
1 Lecture 10: Markov Random Fields (MRF’s)

Tuesday, Feb. 22, 2010 MIT EECS course 6.869, Bill Freeman and Antonio Torralba
Slide numbers refer to the file “lecture10MRF2011”

slide 1Last time, we talked about issues in perceptual grouping–findingedges, finding segments. We used a variety
of different machineries to do the perceptual grouping, ranging from heuristic threshold setting (with the Canny
edge detector) to eigenvector approximations to solve an optimization for segmentation.

In this lecture, we’ll introduce yet another bit of machinery that can be used for perceptual grouping, and for many
other perceptual problems as well: probabilistic graphical models. We introduced them the week before last, and
saw how to perform inference in them (marginalize the joint probability down to variables of interest) for cases
where the models had a tree or chain-like structure.

Today, we’ll talk about those models in their more general form, with loops, potentially many of them. This is
a very general hammer, useful for more than just perceptual grouping. We’ll show how to apply this model to
various problems, discuss solutions, and finally return to segmentation and show how they can be used for that,
too.

slide 2Let’s first remind ourselves about graphical models. They depict some class of joint probability functions
that share a common structure. We use that depicted structure to do inference efficiently.

Undirected graphical models make conditional independencies explicit. If there isn’t an edge between two nodes,
then those nodes are statistically independent, if you condition on the other nodes in the graph (indeed, you only
need to condition on a “separator set” of nodes, so that thereis no edge path through unconditioned nodes between
the two nodes).

slide 3, 4

The factorization of the joint probability depicted by the graph depends on its cliques. This slide shows the
definition of cliques. The joint probability is a product of functions of the cliques, called clique potentials.

slide 5 We just worked with very simple ones in class earlier, but I think of graphical models as construction
toys for joint probabilities. You can model all sorts of things with them, and make explicit the relevant statistical
independencies. These independencies you can then use to doefficient inference.

You might object that such structured probabilistic modelsare the exception, and usually everything depends on
everything else and you can’t make these independence assumptions to simplify calculations. But these structured
probabilities are the rule, not the exception. Imagine how impossible it would be to behave or interact with the
world if the appearance of something here depended on thingshappening outside the room out there. There
sometimes are such dependencies, and you want to model those, but independencies happen so often that you want
to be able to model them with these graphs.

The nodes can represent all sorts of things that you want to estimate the state of: joint angles, surfaces, depths, etc.

slides 6, 7, 8Oftentimes we work with MRF’s on a regular grid (although we don’t need to). The observed nodes
might represent pixels and the hidden nodes could representlabels (like, this is grass, or this has an orientation of
45 degrees). Here we adopt the convention that observed variables are shaded. Nodes can also represent patches
of observed pixels or of inferred output pixels.



slide 9For this grid structure, the cliques all involve just pairs of nodes, and so by the Hammersly Clifford theo-
rem, the joint probability is represented by this product ofterms (equation in slide). We have a local term, only
depending on the local observations, and a pairwise interaction term with neighboring nodes. That pairwise term
will let us say, for example, “we’d like for a node to have the same state as its neighbor”.

slide 10We’re looking at this as a joint probability. I should note that it is common to take the log of both sides,
to find an equation for an energy to be minimized. Of course, the energy retains the same structure, and it is a sum
of local and pairwise terms. Many of the calculations in the energy domain are analogous. Typically, you give
up the ability to find marginal probabilities, and you’re forced to find a single, best estimate, the lowest energy
solution. This corresponds to finding the MAP estimate from the joint probability, which it’s also possible to do in
the probability domain, using a variant of the belief propagation algorithm we showed before.

slide 11Of course, even with these more general structures for the joint probabilities, beyond chains, we still want
to do inference, that is, to compute the marginal probability at a node or a set of nodes, given the observations.
We may want to compute the marginal probabilties, or perhapsthe maximum probability state (lowest energy
configuration).

An additional task we sometimes have is to learn the parameters of the MRF itself–the local evidence functions
and the compatibility functions.

slide 12To start, let’s focus on inference in MRF’s. That, by itself,is a large, active research area. In this lecture,
we’ll describe popular methods, and just name two others.

slide 14

The first method we’ll discuss is a brute force method that always works, if you wait long enough. It’s called
Gibbs sampling. It’s kind of a divide and conquor algorithm.It may be very difficult to find random draws from
a multi-dimensional function, but it’s straightforward tomake draws from a one-dimensional function. We can
condition on the current state of all variables but one, and draw from that conditional distribution. So we randomly
cycle through all the variables, freezing the rest and making a conditional draw. This general approach is called
Markov chain monte carlo. Eventually, the outputs of the Gibbs sampler will give random draws from the joint
probability of the underlying graphical model. We can take an average over independent samples to find the mean
of that joint probability.

Some practical issues: because the variables are initialized randomly, not at all corresponding to a random draw
from the joint distribution, one typically waits for a “burn-in period” before including outputs from the Gibbs
sampler in the average to find the mean. Similarly, sequential outputs from the Gibbs sampler are not independent
draws from the joint posterior, since only one variable has changed between the two outputs, so one typically only
includes samples after some period that is large relative tothe number of nodes in the graph.

slide 15

Here’s a way to sample from a 1-d function, that is, to draw samples ofx according to the probability density
given by the function,f(x). Discretize the domainx into samplesxk and compute the distribution function,
F (xk) =

∑k
m=1 f(xm). By construction, the value of the distribution functionF is increasing from the value at

xk−1 in proportion to the probability density,f(xk). We can select that value in proportion tof(xk) if we drawα
from the uniform distribution,[0, 1] and selectxk if F (xk−1) < α < F (xk). This leads to the sampling algorithm
in the box of slide 15.

slide 16This figure shows a 2-d depiction of the conditioning and sampling for a Gibbs sampler. By taking an
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average of those samples (separated by enough iterations sothat the samples become independent draws from the
joint probability) will give an estimate of the mean of the desired joint probability.

slides 17-19Remember that for some problems it makes sense to use the meanof the joint probability as a best
estimate (the MMSE estimate), while for other problems, thelocation of highest probability might be desired (the
MAP estimate). The procedure of slides 15 and 16 will give theMMSE estimate.

We can modify the shape of the probability density to favor the probability peaks, guiding the Gibbs sampler to
make draws from only the peak of the joint probability, letting us find the MAP estimate. A common way to do
that is introduce a shaping parameter,T , to scale the arguments of the exponents in the joint probability. This
accentuates the highest values of the joint probability. AsT → 0, the highest value ofP (x, T ) dominates all other
values, and the Gibbs sampler will only produce samples fromnear the peak, atxMAP. This procedure is called
“simulated annealing”, by analogy with the cooling of a physical system to find its ground state energy.

A problem with simulated annealing is that it is very slow: Gibbs sampling is an inner-loop step in the simulated
annealing procedure. If the “cooling parameter”,T is lowered too quickly, then the random samples won’t be able
to diffuse toward the most probable areas quickly enough andthe system can get stuck in some locally maximal
area of the density function.

slides 20-22

An early method to find the most probable state of an MRF, called “Iterated conditional modes” (ICM), is closely
related conceptually to the Gibbs sampling procedure. As with Gibbs sampling, we freeze the value of every node
except one. Then with that one, in ICM we find the mode of the conditional distribution, instead of drawing a
sample from it, as with Gibbs sampling.

There are some distributions for which ICM will quickly find the MAP estimate, but for most distributions of
interest, it doesn’t perform as well as other methods we’re discussing here.

slides 23, 24

Another method to solve Markov Random Fields is to run the belief propagation algorithm, even though it wasn’t
designed for networks with loops. This is sometimes called “Loopy belief propagation”.

Because you may not have finished your homework for Wednesdayyet (which has a BP problem in it), let’s review
belief propagation. We have a graphical model, with observed (shaded) and hidden nodes. We want to find the
marginal probability at

slides 25- 30

This is a review of material covered in Weds, Feb. 23, 2011 lecture.

slide 31

I should note, there is a variant of belief propagation. The algorithm we just covered, which lets you compute the
marginal probability at each node, is called the sum-product algorithm, because of the summation over message
products. From the marginal probability at a node, you can compute the MMSE estimate, the mean value at the
node.

A related algorithm lets you compute the MAP estimate efficiently. We can write the MAP estimate in terms of
“max” operations, instead of the “sum” operations of the MMSE computation. All the arguments we went through
to motivate the sum-product algorithm carry through, with “max” operations passing through factors in the joint
posterior, instead of “sum” operations. The result is the “max-product” algorithm for the message updates, shown
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here. Taking the maximum over the corresponding “max-marginals” at a node, leads to the MAP estimate at each
node (there are some additional details if there are ties in the maximum value over the joint posterior).

slides 32-35This is all good for graphs without loops. BP gives the correct Bayesian calculation for the desired
marginal probabilities, or for the max-marginals, for the MAP version. Since it’s an efficient way to compute the
marginal probabilities, you can imagine that it has been re-discovered many different times in different contexts,
and it has. In the context of Gaussian random variables, observed over time, it is the Kalman filter. For discrete
variables, in the MAP version, it is the Viterbi algorithm.

But what to do about general graphs with loops? We note that the update and marginal probability rules themselves
are all local rules, and it would certainly be feasible to runthe BP updates in a graph with loops, inititalizing the
messages to random, or else uniformative, values. As you might expect, researchers have tried this, and, to the
surprise of some, have found some remarkable success in doing so. The world’s best error correcting codes
are decoded using BP run in a network with loops. (That decoding algorithm was a re-discovery of a decoding
algorithm proposed by Bob Gallagher (here at MIT) in the 1960’s). “Loopy BP” has been applied with success to
many computer vision problems. It, or improvements to it forgraphs with loops (“tree-reweighted BP”), performs
well in competition with other algorithms for solving MRF’swith very many loops (see the Szeliski et al 2008
comparison paper).

After some of the experimental work came theoretical justification for the good performance of loopy BP. For
Gaussian graphical models, you can show that, after BP converges, the means will be correct, although the covari-
ances will be overly optimistic. (You can see how that might be true, since in the BP updates, you are combining
messages which may depend on each other as if they were statistically independent. So rumors get amplified.) The
max-product algorithm (which computes MAP solutions) findsthe local maximum over a very large region of the
space of solutions. There is a strong connection with the physics literature. You can show that, after the algorithm
has converged to a solution, it corresponds to a local minimum energy solution to a particular approximation used
in statistical physics called the Bethe Free Energy. Wainwright, and later Boykov, have subsequently proposed
a variant of the BP update rule to be used in loopy graphs whichimproves the performance of the max-product
algorithm.

testMRF.m is a matlab script that runs ICM, and the sum-product and max-product BP algorithms on a small,
binary MRF designed for denoising, and compares the results.

slides 36, 37Now let’s take a digression from the algorithm itself, and show how it might be used within the
context of a low-level computer vision algorithm. Considerthe task of single-image super-resolution. You are
given a single low-resolution image as the input, and you seek your best estimate of what the high-resolution
version of that image would be. You might imagine using such an algorithm to estimate an HDTV resolution
video frame from an NTSC resolution version frame, or to enlarge photos taken from a low-resolution cell-phone
camera.

slides 38-76

The following text, excerpted from a chapter in an upcoming book on Markov Random Fields, and co-authored
with Ce Liu, describes the algorthm presented in slides 38-76. A description of slides following 76 begins directly
after the bibiliography of the document below.
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Markov Random Fields for Super-resolution and Texture Synthesis
Bill Freeman and Ce Liu

February, 2010

2 Introduction

Suppose we want to digitally enlarge a photograph. The inputis a single, low-resolution image, and the desired
output is an estimate of the high-resolution version of thatimage. This problem can be phrased as one of “image
interpolation”: we seek to interpolate the pixel values between our observed samples. Image interpolation is
sometimes called super-resolution, since we are estimating data at a resolution beyond that of the image samples.
In contrast with multi-image super-resolution methods, where a high-resolution image is inferred from a video
sequence, we are interested in estimating high-resolutionimages from a single low-resolution example [5].

There are many analytic methods for image interpolation, including pixel replication, linear and cubic spline in-
terpolation [15], and sharpened Gaussian interpolation [16]. When we interpolate in resolution by a large amount,
such as a factor of four or more in each dimension, these analytic methods typically suffer from a blurred appear-
ance. Following a simple rule, they tend to make conservative, smooth guesses for image appearance.

We can address this problem with two techniques. The first is to use an example-based representation to handle
the many special cases we expect. We describe the pre-processing and representaton issues for our example-based
representation below. Second, we use a graphical model framework to reason about global structure. The super-
resolution problem has a structure similar to other low-level vision tasks: we accumulate local evidence (which
may be ambiguous) and propagating it across space. A Markov random field is an appropriate structure for this:
local evidence terms can be modeled by unary potentialsψi(xi) at a nodei with statesxi. Spatial propagation
occurs through pairwise potentials,φij(xi, xj), between nodesi andj, or through higher order potentials. The
joint probability then has the factorized form,

P~x(~x) =
1

Z

∏

i

ψi(xi)
∏

(ij)∈E

φij(xi, xj), (1)

whereE is the set of edges in the MRF denoted by the neighboring nodes, i andj, andZ is a normalization constant
such that the probabilities sum to one [11]. The local statistical relationships allow information to propagate long
distances over an image.

2.1 Image pre-filtering

To develop the super-resolution algorithm, we first specifythe desired model of subsampling and image degrada-
tion that we seek to undo. For the examples in this paper, we assume we low-pass filter the desired high-resolution
image, then subsample by a factor of four in each dimension, to obtain the observed low-resolution image. The
low-pass filter is a 7x7 pixel Gaussian filter, normalized to have unit sum, of standard deviation 1 pixel. We start
from a high-resolution image, and blur it and subsample to generate the corresponding low-resolution image. We
apply this model to a set of training images, to generate somenumber of paired examples of high-resolution and
low-resolution image patch pairs.

It is convenient to handle the high- and low-resolution images at the same sampling rate–the same number of
pixels. After creating the low-resolution image, we perform an initial interpolation up to the sampling rate of
the full-resolution image. Usually this is done with cubic spline interpolation, to create what we will call the
“upsampled low-resolution image”.

We want to exploit whatever invariances we can to let the training data generalize beyond the training examples.
We use two heuristics to try to extend the reach of the examples. First, we don’t believe that all spatial frequencies
of the low-resolution are needed to predict the missing high-frequency image components, and we don’t want
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to have to store a different example patch for each possible value of the low-frequency components of the low-
resolution patch. So we apply a low-pass filter to the upsampled low-resolution image in order to divide it into two
spatial frequency bands. We call the output of the low-pass filter the “low-band”,L; the upsampled low-resolution
image minus the low-band image gives what we’ll call the “mid-band”,M . The difference between the upsampled
low-resolution image and the original image is the “high-band”,H .

A second operation to increase the scope of the examples is contrast normalization. We assume that the relationship
of the mid-band,M , to high-band,H , data is independent of the local contrast level. So we normalize the contrast
of the mid- and high-band images in the following way:

[M̂, Ĥ] =
[M,H ]

std(M) + δ
(2)

wherestd(·) is standard deviation operator, andδ is a small value which sets the local contrast level below which
we do not adjust the contrast. Typically,δ = 0.0001 for images that range over zero to one.

2.2 Representation of the unknown state

We have a choice about what we estimate at the nodes of the MRF.If the variable to be estimated at each node is
a single pixel, then the dimensionality of the unknown stateat a node is low, which is good. However, it may not
be feasible to draw valid conclusions about single pixel states from only performing computations between pairs
of pixels. That may place undo burden on the MRF inference. Wecould remove that burden if a large patch of
estimated pixels is assigned to one node, but then the state dimensionality at a node may be unmanagably high.

To address this, we work with entire image patches at each node, to provide sufficient local evidence, but use
other means to constrain the state dimensionality at a node.First, we restrict the solution patch to be one of some
number of exemplars, typically image examples from some training set. In addition, we take advantage of local
image evidence to further constrain the choice of exemplarsto be from some smaller set of candidates from the
training set. The result is an unknown state dimension of 20 to 40 states per node.

Figure 2 illustrates this representation. The top row showsan input patch from the (bandpassed, contrast normal-
ized) low-resolution input image. The next two rows show the30 nearest-neighbor examples from a database of
658,788 image patches, extracted from 41 images. The low-res patches are of dimension25×25, and the high-res
patches are of dimension9×9. The bottom two rows of Fig. 2 show the corresponding high-resolution image
patches for each of those 30 nearest neighbors. Note that themid-band images look approximately the same as
each other and as the input patch, while the high-resolutionpatches look considerably different from each other.
This tells us that the local information from the patch by itself is not sufficient to determine the missing high
resolution information, and we must use some other source ofinformation to resolve the ambiguity. The state
representation is then an index into a collection of exemplars, telling which of the unknown high resolution image
patches is the correct one, illustrated in Fig. 3. The resulting MRF is shown in Fig. 1.

2.3 MRF parameterization

We can define a local evidence term and pairwise potentials ofthe Markov random field if we make assumptions
about the probability of encountering a training set exemplar in the test image. We assume any of our image
exemplars can appear in the input image with equal probability. We account for differences between the input and
training set patches as independent, identically distributed Gaussian noise added to every pixel. Then the local
evidence for a node being in sample statexi depends on the amount of noise needed to translate from the low-
resolution patch corresponding to statexi to the observed mid-band image patch,~p. If we denote the band-passed,
contrast normalized mid-band training patch associated with statexi as ~M(xi) then

ψi(xi) = exp |~p− ~M(xi)|
2/(2σ2) (3)

where we write 2-d image patches as rasterized vectors.
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Figure 1: Patch-based MRF for low-level vision. The observationsyi are patches from the mid-band image data.
The states to be estimated are indices into a dataset of high-band patches.

To construct the compatibility term,φij(xi, xj), we assume we have overlapping high-band patches that should
agree with their neighbors in their regions of overlap, see Fig. 4. Any disagreements is again attributed to a
Gaussian noise process. If we denote the band-passed, contrast normalized high-band training patch associated
with statexi as ~H(xi), and introduce an operatorOij that extracts as a rasterized vector the pixels of the overlap
region between patchesi andj (with the ordering compatible for neighboring patches), then we have

φij(xi, xj) = exp |Oij(H(xi))−Oji(H(xj))|
2/(2σ2), (4)

In the examples we show below, we used a mid-band and high-band patch size of 9x9 pixels, and used a patch
overlap region of size 3 pixels.

Input patch

Closest image

patches from database

Corresponding 

high-resolution

patches from database

Figure 2: top: input patch (mid-band bandpass filtered, contrast normalized). We seek to find the high-resolution
patch associated with this. Middle: Nearest neighbors fromdatabase to the input patch. The found patches match
this reasonably well. Bottom: The corresponding high-resolution patches associated with each of the retrieved mid-
band bandpass patches. These show more variability than themid-band patches, indicating that more information
than simply the local image matches is needed to select the proper high-resolution image estimate. Since the
resolution requirements for the color components are lowerthan for luminance, we use an example-based approach
for the luminance, and interpolate the color information bya conventional cubic spline interpolation.

2.4 Loopy belief propagation

We have set-up the Markov Random Field such that each possible selection of states at each node corresponds to
a high-resolution image interpretation of the input low-resolution image. The MRF probability, the product of all
the local evidence and pairwise potentials in the MRF, assigns a probability to each possible selection of states
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Figure 3: The state to be estimated at each node. Using the local evidence, at each node, we have a small collection
of image candidates, selected from our database. We use the belief propagation to select between the candidates,
based on compatibility information.

Figure 4: The patch-patch compatibility function is computed from the sum of squared pixel differences in the
overlap region.

according to Eq. (1). Each configuration of states specifies an estimated high-band image, and we seek the high-
band image that is most favored by the MRF we have specified. This is the task of finding a point estimate from a
posterior probability distribution.

In Bayesian decision theory [2] the optimal point estimate depends on the loss function used–the penalty for
guessing wrong. With a penalty proportional to the square ofthe error, the best estimate is the mean of the posterior.
However, if all deviations from the true value are equally penalized, then the best estimate is the maximum of the
posterior. Using Belief Propagation [13], both estimates can be calculated exactly for an MRF that is a tree.

We consider first the case of the posterior mean, which requires marginalizing the posterior over the states of all
other nodes. For a network without loops, the sums over node states for the marginalization can be distributed
efficiently over the network in a message-passing algorithm. We define a set of messages,mij(xj) along each
direction of each edge; the messages can be initialized to random values between zero and one. The messages are
functions of the states of the node receiving the message. A message from node i to node j is updated according to,

mij(xj)←
∑

xj

φ(xi, xj)φj(xj)
∏

k∈η(j)ı

mkj(xj) (5)

For the case of a tree network, these updates occur until the messages no longer change. Then the marginal
probability at each node is the product of all the incoming messages and the local potential:

pxi
(xi) = φi(xi)

∏

j∈η(i)

mji(xi) (6)

When the Markov network forms a tree, belief propagation is simply an efficient redistribution of the sums involved
in marginalization, and iterations of Eq. (5) yield the exact marginals by Eq. (6).

Interestingly, for a network with loops, it is often still useful to apply the same update and marginal probability
equations, although in that case, the marginal probabilities are only an approximation. The message updates are
run until convergence, or for a fixed number of iterations (here, we used 30 iterations). Fixed points of these
iterative update rules correspond to stationary points of awell-known approximation used in statistical physics, the
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Bethe approximation [18]. Good empirical results have beenobtained with that approximation [7, 5], and we use
it here.

For our approximation to the MMSE estimate, we take the mean (weighted by the marginals from Eq. (6)) of the
candidate patches at a node. It is also possible to approximate the MAP estimate by substituting the summation
operator of Eq. (5) with “max”, then selecting the patch maximizing the resulting “max-marginal” given in Eq. (6).
These solutions are often sharper, but with more artifacts,than the MMSE estimate.

To piece together the final image, we undo the contrast normalization of each patch, average neighboring patches in
regions where they overlap, add-in the low and mid-band images, and add-in the analytically interpolated chromi-
nance information. Figure 5 summarizes the steps in the algorithm, and Fig. 6 shows other results. The perceived
sharpness is significantly improved, and the belief propagation iterations significantly reduce the artifacts that
would result from estimating the high-resolution image based on local image information alone. (Figure 7 pro-
vides enlargments of cropped regions from those two figures.) The code used to generate the images in Sect. 2.4 is
available for download at http://people.csail.mit.edu/billf/.

(a) Input (b) Bicubic x 4

(k) Ground truth high-res (l) Ground truth high-band

(h) Inferred high-band (BP # iterations = 30)(g) Inferred high-band (BP # iterations = 1)(f) Inferred high-band (Nearest neighbor)

(j) Super resolution results (add back color)

(d) Band-pass(c) Desaturated

(h(g) Infe ed high-band (BP # ite ti 1)(e) Contrast normalized band-pass

(j(j(i) Add back low-frequency to (h)

Figure 5: Images showing the example-based super-resolution processing. (a) input image, of resolution120×
80. (b) Cubic spline interpolation up to a factor of four higherresolution in each dimension. (c) We extract
the luminance component for example-based processing (anduse cubic spline interpolation for the chrominance
components). (d) A high-pass filtering of this image gives usthe mid-band output, shown here. (e) Display of
the contrast normalized mid-band. The contrast normalization extends the utility of the training database samples
beyond the contrast value of each particular training example. (f) the high frequencies corresponding to the nearest
neighbor of each local low-frequency patch. (g) After 1 iteration of belief propagation, much of the choppy high
frequency details of (f) are removed. (h) converged high resolution estimates. (i) Image (c) added to image (h)–the
estimated high frequencies added back to the mid and low-frequencies. (j) Color components added back in. (k)
comparison with ground truth. (l) true high frequency components.
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(a) Low-res input (b) Bicubic (c) Belief propagation (d) Original high-res

Figure 6: Other example-based super-resolution outputs. (a) Input low-res images. (b) Bicubic interpolation (x4
resolution increase). (c) Belief propagation output. (d) The true high-resolution images.
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(a) Low-res input (b) Bicubic (d) Belief propagation (e) Original high-res(c) Nearest neighbor

Figure 7: The closeups of Figure 5 and 6. (a) Input low-res images. (b) Bicubic interpolation (x4 resolution
increase). (c) Nearest neighbor output. (d) Belief propagation output. (c) The true high-resolution images.
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3 Selected related applications by others

Markov random fields have been used extensively in image processing and computer vision. Geman and Geman
brought Markov random fields to the attention of the vision community, and showed how to use MRF’s as image
priors in restoration applications, [8]. Poggio, Gamble and Little used MRF’s in a framework unifying different
computer vision modules, [14].

The example-based approach has been built on by others. Thismethod has been used in combination with a
resolution enhancement model specific to faces [1] to achieve excellent results in hallucinating details of faces
[12]. Huang and Ma have proposed finding a linear combinationof the candidate patches to fit the input data, then
applying the same regression to the output patches, simulating a better fit to the input [17]. (A related approach
was also used in [6]).

Optimal seams for image transitions were found in a 2-d framework, using graph cuts in Kwatra et al [10].
Example-based image priors were used for image-based rendering in the work of Fitzgibbon, Wexler, and Zisser-
man, [4]. Fattal used edge models for image upsampling [3]. Glasner et al also used an example-based approach
for super-resolution, relying on self-similarity within asingle image [9].
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slides 77

We can also apply this method–BP, using this patch-based data-driven method–to other low-level vision problems.
Here, we show its application to motion.

The input is pairs of frames of image data (in this case, vector quantized into discrete states). The output is a set of
motion states (again vector quantized from example motion vectors).

slides 78-80What behavior do we expect from this algorithm? From the local evidence only, we will be confronted
with the “aperture problem”. From the local, straight-edgeof a contour, we can only discern the component of
the contour’s motion perpendicular to the contour. The motion ambiguity can be resolved by aggregating motion
evidence from other orientations of the contour. We may expect to see that happen.

Another local ambiguity we’ll need to resolve is the figure/ground problem (your problem set due Weds also
addresses this problem).

slides 82-84

Those amiguities, and their resolutions, can be seen in the first six iterations of loopy belief propagation. Remember
that messages are passed to neighboring nodes across scale,as well as in space.

Note the limitations of this algorithm: states are quantized rather coarsely, to save in storage and testing speed.
The algorithm (loopy belief propagation) is not guaranteedto converge.

slides 86-91

Finally, to connect with the previous class, let’s look at how you might do segmentation with a Markov Random
Field model.

A conventional MRF is called a generative model, because youcould generate samples of image data from it, using
Gibbs sampling to produce images that are probable under thejoint density described by the MRF.

But there is another way to use Markov Random Fields. We can define a special class of Markov Random Field,
called a Conditional Random Field (CRF), where the potential functions between hidden variables depend on the
image data. These graphical models depend on the image data,and so do not represent prior probabilities for the
images.

These conditional random fields are commonly used in stereo depth reconstructions. The pairwise potentials are
then set to encourage neighboring depth estimates to agree,but in the presence of a strong image gradient, that
constraint is relaxed.

ObjCut is a relatively recent paper that enforces an object-based prior on a CRF to encourage segmentation of
image data, enforcing a prior preference that the segments conform to the shape of a learned object class, in this
case, a cow.
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slides 92-100

Finally, let’s talk about how we might learn the pairwise potential functions of an MRF. It is straightforward to show
that in a maximum likelihood estimate of model parameters, the model’s prediction for the marginal probability
at any clique will be equal to the observed marginal probabilities for that clique of nodes. We can measure those
marginal probabilities simply by counting frequencies of occurence of states in a labeled training set.

If we measure the marginal probabilities, what does it tell us about the joint probabilities? There is a procedure,
called Iterative Proportional Fitting (IPF), that adjustsan estimate of a joint probability based on observations of
the marginals. The result is a maximum entropy estimate of the joint probability. The update rule is to scale
the joint probability by the ratio of the observed marginal probability over the current model’s predicted marginal
probability.

P (~x)t+1 = P (~x)t
P (xc)

observed

P (xc)t
(7)

If we substitute in the product of the clique potentials forP (~x)t+1, and only modify the clique potential corre-
sponding to the marginal we measure, then we have this updateequation:

φc(xc)
t+1 = φc(xc)

tP (xc)
observed

P (xc)t
(8)
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