1 Lecture 10: Markov Random Fields (MRF’s)

Tuesday, Feb. 22, 2010 MIT EECS course 6.869, Bill Freemdmartonio Torralba
Slide numbers refer to the file “lecture10MRF2011”

slide 1Last time, we talked about issues in perceptual groupingdiFfgredges, finding segments. We used a variety
of different machineries to do the perceptual groupinggiag from heuristic threshold setting (with the Canny
edge detector) to eigenvector approximations to solve eimaation for segmentation.

In this lecture, we’ll introduce yet another bit of machipérat can be used for perceptual grouping, and for many
other perceptual problems as well: probabilistic graphivadels. We introduced them the week before last, and
saw how to perform inference in them (marginalize the joiriyability down to variables of interest) for cases
where the models had a tree or chain-like structure.

Today, we'll talk about those models in their more generainfowith loops, potentially many of them. This is

a very general hammer, useful for more than just perceptaaiping. We'll show how to apply this model to
various problems, discuss solutions, and finally returrefgngentation and show how they can be used for that,
too.

slide 2 Let’s first remind ourselves about graphical models. Theyiaddesome class of joint probability functions
that share a common structure. We use that depicted steuctdo inference efficiently.

Undirected graphical models make conditional indepenigsrexplicit. If there isn’t an edge between two nodes,
then those nodes are statistically independent, if youitioncon the other nodes in the graph (indeed, you only
need to condition on a “separator set” of nodes, so that iker@ edge path through unconditioned nodes between
the two nodes).

slide 3, 4

The factorization of the joint probability depicted by theagh depends on its cliques. This slide shows the
definition of cliques. The joint probability is a product afifctions of the cliques, called clique potentials.

slide 5We just worked with very simple ones in class earlier, butihkhof graphical models as construction
toys for joint probabilities. You can model all sorts of thmwith them, and make explicit the relevant statistical
independencies. These independencies you can then usefiictnt inference.

You might object that such structured probabilistic modeks the exception, and usually everything depends on
everything else and you can't make these independence psusito simplify calculations. But these structured
probabilities are the rule, not the exception. Imagine hapadssible it would be to behave or interact with the
world if the appearance of something here depended on thiagpening outside the room out there. There
sometimes are such dependencies, and you want to mode| bubdrdependencies happen so often that you want
to be able to model them with these graphs.

The nodes can represent all sorts of things that you wantito&se the state of: joint angles, surfaces, depths, etc.

slides 6, 7, 80ftentimes we work with MRF’s on a regular grid (although wend need to). The observed nodes
might represent pixels and the hidden nodes could représeeis (like, this is grass, or this has an orientation of
45 degrees). Here we adopt the convention that observeablesiare shaded. Nodes can also represent patches
of observed pixels or of inferred output pixels.



slide 9For this grid structure, the cliques all involve just paifsiodes, and so by the Hammersly Clifford theo-
rem, the joint probability is represented by this productesis (equation in slide). We have a local term, only
depending on the local observations, and a pairwise irtferaterm with neighboring nodes. That pairwise term
will let us say, for example, “we’d like for a node to have tlaere state as its neighbor”.

slide 10We're looking at this as a joint probability. | should notetlit is common to take the log of both sides,
to find an equation for an energy to be minimized. Of courseetiergy retains the same structure, and it is a sum
of local and pairwise terms. Many of the calculations in thergy domain are analogous. Typically, you give
up the ability to find marginal probabilities, and you'reded to find a single, best estimate, the lowest energy
solution. This corresponds to finding the MAP estimate framjbint probability, which it's also possible to do in
the probability domain, using a variant of the belief progtéan algorithm we showed before.

slide 110f course, even with these more general structures for thegoobabilities, beyond chains, we still want
to do inference, that is, to compute the marginal probgtédiita node or a set of nodes, given the observations.
We may want to compute the marginal probabilties, or pertthpamaximum probability state (lowest energy
configuration).

An additional task we sometimes have is to learn the paramefdhe MRF itself-the local evidence functions
and the compatibility functions.

slide 12To start, let's focus on inference in MRF’s. That, by itsédfa large, active research area. In this lecture,
we'll describe popular methods, and just name two others.

slide 14

The first method we’'ll discuss is a brute force method thatgbwvorks, if you wait long enough. It's called
Gibbs sampling. It's kind of a divide and conquor algorithiinmay be very difficult to find random draws from

a multi-dimensional function, but it's straightforward neake draws from a one-dimensional function. We can
condition on the current state of all variables but one, aagdvdrom that conditional distribution. So we randomly
cycle through all the variables, freezing the rest and n@kiconditional draw. This general approach is called
Markov chain monte carlo. Eventually, the outputs of thel@isampler will give random draws from the joint
probability of the underlying graphical model. We can takeagerage over independent samples to find the mean
of that joint probability.

Some practical issues: because the variables are intthfiendomly, not at all corresponding to a random draw
from the joint distribution, one typically waits for a “buin period” before including outputs from the Gibbs
sampler in the average to find the mean. Similarly, sequenitputs from the Gibbs sampler are not independent
draws from the joint posterior, since only one variable Henged between the two outputs, so one typically only
includes samples after some period that is large relatitteemumber of nodes in the graph.

slide 15

Here's a way to sample from a 1-d function, that is, to draw@asofx according to the probability density
given by the function,f(z). Discretize the domain: into samplesr;, and compute the distribution function,
F(zy) = an:l f(zm). By construction, the value of the distribution functiéhis increasing from the value at
xk—1 in proportion to the probability density,(x;). We can select that value in proportionftr;,) if we drawa
from the uniform distribution|0, 1] and selecty, if F(zx—1) < a < F(z). This leads to the sampling algorithm
in the box of slide 15.

slide 16 This figure shows a 2-d depiction of the conditioning and darggdor a Gibbs sampler. By taking an
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average of those samples (separated by enough iteratidhatdbe samples become independent draws from the
joint probability) will give an estimate of the mean of thesded joint probability.

slides 17-19Remember that for some problems it makes sense to use theahtrenjoint probability as a best
estimate (the MMSE estimate), while for other problemsdleation of highest probability might be desired (the
MAP estimate). The procedure of slides 15 and 16 will giveNIMSE estimate.

We can modify the shape of the probability density to faver phobability peaks, guiding the Gibbs sampler to
make draws from only the peak of the joint probability, legtius find the MAP estimate. A common way to do
that is introduce a shaping parametgr,to scale the arguments of the exponents in the joint prdibabT his
accentuates the highest values of the joint probabilityTAs 0, the highest value aP(x, T') dominates all other
values, and the Gibbs sampler will only produce samples fiear the peak, atpyap. This procedure is called
“simulated annealing”, by analogy with the cooling of a plogssystem to find its ground state energy.

A problem with simulated annealing is that it is very slowb@$ sampling is an inner-loop step in the simulated

annealing procedure. If the “cooling parametédr'is lowered too quickly, then the random samples won't be able
to diffuse toward the most probable areas quickly enoughtl@dystem can get stuck in some locally maximal

area of the density function.

slides 20-22

An early method to find the most probable state of an MRF, délterated conditional modes” (ICM), is closely
related conceptually to the Gibbs sampling procedure. Als Gibbs sampling, we freeze the value of every node
except one. Then with that one, in ICM we find the mode of thed@@nal distribution, instead of drawing a
sample from it, as with Gibbs sampling.

There are some distributions for which ICM will quickly finde MAP estimate, but for most distributions of
interest, it doesn’t perform as well as other methods waseu$sing here.

slides 23, 24

Another method to solve Markov Random Fields is to run the&ebplopagation algorithm, even though it wasn’t
designed for networks with loops. This is sometimes callesbpy belief propagation”.

Because you may not have finished your homework for Wednegetgwhich has a BP problemin it), let's review
belief propagation. We have a graphical model, with obskfgbaded) and hidden nodes. We want to find the
marginal probability at

slides 25- 30

This is a review of material covered in Weds, Feb. 23, 201tLitec

slide 31

| should note, there is a variant of belief propagation. Tlgerithm we just covered, which lets you compute the
marginal probability at each node, is called the sum-prodlgorithm, because of the summation over message
products. From the marginal probability at a node, you canmtte the MMSE estimate, the mean value at the
node.

A related algorithm lets you compute the MAP estimate effitie We can write the MAP estimate in terms of
“max” operations, instead of the “sum” operations of the MB&@mputation. All the arguments we went through
to motivate the sum-product algorithm carry through, withek” operations passing through factors in the joint
posterior, instead of “sum” operations. The result is th@Xmproduct” algorithm for the message updates, shown
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here. Taking the maximum over the corresponding “max-rmatgf at a node, leads to the MAP estimate at each
node (there are some additional details if there are tidsamtaximum value over the joint posterior).

slides 32-35This is all good for graphs without loops. BP gives the cdriayesian calculation for the desired
marginal probabilities, or for the max-marginals, for th&Rlversion. Since it’s an efficient way to compute the
marginal probabilities, you can imagine that it has beediseovered many different times in different contexts,
and it has. In the context of Gaussian random variables rebd@ver time, it is the Kalman filter. For discrete
variables, in the MAP version, it is the Viterbi algorithm.

But what to do about general graphs with loops? We note tleaipllate and marginal probability rules themselves
are all local rules, and it would certainly be feasible to the BP updates in a graph with loops, inititalizing the
messages to random, or else uniformative, values. As yottrekpect, researchers have tried this, and, to the
surprise of some, have found some remarkable success ig doin The world’s best error correcting codes
are decoded using BP run in a network with loops. (That dexpédigorithm was a re-discovery of a decoding
algorithm proposed by Bob Gallagher (here at MIT) in the I860Loopy BP” has been applied with success to
many computer vision problems. It, or improvements to itgaphs with loops (“tree-reweighted BP”), performs
well in competition with other algorithms for solving MRR&ith very many loops (see the Szeliski et al 2008
comparison paper).

After some of the experimental work came theoretical justtfon for the good performance of loopy BP. For

Gaussian graphical models, you can show that, after BP cgesgthe means will be correct, although the covari-
ances will be overly optimistic. (You can see how that mightiue, since in the BP updates, you are combining
messages which may depend on each other as if they werdissdiiisndependent. So rumors get amplified.) The

max-product algorithm (which computes MAP solutions) fitlus local maximum over a very large region of the

space of solutions. There is a strong connection with theighyiterature. You can show that, after the algorithm
has converged to a solution, it corresponds to a local mimiranergy solution to a particular approximation used
in statistical physics called the Bethe Free Energy. Waiiwy and later Boykov, have subsequently proposed
a variant of the BP update rule to be used in loopy graphs winiginoves the performance of the max-product

algorithm.

testMRF.m is a matlab script that runs ICM, and the sum-pcbdnd max-product BP algorithms on a small,
binary MRF designed for denoising, and compares the results

slides 36, 37Now let’s take a digression from the algorithm itself, anéwthow it might be used within the
context of a low-level computer vision algorithm. Considee task of single-image super-resolution. You are
given a single low-resolution image as the input, and yolk s@eir best estimate of what the high-resolution
version of that image would be. You might imagine using suctalgorithm to estimate an HDTV resolution
video frame from an NTSC resolution version frame, or to ey@ghotos taken from a low-resolution cell-phone
camera.

slides 38-76

The following text, excerpted from a chapter in an upcomingkon Markov Random Fields, and co-authored
with Ce Liu, describes the algorthm presented in slides@®8A7description of slides following 76 begins directly
after the bibiliography of the document below.



Markov Random Fields for Super-resolution and Texture Synhesis
Bill Freeman and Ce Liu
February, 2010

2 Introduction

Suppose we want to digitally enlarge a photograph. The iigatsingle, low-resolution image, and the desired
output is an estimate of the high-resolution version of thretge. This problem can be phrased as one of “image
interpolation”. we seek to interpolate the pixel valueswasn our observed samples. Image interpolation is
sometimes called super-resolution, since we are estimdtin at a resolution beyond that of the image samples.
In contrast with multi-image super-resolution methodsemha high-resolution image is inferred from a video
sequence, we are interested in estimating high-resolitiages from a single low-resolution example [5].

There are many analytic methods for image interpolatiociugting pixel replication, linear and cubic spline in-

terpolation [15], and sharpened Gaussian interpolati6h Mhen we interpolate in resolution by a large amount,
such as a factor of four or more in each dimension, these tmatgthods typically suffer from a blurred appear-
ance. Following a simple rule, they tend to make consergasinooth guesses for image appearance.

We can address this problem with two techniques. The firgt isse an example-based representation to handle
the many special cases we expect. We describe the pre-pimogesd representaton issues for our example-based
representation below. Second, we use a graphical modeéfank to reason about global structure. The super-
resolution problem has a structure similar to other lowelaxsion tasks: we accumulate local evidence (which
may be ambiguous) and propagating it across space. A Madaiom field is an appropriate structure for this:
local evidence terms can be modeled by unary potentigls;) at a node; with statesr;. Spatial propagation
occurs through pairwise potentialg,; (z;, z;), between nodesandj, or through higher order potentials. The
joint probability then has the factorized form,

1
P(%) = 7 sz‘(%‘) H Gij (i, x5), 1)
i (ij)EE

whereF is the set of edges in the MRF denoted by the neighboring néded;, andZ is a normalization constant
such that the probabilities sum to one [11]. The local stasibrelationships allow information to propagate long
distances over an image.

2.1 Image pre-filtering

To develop the super-resolution algorithm, we first spettieydesired model of subsampling and image degrada-
tion that we seek to undo. For the examples in this paper, sumnas we low-pass filter the desired high-resolution
image, then subsample by a factor of four in each dimensmabtain the observed low-resolution image. The
low-pass filter is a 7x7 pixel Gaussian filter, normalized &drunit sum, of standard deviation 1 pixel. We start
from a high-resolution image, and blur it and subsample teegate the corresponding low-resolution image. We
apply this model to a set of training images, to generate sumaber of paired examples of high-resolution and
low-resolution image patch pairs.

It is convenient to handle the high- and low-resolution iemgt the same sampling rate—the same number of
pixels. After creating the low-resolution image, we penfioan initial interpolation up to the sampling rate of
the full-resolution image. Usually this is done with cubpise interpolation, to create what we will call the
“upsampled low-resolution image”.

We want to exploit whatever invariances we can to let theningi data generalize beyond the training examples.
We use two heuristics to try to extend the reach of the exasnpiest, we don’t believe that all spatial frequencies
of the low-resolution are needed to predict the missing {iigquency image components, and we don’t want
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to have to store a different example patch for each possadleevof the low-frequency components of the low-
resolution patch. So we apply a low-pass filter to the upsadhjplwv-resolution image in order to divide it into two
spatial frequency bands. We call the output of the low-pitss the “low-band”,L; the upsampled low-resolution
image minus the low-band image gives what we’'ll call the “rhhd”, M. The difference between the upsampled
low-resolution image and the original image is the “higmtia H .

A second operation to increase the scope of the examplestimsbnormalization. We assume that the relationship

of the mid-band)\/, to high-bandH, data is independent of the local contrast level. So we nliwentoe contrast

of the mid- and high-band images in the following way:

o (M, H]

M,H = ————— 2
M, H] std(M) +¢ @

wherestd(-) is standard deviation operator, afits a small value which sets the local contrast level belowctvhi

we do not adjust the contrast. Typically= 0.0001 for images that range over zero to one.

2.2 Representation of the unknown state

We have a choice about what we estimate at the nodes of the KMRE.variable to be estimated at each node is
a single pixel, then the dimensionality of the unknown stdte node is low, which is good. However, it may not
be feasible to draw valid conclusions about single pixdkestérom only performing computations between pairs
of pixels. That may place undo burden on the MRF inference.cvdd remove that burden if a large patch of
estimated pixels is assigned to one node, but then the staemdionality at a node may be unmanagably high.

To address this, we work with entire image patches at eack,rtodprovide sufficient local evidence, but use
other means to constrain the state dimensionality at a rféidst, we restrict the solution patch to be one of some
number of exemplars, typically image examples from somiaitrg set. In addition, we take advantage of local
image evidence to further constrain the choice of exemptab® from some smaller set of candidates from the
training set. The result is an unknown state dimension ob2Mtstates per node.

Figure 2 illustrates this representation. The top row shamsput patch from the (bandpassed, contrast normal-
ized) low-resolution input image. The next two rows show 3@enearest-neighbor examples from a database of
658,788 image patches, extracted from 41 images. The lewatehes are of dimensi@h x 25, and the high-res
patches are of dimensidhx 9. The bottom two rows of Fig. 2 show the corresponding higgehation image
patches for each of those 30 nearest neighbors. Note thatithband images look approximately the same as
each other and as the input patch, while the high-resolyi#dohes look considerably different from each other.
This tells us that the local information from the patch blitss not sufficient to determine the missing high
resolution information, and we must use some other souréefofmation to resolve the ambiguity. The state
representation is then an index into a collection of exemsptalling which of the unknown high resolution image
patches is the correct one, illustrated in Fig. 3. The reguMRF is shown in Fig. 1.

2.3 MRF parameterization

We can define a local evidence term and pairwise potentialseoflarkov random field if we make assumptions
about the probability of encountering a training set exempi the test image. We assume any of our image
exemplars can appear in the input image with equal proltyabille account for differences between the input and
training set patches as independent, identically digeithGaussian noise added to every pixel. Then the local
evidence for a node being in sample statedlepends on the amount of noise needed to translate fromwhe lo
resolution patch corresponding to stateo the observed mid-band image patghif we denote the band-passed,
contrast normalized mid-band training patch associatéid stater; as]ff(a:i) then

wilai) = exp |5 — M (x)|*/(20%) 3)
where we write 2-d image patches as rasterized vectors.
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mid-band patches

Figure 1: Patch-based MRF for low-level vision. The obstovesy; are patches from the mid-band image data.
The states to be estimated are indices into a dataset ottasigpatches.

To construct the compatibility terna;; (x;, z;), we assume we have overlapping high-band patches thatdshoul
agree with their neighbors in their regions of overlap, sge & Any disagreements is again attributed to a

Gaussian noise process. If we denote the band-passedastombrmalized high-band training patch associated
with statez; asH (z;), and introduce an operat6¥;; that extracts as a rasterized vector the pixels of the qverla

region between patchésand; (with the ordering compatible for neighboring patchespntive have

¢ij (i, 25) = exp |Oi; (H (:)) — Oji(H ()] /(207), (4)

In the examples we show below, we used a mid-band and higti{batich size of 9x9 pixels, and used a patch
overlap region of size 3 pixels.

Input patch

Closest image
patches from database

Corresponding
high-resolution
patches from database

Figure 2: top: input patch (mid-band bandpass filtered,resbnhormalized). We seek to find the high-resolution
patch associated with this. Middle: Nearest neighbors fidatabase to the input patch. The found patches match
this reasonably well. Bottom: The corresponding high-k&tsmn patches associated with each of the retrieved mid-
band bandpass patches. These show more variability thanithband patches, indicating that more information
than simply the local image matches is needed to select thygephigh-resolution image estimate. Since the
resolution requirements for the color components are Idkger for luminance, we use an example-based approach
for the luminance, and interpolate the color informatioreliyonventional cubic spline interpolation.

2.4 Loopy belief propagation

We have set-up the Markov Random Field such that each pessldction of states at each node corresponds to

a high-resolution image interpretation of the input lowekition image. The MRF probability, the product of all

the local evidence and pairwise potentials in the MRF, assagyprobability to each possible selection of states
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Figure 3: The state to be estimated at each node. Using thbdaidence, at each node, we have a small collection
of image candidates, selected from our database. We uselibégropagation to select between the candidates,
based on compatibility information.

Patch i Patch j

Figure 4: The patch-patch compatibility function is comguifrom the sum of squared pixel differences in the
overlap region.

according to Eq. (1). Each configuration of states specifiesséimated high-band image, and we seek the high-
band image that is most favored by the MRF we have specified.i¥the task of finding a point estimate from a
posterior probability distribution.

In Bayesian decision theory [2] the optimal point estimagpehds on the loss function used—the penalty for
guessing wrong. With a penalty proportional to the squatheérror, the best estimate is the mean of the posterior.
However, if all deviations from the true value are equallpg@lezed, then the best estimate is the maximum of the
posterior. Using Belief Propagation [13], both estimai@s lbe calculated exactly for an MRF that is a tree.

We consider first the case of the posterior mean, which reguirarginalizing the posterior over the states of all
other nodes. For a network without loops, the sums over ntadessfor the marginalization can be distributed
efficiently over the network in a message-passing algorithtie define a set of messages;; (z,) along each
direction of each edge; the messages can be initializechtiora values between zero and one. The messages are
functions of the states of the node receiving the messageegsage from node i to node j is updated according to,

maj () < Y bl wy)y () [ mwsay) ©)

T ken(in

For the case of a tree network, these updates occur until #esages no longer change. Then the marginal
probability at each node is the product of all the incomingsages and the local potential:

Pas(@i) = dilwi) [ moi() (6)
Jjen(i)
When the Markov network forms a tree, belief propagatiommpdy an efficient redistribution of the sums involved
in marginalization, and iterations of Eq. (5) yield the exaarginals by Eq. (6).

Interestingly, for a network with loops, it is often stillefsil to apply the same update and marginal probability
equations, although in that case, the marginal probadsigre only an approximation. The message updates are
run until convergence, or for a fixed number of iterationsréheve used 30 iterations). Fixed points of these
iterative update rules correspond to stationary pointsmélknown approximation used in statistical physics, the
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Bethe approximation [18]. Good empirical results have ba#ained with that approximation [7, 5], and we use
it here.

For our approximation to the MMSE estimate, we take the meaighted by the marginals from Eqg. (6)) of the
candidate patches at a node. It is also possible to apprtxitnea MAP estimate by substituting the summation
operator of Eq. (5) with “max”, then selecting the patch maixing the resulting “max-marginal” given in Eq. (6).
These solutions are often sharper, but with more artifédtés the MMSE estimate.

To piece together the final image, we undo the contrast nizatain of each patch, average neighboring patches in
regions where they overlap, add-in the low and mid-band @sagnd add-in the analytically interpolated chromi-
nance information. Figure 5 summarizes the steps in theitign and Fig. 6 shows other results. The perceived
sharpness is significantly improved, and the belief propagaterations significantly reduce the artifacts that
would result from estimating the high-resolution imagedsben local image information alone. (Figure 7 pro-
vides enlargments of cropped regions from those two figufidee code used to generate the images in Sect. 2.4 is
available for download at http://people.csail.mit.edif/b

(b) Bicubic x 4 (c) Desaturated (d) Band-pass

(i) Add back low-frequency to (h)  (j) Super resolution results (add back color) (k) Ground truth high-res (1) Ground truth high-band

Figure 5: Images showing the example-based super-resolptocessing. (&) input image, of resolutit? x

80. (b) Cubic spline interpolation up to a factor of four highresolution in each dimension. (c) We extract
the luminance component for example-based processingu@andubic spline interpolation for the chrominance
components). (d) A high-pass filtering of this image giveshesmid-band output, shown here. (e) Display of
the contrast normalized mid-band. The contrast normabzatxtends the utility of the training database samples
beyond the contrast value of each particular training exantf) the high frequencies corresponding to the nearest
neighbor of each local low-frequency patch. (g) After 1atérn of belief propagation, much of the choppy high
frequency details of (f) are removed. (h) converged highltg®n estimates. (i) Image (c) added to image (h)-the
estimated high frequencies added back to the mid and loguénecies. (j) Color components added back in. (k)
comparison with ground truth. (I) true high frequency comgats.



(a) Low-res input (b) Bicubic (c) Belief propagation  (d) Original high-res

Figure 6: Other example-based super-resolution outpajsnput low-res images. (b) Bicubic interpolation (x4
resolution increase). (c) Belief propagation output. (0¥ True high-resolution images.
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(a) Low-res input (b) Bicubic (c) Nearest neighbor (d) Belief propagation (e) Original high-res

Figure 7: The closeups of Figure 5 and 6. (a) Input low-resgesa (b) Bicubic interpolation (x4 resolution
increase). (c) Nearest neighbor output. (d) Belief profiagautput. (c) The true high-resolution images.
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3 Selected related applications by others

Markov random fields have been used extensively in imageggsicg and computer vision. Geman and Geman
brought Markov random fields to the attention of the visiomaaunity, and showed how to use MRF’s as image
priors in restoration applications, [8]. Poggio, Gambld &ittle used MRF’s in a framework unifying different
computer vision modules, [14].

The example-based approach has been built on by others. nTéttsod has been used in combination with a
resolution enhancement model specific to faces [1] to aehéxeellent results in hallucinating details of faces
[12]. Huang and Ma have proposed finding a linear combinaifdhe candidate patches to fit the input data, then
applying the same regression to the output patches, simglatbetter fit to the input [17]. (A related approach
was also used in [6]).

Optimal seams for image transitions were found in a 2-d fraonk, using graph cuts in Kwatra et al [10].
Example-based image priors were used for image-basedriegdie the work of Fitzgibbon, Wexler, and Zisser-
man, [4]. Fattal used edge models for image upsampling [B]si&r et al also used an example-based approach
for super-resolution, relying on self-similarity withinsingle image [9].
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slides 77

We can also apply this method—BP, using this patch-baseddiaten method—to other low-level vision problems.
Here, we show its application to motion.

The input is pairs of frames of image data (in this case, vapiantized into discrete states). The outputis a set of
motion states (again vector quantized from example motémtors).

slides 78-80/Nhat behavior do we expect from this algorithm? From thellec@lence only, we will be confronted
with the “aperture problem”. From the local, straight-eaddea contour, we can only discern the component of
the contour’s motion perpendicular to the contour. The aroéimbiguity can be resolved by aggregating motion
evidence from other orientations of the contour. We may etjoesee that happen.

Another local ambiguity we’ll need to resolve is the figurelgnd problem (your problem set due Weds also
addresses this problem).

slides 82-84

Those amiguities, and their resolutions, can be seen inrisifk iterations of loopy belief propagation. Remember
that messages are passed to neighboring nodes acrosascatd| as in space.

Note the limitations of this algorithm: states are quarttiz&ther coarsely, to save in storage and testing speed.
The algorithm (loopy belief propagation) is not guaranteecbnverge.

slides 86-91

Finally, to connect with the previous class, let's look aivhmu might do segmentation with a Markov Random
Field model.

A conventional MRF is called a generative model, becausegald generate samples of image data from it, using
Gibbs sampling to produce images that are probable undguititelensity described by the MRF.

But there is another way to use Markov Random Fields. We cfinela special class of Markov Random Field,
called a Conditional Random Field (CRF), where the potéfitiations between hidden variables depend on the
image data. These graphical models depend on the imageatdtap do not represent prior probabilities for the
images.

These conditional random fields are commonly used in stegpthdeconstructions. The pairwise potentials are
then set to encourage neighboring depth estimates to dgre# the presence of a strong image gradient, that
constraint is relaxed.

ObjCut is a relatively recent paper that enforces an olijased prior on a CRF to encourage segmentation of
image data, enforcing a prior preference that the segmentsn to the shape of a learned object class, in this
case, a COw.
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slides 92-100

Finally, let’'s talk about how we might learn the pairwisegmtial functions of an MRF. It is straightforward to show
that in a maximum likelihood estimate of model parametdrs,model’s prediction for the marginal probability
at any clique will be equal to the observed marginal prolitédsifor that clique of nodes. We can measure those
marginal probabilities simply by counting frequencies ofarence of states in a labeled training set.

If we measure the marginal probabilities, what does it telabout the joint probabilities? There is a procedure,
called Iterative Proportional Fitting (IPF), that adjuats estimate of a joint probability based on observations of
the marginals. The result is a maximum entropy estimate @fiant probability. The update rule is to scale
the joint probability by the ratio of the observed marginadigability over the current model’s predicted marginal
probability.

P(xc)observed

P(z)t = P(f)tW (7)

If we substitute in the product of the clique potentials fo(7)! ™!, and only modify the clique potential corre-
sponding to the marginal we measure, then we have this updatgion:

tp(xc)observed

Zc = c\Te
dulae) 1 = o) T ®
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