
Chapter 2

Lecture 2: Filtering

Monday, Feb. 7, 2010 MIT EECS course 6.869, Bill Freeman and Antonio Torralba
Slide numbers refer to the file “02linearfiltering2011”

In last week’s lecture, we made a simple computer vision system. We broke the image into edges,
and labeled the edges, to make progress in interpreting the 3d shape of a scene. But we had to work in
a very constrained world so that our brittle processing steps would give useful information about edges
and their labels.

Of course, we want to build a vision system that operates in the real world. One such system is
the human visual system (slide 4). Now I should say, we don’t know exactly what it does, but the
brain appears to have a progression of retinotopic maps of the visual world, with projections going both
forward and backwards, and with a progression of transformations of the visual data.

We have a fairly good idea of what happens at the initial stages of visual processing, and it will turn
out to be similar to some of the filterings we discuss in this lecture. While we’re inspired by the biology,
here we seek some mathematically simple processing that will help us to parse an image into useful
tokens, low-level features that will be useful later to construct visual interpretations.

slide 5. We’d like for our processing to enhance image structures of use for subsequent interpretation,
and to remove variability within the image that makes more difficult comparisons with previously learned
visual signals. This is kind of a vague set of requirements, but let’s proceed by invoking almost the
simplest mathematical processing we can think of, and see how far it gets us.

slide 6. Consider linear filtering. The output will be some linearly weighted combination of the input
pixels.

slide 7. Often times, we want to process the image in a spatially invariant manner, so let’s make our
initial processing even simpler: linear convolutions of the image data with some filter.

slide 8. Just to remind you what that is, here we convolve a kernel h with a 1-d signal, g. The right
hand column shows an implementation of the convolution formula at the top: you flip h, slide it across
the signal g, and record the term-by-term product of g and flipped-h at every position.

slide 9 In two dimensions, the processing is analogous: you flip the input filter vertically and hori-
zontally, then slide it over the image and record the inner product with the image everywhere.

slide 10: Of course, when you go to actually implement this, you’re confronted with the question
of what to do at the image boundaries, and there’s really no satisfactory answer for how to handle the

1



boundaries that works in all cases. Pictured is a medly of different approaches that people have used.
The right thing to do really depends on the application.

slide 11: So what can we do with these things? Here’s a partial list of useful linear filters for image
processing for low-level vision. The impulse and shifts are kind of special cases–obviously we could
achieve their same effect by other means than looking it as a linear convolution, but sometimes it’s useful
to think of it that way.

It’s often very useful to blur images, in preparation for subsampling or to remove noise, for example.
Here are some of useful blurring images.

Interpreting images is often about interpretating local changes in images, so we’ll look at a number
of filters useful for finding changes.

slide 12: now let’s look at the result of various filtering on images. Here’s a warm-up: an impulse,
convolved with any image, gives you that same image back (even at the boundaries, by the way, since
you multiply any pixels beyond the boundaries by zero).

slide 13: another warm-up: a shift. when you take this shifted impulse, flip it, and multiply by the
original image, you get the original image shifted two pixels to the right.

slide 14: ok a little quiz: what linear convolution will cause the image to rotate? Let’s see: at the
very center of rotation, you want just that same pixel, so that requires you to have a centered impulse.
But at the top left corner, you want to grab a pixel from 5 pixels down and to the right, and from the
bottom you want to grab the pixel from about 5 pixels up and to the right... So this rotation operation
can’t be written as a spatially invariant convolution.

slide 15: now, just to get a visual feel for some of these filtering operations, here are some filters and
their responses. First, a rectangular blur. When might this be useful? In preparation for subsampling for
the computational efficiency of resolution reduction (although there are better filters to usef for that, as
we’ll discuss later).

slide 16. this filter maintains details in one dimension, but filters them out in another. You could
imaging this might be useful as a first step in removing noise in one direction, in preparation for taking
a derivative in the orthogonal direction to highlight horizontal structures. slide 17 shows the converse.

slide 18. Sharpening. A simple way to design a sharpening filter is to exploit the linearity of con-
volutions. We’re allowed to add and subtract kernels to make a new kernel that would give us the same
filtered image as if we had added and subtracted the filtered outputs of each of the component kernels.
So in this case, let’s start with twice the original image (sharp plus blurred parts), then subtract away
one times the blurred components of the image. That would leave one original image in there, plus an
additional component of the sharp details.

(soon we’ll introduce the Fourier transform to give us a better vocabulary to talk about these different
image components).

Slide 19 shows how this filter accentuates components of the image where changes happen. If we
take the sharpening filter and apply it to a plateau in image intensities, the transitions up to and down
from the plateau get exaggerated. The plateau rise now has a value of 13.7, whereas in the unsharpened
image, it has a value of 8.

slide 20. Here’s the perceptual effect, after applying that filter separably in two dimensions.



slide 21. Finally, it’s often better to apply smooth changes to an image, instead of these hard-edged
filters that I’ve been showing as simple examples. One of the most useful blurring filters is a Gaussian, or
discrete approximations to it. By adjusting the variance of the Gaussian, you can titrate out what levels
of detail in the image you’re intereted in analyzing. This slide shows the result of narrow and wider
gaussians applied to an image. Of course, the Gaussian has the additional computational advantage that
you can apply (exactly) a large, 2-d blurring filter as a concatenation of two separable 1-d Gaussian
blurring filters, which saves quite a bit in computation time.

slide 22: Many times in images, the high-detail part of an image tells you one thing, and the slower
variations tell you something else, and it’s useful to separate the two. This image shows a rather con-
trived example of that. All the sharp edges and details in this painting are masking the simple blurry
image underlying this. So if we low-pass filter this with a large-enough gaussian, we reveal the portrait
of Lincoln that Dali painted underneath this (and he took this from a processed photo of the Lincoln
portrait).

Slide 23. We need a better and more precise language to talk about the effect of linear filters, and the
different image components, than saying “sharp” and “blurry” parts of the image. The Fourier transform
is useful for such an analysis.

slide 24: here’s the definition of the discrete Fourier transform, and its inverse transformation. As we
can see from the transform equation, we re-write the image, instead of as a sum of offset pixel values, as
a sum of complex exponentials, each at a different frequency, called a spatial frequency for images, since
they describe how quickly things vary across space. Of course, images are real, and thus really we’re
describing the image as a sum of sines and cosines, which we’ll create from the complex exponentials
by taking sums and differences of them, at the same amplitude. So to generate a real valued image, the
Fourier transform will always have real component that is even, and an imaginary component that is odd.

From the inverse transform formula, we see that to construct an image from a Fourier transform,
capital F, we just add-in the corresponding amount of that particular complex exponential (conjugated).

slide 25. To get a feel for what the Fourier components indicate visually, let’s look at a some positions
in the Fourier transform plane, and see what those coefficients correspond to, visually.

slides 25, 26, 27. We usually arrange the coefficients in the complex plane so that the zero frequency,
or “DC”, coefficient is at the center (this is different than what matlab will give you if you run FFT). Slow,
large variations correspond to complex exponentials of frequencies near the origin. If the amplitudes of
the complex conjugate exponentials are the same, then their sum will represent a cosine wave; if their
amplitudes are opposite, it will be a sine wave. Frequencies further away from the origin represent faster
variation with movement across space.

slide 28 The Fourier transform is one of a large class of linear transformations you can apply to the
image. If we write the image as a rasterized vector, f, then the transformed image F is F = U f. Some
transforms (such as the fourier transform) are self-inverting if the matrix U has an inverse, and if its
inverse is the transposed complex conjugate of U.

slide 30. For fun, here’s a visualization of the Fourier transform as a matrix multiplication, for a
1-d signal. Things to look for: find DC. Find the low frequency, going clockwise around the unit circle.
Fit it’s mate, at the same frequency, going counterclockwise around the unit circle. Find the highest
frequency Fourier term.



slide 31. When I first learned about Fourier transforms, it was such a surprise to me that you could
synthesize any image as a sum of sines and cosines. To help gain insight into how that works, I find
it informative to show examples of partial sums of complex exponentials. In the images that follow,
I’ve taken the fourier transform of some image, and included (selected at random) pairs of (positive
and negative) frequency components to add in. You can see that with a random selection of frequency
components, it takes quite a few components before we get a recognizable image, about 20,000 for a
256x256 image.

slide 48. Now let’s do the same thing with a different image, but select the frequency components
in descending order of their Fourier magnitude. By parseval’s theorem, this is the best least squares
reconstruction possible from each given number of Fourier basis components. Then it only takes about
500 coefficients to recognize a 256x256 image.

slide 64 It’s useful to become adept at computing and manipulating simple Fourier transforms. Many
textbooks have lists of transform pairs, and these are useful to study and become familiar with.

slide 67. It’s nice to become familiar with 2-d fourier transforms, too. This figure shows some basics
of how we usually plot them. You should be able to think through why the fourier transform of the bricks
image makes sense.

slide 68. So let’s go through some simple 2-d transforms, and talk about what the transforms are,
and why. First of all, I’m going to represent the transforms with just a single image, yet we know
the transforms are complex. What’s with that? All the signals we ’ll examine in this collection will
be real and even. So we then know that their Fourier transforms are real and even, as well, so we’ll
just be showing the magnitude of the Fourier transform, which in this case is the absolute value of the
real component of the transform, and the imaginary component happens to be zero for the signals we’ll
examine.

slide 70. those are some important transforms. let’s reverse it and look at the fourier transforms of
some important images.

slide 71. now a pop quiz: match the image with the amplitude spectra of their fourier transform.
We’ll tabulate this quiz on the board.

slide 72. still on the topic of learning to interpret image fourier transforms, let’s look at the magnitude
of the fourier transform of this image. (note we’ve suppressed the a square of values around DC, to be
able to visualize the higher frequency structure.

What in the image causes these dots here?

slide 73. We can study that by zeroing out those frequency components, and inverse transforming.
This is the resulting image. Note that the pillars of the building are now mostly gone.

slide 74 Why do we use the Fourier transform? It’s the natural domain in which to analyze space
invariant linear processes. why is that? because the fourier bases are the eigenfunctions of all space
invariant linear operators. In other words, if you start with a complex exponential, and apply any linear,
space invariant operator to it, you always come out with a complex exponential of that same frequency,
but with some different amplitude and phase, in general.

slides 75, 76 another was to state that is through the convolution theorem. The operation of a convo-
lution, in the fourier domain, is just a multiplication of the fourier transform of each term in the fourier



domain.
This property lets us examine the operation of a filter on any image by examining how it modulates

the fourier coefficients of any image. This lets us make precise our coarse description of, say, how
sharpening works. So let’s just revisit that one example.

slide 78 phase. The Fourier transform coefficients are complex numbers. You might ask which is
more important, the magnitude of the fourier transform, or its phase. For the global fourier transform,
the magnitude of the images can often be quite similar, one to another. The phases carry the information
of where the image contours are, by specifying how the phases of the sinusoids must line up in order to
create the observed contours and edges.

slide 82 sampling. While we’re on the topic of global fourier transforms, we have one more issue we
want to touch on: sampling and aliasing. This will come up when we talk about filter models for human
motion perception, and also when we derive multi-resolution image representations on Weds and need
to construct image pyramids, which contain subsampled versions of images.

When we sample an image, we multiply by a “shah” function, or a bed-of-nails function–an array of
impulses. Multiplication by this in the spatial domain involves convolution of the image spectrum with
the transform of the sampling function. That is another sampling function, but in the fourier domain.
This leads to the replicated spectra . If the spectra are too close to each other in the fourier domain
(and thus the samples were too far apart from each other in the spatial domain) then the spectra will mix
together, leading to irrecoverable aliasing. The next figures show those effects, and also show (slide 88)
the effect of spatial smoothing, equivalent to low-pass filtering

slide 89. There’s a nice aliasing effect that you can see with two combs, or with transparencies
stacked on top of each other.

slide 101. it’s appropriate at this point to step back and ask what the benefits and drawbacks of
the fourier transform are. Without question, the FT is an indespensible tool for linear systems analysis,
image analysis, and even for efficient filter output computation. But is it a good image representation?

benefits: easy to analyze things according to spatial frequency, which seems like progress in inter-
preting the image over merely a pixel representation. Drawbacks: But it’s too global! every sinusoidal
component covers the entire image. So, in some sense, it tells us a little about “what” is happening in the
image (what the spatial frequency content is), but nothing about where it is happening.

It’s a bit like goldilocks and the 3 bears. A pixel representation gives you great spatial localization,
but a pixel value by itself doesn’t help you learn much about what’s going on in the image.

A fourier representation tells you a bit about what’s going on, but nothing about where. We seek a
representation that’s somewhere in between those two.

slide 105, 106 a good start is to analyze an image with a sinusoidal analysis region. so let’s multiply
a fourier basis function by a spatially localizing gaussian window. The result is called a Gabor function.
It’s a complex valued function, but we can look at the real or imaginary parts to examine cosine or sine
phase ripples.

slide 108 Note that these Gabor filters are very similar to the shape of cortical receptive fields found
in the mammalian visual system. This provides a hint that we’re on the right track with these. What can
we do with them? In isolation, they are useful for analyzing line or edge phase structures in images. but
they have many other benefits when we combine them together in quadrature pairs.

slides 111 to 119



quadrature pairs measure local oriented energy. These can be used to identify contours, indepen-
dently of the phase of the contour.

slides 114, 115: is the fact that the energy response to the line signal is wider than the energy response
to the edge signal significant? I don’t think so and I should remake these images to be sure it’s not simply
some artifact of how it was processed.

slide 116: let’s go through how quadrature pairs work. Just to review gabor filters, we start with a
sine or cosine wave. that gives two delta functions at complex conjugate complex exponentials. They
have the same sign, for the cosine phase wave, and opposite signs, for the sine phase. Then we spatially
localize those sinusoids by multiplying by a Gaussian envelope. This spatial localization broadens out
the frequency response in the complementary domain, making those delta functions become little patches
in the frequency domain.

slide 117: Now we square each filter response (multiply it by itself), in the spatial domain. (see the
spatial picture for that on the right hand side). You know the drill: in the frequency domain, that means
we convolve the fourier transforms with themselves. Now we get 3 lobes of responses: one at the origin,
where everything overlaps, and two more, and (positive and negative) twice the frequency of the original
lobes.

You can see that frequency doubling in the space domain images–the negative lobes of the gabor
filters become new positive cycles of the squared filters. (The freq domain sketch is not drawn to scale
doesn’t show the freq doubling as it should)

Then, here’s the cool part of quadrature phase: when we add the squared sine and cosine phases
together, those frequency doubled bands cancel out, leaving only this modulated-down baseband that
tells you, at a low spatial frequency, how much energy there is in this region of the image in the spectral
region that these gabor filters are sensitive to. Nice!

(you can see that you can get the same effect of a quadrature pair of filters if you square and then
blur one phase of the filters)

slide 118, 119: These Gabor filters (and indeed, quadrature pair filters in general) are useful for many
things. One use they’ve been put to is in quantifying the random textures of the human iris, developed
by John Daugman, at Cambridge University. The goal is to find a texture descriptor that is invariant to
the various conditions under which one might acquire an image of an eye. The iris code measures the
relative phase of a Gabor filter pair and quantifies that measurement into one of 4 bins (slide 119). Of
course, the filters must be aligned with the features of the eye, and concentrically oriented around the
eye. The result is a high-dimensional code for an individual’s iris. This code is able to ascertain identity
with very high certainty (and immune to any issues with identical twins, because their irises develop
under unique random processes).

slide 120 often the precise shape of the filter can be tuned differently than a gabor filter for one
application or another. So let’s look at oriented filters in general, and how to work with them.

slide 121 one question that arises with oriented filters is how to move them in orientation. For a filter
of a given shape, how many filters do you need?

slide 122 what you’d like would be an analogy in orientation for the nyquist sampling theorem in
space: given a certain number of discrete samples in orientation (or space), can you interpolate between
the samples you have and synthesize what you would have found from having a filter (or a spatial sample)
at some arbitrary, intermediate orientation? As with the spatial interpolation problem, it turns out you



can, depending on restrictions on the form of the filter (or on the frequency content of the spatial signal).
The derivative filter is the simplest example. As we know from our differential calculus, we can

synthesize a directional derivative in any direction as a linear combination of derivatives in the horizontal
and vertical directions. By linearity, that applies to the derivative applied to any filter or image, as well.
On the top row, we see the derivative of a gaussian, horizontal and vertical,, and one oriented at 30 degrees
formed as a linear combination of those two. Again by linearity, the output of the 30 filter applied to any
image just that same linear combination of the outputs of the appropriate basis filters applied to those
images, as well.

slide 125 How many basis filters does it take to steer any given filter? You could imagine that
will depend on sharply oriented the filter is. A circurly symmetric filter takes just one basis function to
synthesize all other orientation responses, and a very narrow filter will take quite a few. This is quantified
by steering theorems.

In particular, if we write the filter in polar coordinates (using complex exponentials for notational
convenience), and write down an equation for the unknown steering functions of theta needed to synthe-
size the output filter from the basis filters, you can show the result stated in slide 125.

Let’s check it for a simple example. Our derivative of a gaussian filter is x times a gaussian. This
gives a cos(theta) angular distribution when written in polar coordinates. This requires two complex
exponentials to write (to create the cos theta from complex exponentials) and thus requires two basis
functions to steer.

slide 126 sometimes its more convenient to think of the filters as polynomials times radially sym-
metric window functions. Then you can state the result listed in slide 126.

slide 127 for computational convenience, it’s more convenient to have the basis filters all be x-y
separable functions. In many cases, it’s straightforward to find such basis functions (and where it’s not,
there are simple numerical methods to find the best fitting x-y separable basis set. See for example,
Perona PAMI 1993).

slide 129 What we’d really like is a steerable, separable quadrature pair of filters. We can design such
filters. The G2 filter is a 2nd order, even polynomial in x-and-y times a gaussian. So its Hilbert transform
will have the same spectral content, but the opposite phase. So we fitted a 3rd order odd polynomial to
the Hilbert transform of the G2 filter, to make a steerable H2 filter (requiring 4 basis functions to steer,
not just 3 as for G2). We can also make x-y separable versions of this filter.

Putting it all together, can we compute oriented energy as a function of angle, for all angles, just
from the basis filter responses. This oriented energy as a function of angle is an analytic function of the
basis filter responses, and results in a Fourier series in theta. We can look at the lowest order terms in
that fourier series to find a measure of the dominant angle of oriented energy in the filters’ frequency
response band. This expression is given in the appendix of the PAMI 1991 paper referenced in the slides.

slide 134. We can also make contour detectors that fire independently of the phase of a contour, or
are sensitive to it as you choose. Consider this figure. when we look at it, we easily parse it as a circle and
a square, the circle formed by an edge, the square formed by a line. But if you take a conventional edge
detector and apply it to that figure, the line-based figure puzzlingly because described as two edges. Of
course, that makes sense, given what the edge detector is doing, but it doesn’t make sense perceptually.

But with steerable quadrature pair filters, we can look for regions of local maximum energy oriented
perpendicularly to the contour orientation. Those regions are marked here.

And we can also, if we choose, pull out contour regions of one particular phase or another, again just



by looking at the quadrature pair filter responses when oriented on and along the contour. The 0 and 90
degree phase objects are shown here, pulling out the circle and square figures.

slide 135. From the basis filter responses we can form polar plots of the oriented energy as a function
of angle.

Slide 136 note some strange goings on at intersections using the G2H2 filters. You might think this
was a result of simply not enough angular resolution from those filters, and indeed the G4 H4 filter pair
doesn’t suffer from that problem. But actually the G2H2 filters do have enough angular resolution, and
the issue is a more subtle one.

Slide 138 when there are two oriented structures within the passband of the quadrature pair filters, the
sum of the energies of the individual structures is not the same as the energy of the sum of the structures.
Because we’re squaring to find the energies, the combination of multiple structures isn’t linear. As the
figure shows, when there are two oriented structures within the passband, when the filter responses are
squared, the convolution in the fourier domain picks up extra cross-terms from the one oriented structure
interacting with the other, in addition to the desired term from simply squaring all the frequency responses
individually within the passband. These cross terms show up as spurious spatial frequencies in the energy
term, and we can get rid of them by spatially low-pass filtering the squared oriented energy responses.
Using the blurred squared basis filter responses, we get much cleaner oriented energy as a function of
angle plots, even with the G2H2 filters in the junctions (figure d of slide 136).

slide 139, 140 steerable filters let us filter along the local orientation everywhere, to enhance oriented
structures and remove noise.

slide 141 We can also make steerable filters in 3 dimensions, allowing us to denoise medical volu-
metric data, or to analyze spatio-temporal volumes to measure image motion, as we’ll discuss in the next
section.


