
MIT CSAIL

6.869 Advances in Computer Vision

Spring 2011

Problem Set 6: Loopy BP and Image Segmentation

Posted: Wednesday, March 9, 2011 Due: Wednesday, March 16, 2011

You should submit a hard copy of your work in class, and upload your code (and all
files needed to run it, images, etc) to stellar.
Your report should include images and plots showing your results, as well as pieces of your
code that you find relevant.

Problem 6.1 Loopy BP

In this problem you will implement an algorithm for constructing dense stereo correspondence,
following the work of Felzenswalb and Huttenlocher [2].

Stereo matching is one of the more studied problems in computer vision. It is the process of
taking two or more images of a scene from different viewpoints and finding matching pixels
between those images, that later allows reconstructing the 3D geometry of the scene. We’ll
cover this topic in an upcoming lecture, but you have the background now to implement a
simple version of such algorithm.

Most of the recent stereo matching techniques focus on dense correspondences (finding matches
for every pixel in the image), since it is required for applications such as image-based rendering
or modeling. The input to our algorithm is a stereo image pair, and we would like to find
disparities (shifts) between the pixels based on the two images alone.
On the course website you can find the file tsukuba.zip, which contains one such stereo pair,
borrowed from the Middleburry stereo dataset [3], the standard dataset for evaluating stereo
algorithms.

Many problems in computer vision can be formulated as discrete multi-labeling problems,
were we would like assign each pixel one of L possible labels. Up till now, we have focused
on formulating inference in terms of probability distributions, however in this problem set we
will formulate our problem in terms of energy (minus log probability). For a given labeling f
of the pixels, a common form of energy function that is usually encountered is

E(f) =
∑
p

Dp(fp) +
∑

p,q∈N(p)

Vpq(fp, fq) (1)

where Dp is the cost of assigning label fp to pixel p, and is often referred to as the data term,
Vpq is the cost of assigning labels fp and fq to neighboring pixels, and is frequently called
the smoothness or discontinuity term. N(p) is the set of neighbors of pixel p (4 immediate
neighbors in grid graphs). For stereo, the labels will be disparity values that are assigned to

1

each pixel in the left image.
It is easy to show (you will do it in part (a) of this problem) that the minimal energy solution
for Equation 1 corresponds the the MAP estimation of the corresponding MRF posterior
distribution we have defined in class.

We can thus use Loopy Belief Propagation to solve for the optimal labeling of minimal energy.
We’ll use the max-product message update equation derived in class, where as we are working
with minus log of the probabilities, the message update rule becomes what is called the min-
sum rule, for which the message update equation is given by

mp→q(fq) = min
fp

Dp(fp) + Vpq(fp, fq) +
∑

s∈N(p)\q

ms→p(fp)

 (2)

and the beliefs at each node can be computed as

bp(fp) = Dp(fp) +
∑

q∈N(p)

mq→p(fp) (3)

Dp(fp) can be thought of as a local evidence message to node p. We then select the label f∗p
that minimizes bp(fp) locally at each node.

To solve for the disparities of the tsukuba image, we will assume only horizontal shifts of
pixels. We will use the data and smoothness terms defined in [2]:

Dp(fp) = λmin (|Il(x, y)− Ir(x− fp, y)|, τ) ,

Vpq(fp, fq) = min (|fp − fq|, d) (4)

where Il and Ir are the left and right images respectively. The data term enforces correspond-
ing pixels (subject to our disparity estimates) to have similar intensities, and the smoothness
penalizes different disparities at neighboring pixels, which will effectively lead to a smoother
disparity map. λ, τ and d are parameters of the algorithm, which you can default to λ = 0.3,
τ = 15 and d = 1.7, and possibly tweak to improve your result.

MATLAB is far for being the ideal environment to solve multi-label optimizations on large
grid graphs. Such algorithms are quite computationally intensive, and usually require a
lower-level programming environment such as C or C++. To make our code tractable, we
will additionally make the following design decisions: (a) We will reduce the size of our state
space by considering only disparities in range [0, 10]; (2) We will pre-compute the data and
smoothness terms (part (b)); and (3) we will use the message update schedule by Tappen and
Freeman [4] to propagate information faster through the grid, which will reduce the number of
BP iterations required. The message schedule is as follows: first, messages are sent along rows,
forward and then backward at each row. Then messages are sent along columns, downwards
and then upwards at each column. We consider one complete iteration of BP after traversing
(forth and back) all rows and columns of the image.

Instructions

(a) Prove that the minimal energy solution of Equation 1 is equivalent to the MAP estimate
of the joint probability

p(f |y) =
1

Z

∏
p

φp(fp, y)
∏

p,q∈N(p)

ψpq(fp, fq) (5)

2

0 5 10 15

(a) Result disparity map

0 2 4 6 8 10 12
1.5

2

2.5

3

3.5

4

4.5
x 104

Iteration

E
ne

rg
y

(b) BP energy

Figure 1: Our result for the tsukuba image, using 10 BP iterations and the parameters
specified above. The computation time was 258 seconds.

where y stands for the observed data, and Z is the normalization factor, and define φp and
ψpq in terms of Dp and Vpq.

(b) Write the function PrecompDataTerm that produces a H ×W × L matrix D, such that
D(y, x, fp) = Dp(fp) (p = (x, y)). Similarly, write the function PrecompSmoothTerm that
produces the L× L matrix V, such that V(fp, fq) = Vpq(fp, fq).

(c) Write the function TotalEnergy, that evaluates a solution labeling f according to Equation
1 and our choice of data and smoothness terms (Equation 4).

(d) Compute the disparities for the tsukuba image using Loopy Belief Propagation and the
above message update schedule. Add to your report your estimated disparity map (see Fig-
ure 1(a)) after the first iteration, as well as the final result. In addition, after each complete
iteration of message updates, compute the beliefs, and evaluate the energy of the current
estimate. Plot the energy convergence curve throughout the BP iterations as shown in Fig-
ure 1(b). Note that although convergence is not guaranteed theoretically, Loopy BP energy
curves usually have similar characteristics to the one shown in that figure: they are mostly
monotonically decreasing, with sharp decrease in energy in the first 2-3 iterations. Keeping
track of the energy when working with such optimizations is very useful to test your imple-
mentation. If your energy does not converge in a similar manner – it is very likely you have
a bug.

Final hint: messages need to be normalized to prevent overflow (remember we are summing
energies here, as opposed to multiplying probabilities in previous problem sets). You can use
the normalization method of [2]: mp→q(:) = mp→q(:) −mean(mp→q(:)). Note moreover that
the message equation can be written in MATLAB in vectorized form using the pre-computed
matrices (part (b)). Doing that will improve the performance of your code significantly.

Problem 6.2 Image Segmentation

In this problem you will implement the mean-shift image segmentation algorithm presented by
Comaniciu and Meer [1]. This problem is structured into two parts. The first part focuses on
the implementation of the mean-shift algorithm as general nD-data point clustering algorithm.

3

The second part applies this algorithm to image segmentation.

On the class website you will find the MATLAB data file pts.mat, which stores a set of 3D
points belonging to two 3D Gaussians. Test and debug your algorithm using this data set as
described below. Plot the resulting clusters using the provided function plot3dclusters.

The mean-shift algorithm is discussed in the paper by Comaniciu and Meer, and we also
provide some additional implementation details. As discussed in the paper, the mean-shift
algorithm clusters an n-dimensional data set by associating each point to a peak of the data
set’s probability density. For each point, mean-shift computes its associated peak by first
defining a spherical window at the data point of radius r and computing the mean of the
points that lie within the window. The algorithm then shifts the window to the mean and
repeats until convergence, i.e. the shift is under some threshold ε (we found ε = 0.01 to work
well). With each iteration the window will shift to a more densely populated portion of the
data set until a peak is reached, where the data is equally distributed in the window.

(a) Implement the peak searching processes as the function

peak = findpeak(data, idx, r)

where data is the n-dimensional data set, idx is the column index of the data point for which
we wish to compute its associated density peak, and r is the search window radius. The
algorithm’s dependence on r will become apparent from the experiments performed below.

(b) Implement the mean-shift function, which calls findpeak for each point and then assigns
a label to each point according to its peak. This function should have the syntax

[labels, peaks] = meanshift(data, r)

The cluster labels are returned as labels, a vector that has an entry for each data column
of data storing for each data point an associated cluster label. peaks is a matrix storing the
density peaks found using meanshift as its columns. Note the mean-shift algorithm requires
that peaks are compared after each call to findpeak and for similar peaks to be merged. For
our implementation of mean-shift, we will consider two peaks to be the same if the distance
between them is ≤ r/2. Also, if the peak of a data point is found to already exist in peaks

then for simplicity its computed peak is discarded and it is given the label of the associated
peak in peaks.

(c) Using the data set stored by pts.mat run mean-shift with r = 1, 2, 4, 5, 10. Plot the results
in separate subplots labeling each plot with its corresponding r value. How does varying the
search window radius r affect the result?

(d) As implemented, the mean-shift algorithm of part (b) is too slow to be realized for image
segmentation. We will therefore incorporate the following two speedups into our implemen-
tation. Upon finding a peak, the first speedup will be to associate each data point that is at
a distance ≤ r from the peak with the cluster defined by that peak. This speedup is known
as basin of attraction and is based on the intuition that points that are within one window
size distance from the peak will with high probability converge to that peak (see Figure 2(a)).
The second speedup is based on a similar principle, where points that are within a distance

4

Figure 2: Speedups incorporated into the mean-shift algorithm: (a) basin of attraction, (b)
points along the search path are associated with the converged peak.

of r/c of the search path are associated with the converged peak, where c is some constant
value (see Figure 2(b)). We will choose c = 4 for this problem.

Incorporate the above speedups into your mean-shift implementation by modifying your im-
plementation from part (b). The resulting modified function should have the syntax

[labels, peaks] = meanshift opt(data, r)

To realize the second speedup you will need to modify findpeak as follows:

[peak, cpts] = findpeak opt(data, idx, r)

where cpts is a vector storing a 1 for each point that is a distance of r/4 from the path, and
0 otherwise.

(e) Write the function segmIm = imsegment(im) that takes an image and returns the seg-
mented image, where each pixel has the value of its cluster’s center. Run your function on the
images sunset.bmp and terrain.bmp available on the class website. Submit all your code,
and add the resulting segmented images to your report.

References

[1] Dorin Comaniciu and Peter Meer. Robust analysis of feature spaces: Color image seg-
mentation. In CVPR, pages 750–755, 1997. http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=609410&tag=1.

[2] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early
vision. International Journal of Computer Vision, (70), 2003. http://people.cs.

uchicago.edu/~pff/bp/.

5

[3] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, (47):7–42. http:

//vision.middlebury.edu/stereo/data/scenes2001/.

[4] M.F. Tappen and W.T. Freeman. Comparison of graph cuts with belief propagation for
stereo, using identical MRF parameters. In ICCV, pages 900–907, 2003. http://www.

eecs.ucf.edu/~mtappen/iccv03.pdf.

6

