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You should submit a hard copy of your work in class, and upload your code (and all
files needed to run it, images, etc) to stellar.
Your report should include images and plots showing your results, as well as pieces of your
code that you find relevant.

Problem 5.1 Belief Propagation

Many vision problems consist of measuring local evidence, then propagating it across space.
Belief propagation is often useful for such tasks. This homework problem was presented as a
belief propagation example by Yair Weiss in a NIPS paper [1].

A task of early vision is to make a figure/ground assignment – which side of a contour is
the foreground object, and which side is the background? A good cue for that assessment
is convexity. Contours typically encircle the object, rather than form holes within it, so the
foreground side is often on the inside of a contour’s curve.

Locally, a complex contour may bend both ways and only a global assessment of convexity
can tell us the right answer. We define a Markov chain of points along a contour in an image
(we assume this contour has already been detected). The hidden states are the side of the
foreground assignment for the contour (+1 means to the right as you traverse the contour,
incrementing the node index; -1 is to the left). The local evidence at each node is based on the
local curvature, defined by the angle θj based on the local three adjacent points on the curve
(nodes j − 1, j, and j + 1). Let θj = 0 correspond to a straight line, and θj = π

2 correspond
to a 90◦ right bend, and θj = −π

2 correspond to a 90◦ left bend.

Let the local evidence for a positive or negative curvature curve be: φ(xj , yj) =

(
π+θj
2π
π−θj
2π

)
This favors figure/ground evidence in proportion to the acuteness of the local angle of bending.

The hidden state compatibility requires that hidden states have the same value as that of the

neighboring node: ψ(xj , xj+1) =

(
1.0 0
0 1.0

)
The joint probability of figure/ground estimates conditioned on the observed curve is given
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by the product of the local evidence and the node capabilities:

P (~x|~y) =
∏
j

φ(xj , yj)ψ(xj , xj+1) (1)

On the class website, you will find the file curves.zip which contains three curves stored in
mat files with the x and y coordinates of each curve. In general we can use computer vision
algorithms (some of which you have already encountered) for extracting such contours from
images, however here we produced them manually using the supplied DrawContour function.

1. Load and plot the supplied curves in the 2-d plane. Notice that the coordinate system
origin for those curves is the upper left corner of the image.

2. Indicate the local direction of figure (draw a small arrow to the foreground side at every
node) based on local evidence alone, before running belief propagation.

3. Show the final estimated direction of figure after running belief propagation.

4. [Optional] Use the DrawContour function to draw contours for your own images (or
from scratch), and estimate their direction of figure. Can you think of cases where this
algorithm will fail?

Problem 5.2 Texture synthesis

In this problem you will implement the Efros and Leung algorithm for texture synthesis
discussed in Section 9.3 of Forsyth and Ponce. In addition to reading the textbook you may
also find it helpful to visit Efros’ texture synthesis website:
http://www.cs.berkeley.edu/̃ efros/research/synthesis.html,

in which many of the implementation details described below can be found. As discussed in
class, the Efros and Leung algorithm synthesizes a new texture by performing an exhaustive
search of a source texture for each synthesized pixel in the target image, in which sum-of-
squared differences (SSD) is used to associate similar image patches in the source image with
that of the target. The algorithm is initialized by randomly selecting a 3× 3 patch from the
source texture and placing it in the center of the target texture. The boundaries of this patch
are then recursively filled until all pixels in the target image have been considered. Implement
the Efros and Leung algorithm as the following MATLAB function:

synthIm = SynthTexture(sample, w, s)

where sample is the source texture image, w is the width of the search window, and s=[ht,

wt] specifies the height and width of the target image synthIm. As described above, this
algorithm will create a new target texture image, initialized with a 3x3 patch from the source
image. It will then grow this patch to fill the entire image. As discussed in the textbook, when
growing the image un-filled pixels along the boundary of the block of synthesized values are
considered at each iteration of the algorithm. A useful technique for recovering the location
of these pixels in MATLAB is using dilation, a morphological operation that expands image
regions.
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Use MATLAB’s imdilate and find routines to recover the un-filled pixel locations along the
boundary of the synthesized block in the target image.

In addition to the above function we ask you to write a subroutine that for a given pixel in
the target image, returns a list of possible candidate matches in the source texture along with
their corresponding SSD errors. This function should have the following syntax:

[bestMatches, errors] = FindMatches(template, sample, G)

where bestMatches is the list of possible candidate matches with corresponding SSD errors
specified by errors. template is the w × w image template associated with a pixel of the
target image, sample is the source texture image, and G is a 2D Gaussian mask discussed
below. This routine is called by SynthTexture and a pixel value is randomly selected from
bestMatches to synthesize a pixel of the target image. To form bestMatches accept all pixel
locations whose SSD error values are less than the minimum SSD value times (1 + ε). To
avoid randomly selecting a match with unusually large error, also check that the error of the
randomly selected match is below a threshold δ. Efros and Leung use threshold values of
ε = 0.1 and δ = 0.3.

Note that template can have values that have not yet been filled in by the image growing
routine. Mask the template image such that these values are not considered when computing
SSD. Efros and Leung suggest using the following image mask:

Mask = G .* validMask

where validMask is a square mask of width w that is 1 where the template is filled, 0 otherwise
and G is a 2D zero-mean Gaussian with variance σ = w/6.4 sampled on a w×w grid centered
about its mean. G can be pre-computed using MATLAB’s fspecial routine. The purpose of
the Gaussian is to down-weight pixels that are farther from the center of the template. Also,
make sure to normalize the mask such that its elements sum to 1.

Test and run your implementation using the grayscale source texture image rings.jpg avail-
able on the class website, with window widths of w = 5, 7, 13, s = [100, 100] and an initial
starting seed of (x, y) = (4, 32). Explain the algorithm’s performance with respect to window
size. For a given window size, if you re-run the algorithm with the same starting seed do you
get the same result? Why or why not? Is this true for all window sizes?

Include in your report the synthesized textures that correspond to each window size along
with answers to the above questions.
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