
locations and scales corresponding to overlapping windows. A post-processing stage will have to decide
which of those locations will correspond to the actual target.

The simplicity of the boosting algorithm motivated a large number of different approaches, most of
them differing on the structure of the weak classifiers and the types of image features integrated into
the detector. In the next section we review some of the features that have been used recently for several
object categories.
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Figure 20.6: Output of the different features that contribute to the frontal screen detector, as well as the
cumulative response of the final detector.



20.3.3 Boosted Cascade of Simple Features

Detecting an object on an image using classifiers requires applying the classification function at all pos-
sible locations and scales in the image. The main issue is that in many situations, the object we are trying
to detect will occupy only a very small portion of the image size (like finding a needle in a haystack).
Therefore, this search process can be extremely slow in general, involving tens of thousands of locations
and with only a very small number of targets. A common strategy to reduce the computational cost was
to first prefilter the image with some simple feature (e.g., a skin color classifier) to focus attention and
to reduce the amount of computations, although many times this also resulted in a decrease of perfor-
mance. This approach was motivated by the strategy used by the visual system in which attention is first
directed towards image regions likely to contain the target. This first attentional mechanism is very fast
but might be wrong. Therefore, a second, more accurate, but also more expensive, processing stage is
required in order to take a reliable decision. The advantage of this cascade of decisions is that the most
expensive classifier is only applied to a sparse set of locations (the ones selected by the cheap attentional
mechanism) dramatically reducing the overall computational cost. Early versions of this strategy where
also inspired by the ”Twenty Questions” game [10].

This idea was implemented by Yali Amit and Donald Geman [1] to cut down the computational
complexity of the search process and applied their approach to face and symbol detection. In the case
of face detection, they show that a detector that uses ”focusing” to identify plausible image locations
performs most of its computations in the regions near faces or with face-looking patterns without wasting
computational resources in regions unlikely to contain faces (like flat pieces of the background, etc.).
Fleuret and Geman [6], proposed a system that performs a sequence of binary tests at each location.
Each binary test checks for the presence of a particular image feature. At each location, the algorithm
will conclude that a face of a certain pose is present only if all the tests are passed positively. The
algorithm does not need to perform all the tests in advance. Once a test fails, there is no need to perform
more tests at that location. Therefore, by sorting the tests from cheaper to most expensive, the algorithm
will optimize the total computational cost. Fig. 20.7 shows how computational cost is distributed on an
image when looking for faces.

Cascades of classifiers became popular in computer vision when Paul Viola and Michael Jones [22]
introduced in 2001 a ground-breaking real-time face detector based on a cascade of boosted classifiers.
In their approach, a sequence of simple classifiers was applied to each location. Each test was performed
by a simple classified trained using boosting and using only a very small number of weak classifiers. The
number of weak classifiers depends on at which level the test is performed. The first tests can use very
few weak classifiers (producing many false alarms but a very small number of missed targets), later tests
might require a larger number of weak classifiers but will only need to be applied in image regions that
had passed all the previous tests. One of the most important aspects that made their algorithm extremely
efficient was the use of a very simple set of weak classifiers (see fig. 20.8.a). Each feature consists on
the difference between the sum of pixels within several rectangular regions (somewhat similar to Haar
basis). Rectangular features can be computed very efficiently using the integral image. The integral
image was first used in image processing by Crow, Franklin (1984) [5]. Their goal was to efficiently
compute spatially varying antialiasing filters for texture mapping. Computing a rectangular feature using
the integral image gives the output using only four sums (see fig. 20.8.c):

s(x, y) =
∑

u≤x,v≤y

i(u, v) (20.1)

box =
∑

x1<u≤x2,y1<v≤y2

i(u, v) = D −B − C +A (20.2)



Figure 20.7: a) example of detected faces. b) distribution of the computational cost in the image. The
grey level is proportional to amount of tests performed at each location. The most expensive image
regions correspond to the faces (as faces will pass all the tests) and face-looking image regions. From
Fleuret and Geman [6].

where A = s(x1, y2), D = s(x2, y2), and so on. Interestingly, the computational cost to evaluate a
feature that uses rectangles is independent of the size of the rectangle, which allows performing multi-
scale object detection without having to compute an image pyramid. The integral image can also be used
to compute more complex features efficiently. For instance, the integral image can be used to efficiently
compute local histograms of image features [16].

The use of the boosted cascade combined with the rectangular features produced a real time algorithm
for face detection. Since then, a large number of approaches have studied and optimized the training of
cascades (e.g., [12, 2, 3]).

20.3.4 A myriad of weak classifiers

In the previous sections we used stumps as the basic method to implement the weak classifiers. However,
there are a multitude of other approaches that can be used (decision trees, weighted discriminant analysis,
etc.). However, in this section we will focus on the features employed to build the weak classifiers. In
most of the algorithms, decision stumps (the classifies consists of a single feature and a threshold) is
the preferred weak classifier due to its simplicity and its ability to select a sparse set of features (this is
important when each feature is computationally expensive).

Despite that rectangular features over intensities provide a very efficient set of weak classifiers, they
are not suitable for detecting generic objects. For many objects, more complex features (such as edge
arrangements, shape information and texture) need to be incorporated. Boosting provides a framework
in which it is easy to combine different sets of features.

In [14], Opeltz et al, use boosting with an heterogeneous set of features for generic object recognition.
The algorithm first detects two types of regions: interest points (e.g., corners) and homogeneous regions
(e.g., flat segments). Then, both types of regions are represented with different techniques for building
descriptors (e.g., the raw pixel intensities of a patch of normalized size around the region of interest,
intensity moments, SIFT, moment invariants [11]. Then AdaBoost is used to weight select the relevant
set of features and their relative weights.
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Figure 20.8: a) Rectangular features (using two, three and four rectangles). The set of features contained
all the possible scales and translations of these basic features within the normalized face patch. b)
First and second preferred features after training. c) Computation of the integral image and rectangular
features.



a) Building a dictionary of contour fragments b) Example of 4 fragments from the horse model

Figure 20.9: a) Edge fragments extracted from horse outlines (the red crosses denote the origin of the
fragment). b) Horse model. It consists of a configuration of several edge fragments. The green cross
denotes the object centroid and the arrows illustrate the geometric relationship between the position of
the edge fragments and the object center.

X. Chen and A. Yuille [4] use boosting to build detector that localizes text regions (e.g., street signs,
bus numbers, billboards) on images. The approach uses features based on edge gradients, histograms of
intensity values and linked edges. Weak classifiers can be obtained as log-likelihood ratio tests and then
the strong classifier is applied to sub-regions of the image (at multiple scale) and outputs text candidate
regions.

In the next two sections we will go into more detail of two important sets of features: boundary
fragments (that try to localize the object boundaries) and textons (that try to recognize textural elements
and, therefore, are more suitable to model the inside regions of objects).

Boundary fragments

Gavrila and Philomin [9] proposed a system for pedestrian detection using global edge templates. The
approach starts with a training set in which the pedestrians have been segmented. The algorithm stores
the outline edges. Then, for detecting pedestrians on images the algorithm first extracts a set of edge
candidates (using a Canny edge detector) and then scores the different templates from the training set
by using Chamfer matching. The detection is perform by translating each object edge template across
all locations in the image and also by scaling the image so as to detect occurrences of the object with
different sizes. The disadvantage of working with global templates is that a large number of training
samples are required in order to cover a sufficiently large set of possible object appearances. Furthermore,
matching full templates can be slow. Shotton et al (2005) proposes using a collection of edge fragments
(similar to the idea of using small image patches as discussed before) with a flexible spatial configuration.
First they build a dictionary of candidate edge fragments by sampling pieces of boundaries from the
training dataset (sampling randomly from the object boundaries and collecting edge pieces of different
lengths). Once a random set of edge fragments is built, they cluster them and store. The final dictionary
elements correspond to the cluster centers. Each dictionary element also has information about the spatial
relationship between the edge center and the center of the object. Fig. 20.9.a shows a few edge fragments
extracted from horse outlines and Fig. 20.9.b an object model used a constellation of edge fragments.

Once the dictionary is built, each edge fragment becomes a candidate image feature. Each edge
fragment can now be detected on new images by scanning the image and applying Chamfer matching



at each location. The matching score between an edge fragment F and edge map E at location x can be
written as:

dchamfer(x) =
∑
u∈F

min
v∈E
‖(u + x)− v‖2 (20.3)

where ||2 is the L2 norm, u is the location of an edge pixel in the edge map E, v is the location of an
edge pixel in the edge fragment F and x is the location at which the matching is done. The detection will
require to perform this matching at all the x locations in the image. Note that the process can be done
efficiently using the distance transform. Applying the distance transform to the edge map allows writing
the previous matching score as a convolution. In order to select the best edge fragments for detecting
an object, the Shotton et al. (2005) use boosting. Each edge fragment becomes a weak classifier by
thresholding the matching score at each location. A similar approach is also presented in [15] with the
difference that [15] uses several edge fragments to build each weak classifier instead of just one as used
in Shotton et al 2005.

Textons

When analyzing an image, most of the objects will correspond to unstructured image regions (stuff such
as grass, sky, road, etc.). Therefore, in addition to be able to detect rigid objects (which can be detected
using ) it is important to also build classifiers that can segment and recognize textures.

To represent an image using textons, first the input image is convolved with a filter-bank. Then the
filter responses for all pixels in the images are clustered. The cluster centers are named textons. Finally,
each pixel is assigned a texton index corresponding to the nearest cluster center to its lter responses (see
fig. 20.10.a).

TextonBoost [20] combines the output of boosted detectors (which attempt to classify each pixel into
several object classes) with a conditional random field (which captures the spatial interactions between
the labels of neighboring pixels). The conditional probability of the class labels c given an image I is
modeled as (the model from [20] contains two more terms to account for color distributions and location):

logP (c|I) =
∑

i

φ(ci, I) +
∑
i,j

ψ(ci, cj , gi,j(I))− logZ(I) (20.4)

where φ(ci, I) are the local observations and tell the model how likely is the label ci at pixel index i
given the image I . This function is trained using boosting. The second term ψ(ci, cj , gi,j(I)) models the
pairwise relationship between the labels at pixels i and j. In this model, only pixels that are immediate
neighbors are connected. The strength of the connection is reduced also near image edges. This is
reflected by the function gi,j(I). Finally, Z(I) is the partition function.

The boosted detector uses as features texture-layout filters. The texture-layout filters are based on
the textons method proposed by Malik et al. [13]. In [20] the dictionary of textons is built using all the
training images instead of just one and then the resulting textons are fixed. As illustrated in fig. 20.10,
each texture-layout filter is a pair of a rectangular image region (r), a texton (t) and a spatial offset (d).
The feature response is the proportion of pixels inside the region r that have the texton index t. The
feature response can be efficiently computed using an integral image for each texton index. Each feature
votes for the object class at the location defined by the offset (d). This structure is similar to the features
used in the previous sections. The final classifier is obtained using boosting. The weak classifiers are
thresholds over texture-layout filters and attempt to classify each pixel.
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Figure 20.10: a) Transforming an image into texton indices: the image is first convolved with a lter-bank.
The filter responses for all pixels in training images are clustered. Finally, each pixel is assigned a texton
index corresponding to the nearest cluster center to its lter responses.
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