

Announcements

- Pset 4 out today
 - Question 3 is on backprop, which correspond to next Monday's material, save it for last
 - preview of backprop at end of this lecture
- Review lectures 5 through 8 for background on signal processing, convolution, and multiscale image processing — this is the technology that underlies convnets!

10. CNNs and Spatial Processing

- How to use deep nets for images
- New layer types: convolutional, pooling
- Feature maps and multichannel representations
- Popular architectures: Alexnet, VGG, Resnets
- Getting to know learned filters
- Unit visualization

Image classification

image **x** label y

Sky	Sky	Sky	Sky	Sky	Sky	Sky	Bird
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Bird	Bird	Bird	Sky	Bird	Sky	Sky	Sky
Sky	Sky	Sky	Bird	Sky	Sky	Sky	Sky

Problem:

What happens to objects that are bigger?

What if an object crosses multiple cells?

"Cell"-based approach is limited.

What can we do instead?

This problem is called semantic segmentation

An equivariant mapping:

f(translate(x)) = translate(f(x))

Translation invariance: process each patch in the same way.

W computes a weighted sum of all pixels in the patch

W is a convolutional kernel applied to the full image!

Convolution

Fully-connected network

Fully-connected (fc) layer

Locally connected network

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Convolutional neural network

Conv layer

$$z = w \circ x + b$$

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Weight sharing

Conv layer

$$z = w \circ x + b$$

Often, we assume output is a **local** function of input.

If we use the same weights (weight sharing) to compute each local function, we get a convolutional neural network.

Linear system: y = f(x)

A linear function f can be written as a matrix multiplication:

n indexes rows, k indexes columns It can also be represented as a fully connected linear neural network

 $h\left[n,k\right]$ Is the strength of the connection between x[k] and y[n]

Convolution

A LTI function f can be written as a matrix multiplication:

$$h\left[n-k
ight]$$
 n indexes rows, k indexes columns

It can also be represented as a convolutional layer of neural net:

$$h\left[n-k\right]$$
 is the strength of the connection between x[k] and y[n]

Toeplitz matrix

$$egin{pmatrix} (a & b & c & d & e \ f & a & b & c & d \ g & f & a & b & c \ h & g & f & a & b \ i & h & g & f & a \ \end{pmatrix}$$

e.g., pixel image

- Constrained linear layer
- Fewer parameters —> easier to learn, less overfitting

Conv layers can be applied to arbitrarily-sized inputs

Five views on convolutional layers

1. Equivariant with translation f(translate(x)) = translate(f(x))

2. Patch processing

3. Image filter

4. Parameter sharing

5. A way to process variable-sized tensors

What if we have color?

(aka multiple input channels?)

Multiple channel inputs

Conv layer

$$\mathbf{y} = \sum_{c} \mathbf{w}_c \circ \mathbf{x}_c$$

$$\mathbb{R}^{N \times C} \to \mathbb{R}^{N \times 1}$$

Multiple channel outputs

Conv layer

$$\mathbf{y}_k = \sum_{c} \mathbf{w}_{k_c} \circ \mathbf{x}_c$$

$$\mathbb{R}^{N \times C} \to \mathbb{R}^{N \times K}$$

Multiple channels

Conv layer

$$\mathbf{y}_k = \sum_{c} \mathbf{w}_{k_c} \circ \mathbf{x}_c$$

$$\mathbb{R}^{N \times C} \to \mathbb{R}^{N \times K}$$

[Figure modified from Andrea Vedaldi]

Feature maps

- Each layer can be thought of as a set of C feature maps aka channels
- Each feature map is an NxM image

Multiple channels: Example

How many parameters does each filter have?

(a) 9 (b) 27 (c) 96 (d) 864

Multiple channels: Example

How many filters are in the bank?

(a) 3 (b) 27 (c) 96 (d) can't say

Filter sizes

When mapping from

$$\mathbf{x}_l \in \mathbb{R}^{H \times W \times C_l} \longrightarrow \mathbf{x}_{(l+1)} \in \mathbb{R}^{H \times W \times C_{(l+1)}}$$

using an filter of spatial extent $\,M imes N$

Number of parameters per filter: $M \times N \times C_l$

Number of filters: $C_{(l+1)}$

Pooling and downsampling

We need translation and scale invariance

Image pyramids

Gaussian Pyramid

Multiscale representations are great!

How can we use multi-scale modeling in Convnets?

Steerable Pyramid

Pooling

Max pooling

$$y_k = \frac{1}{|\mathcal{N}|} \max_{j \in \mathcal{N}(j)} h_j$$

Pooling

Max pooling

$$y_k = \frac{1}{|\mathcal{N}|} \max_{j \in \mathcal{N}(j)} h_j$$

Mean pooling

$$y_k = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}(j)} h_j$$

Pooling — Why?

Pooling across spatial locations achieves stability w.r.t. small translations:

Pooling — Why?

Pooling across spatial locations achieves stability w.r.t. small translations:

Pooling — Why?

Pooling across spatial locations achieves stability w.r.t. small translations:

CNNs are stable w.r.t. diffeomorphisms

["Unreasonable effectiveness of Deep Features as a Perceptual Metric", Zhang et al. 2018]

Pooling across channels — Why?

Pooling across feature channels (filter outputs) can achieve other kinds of invariances:

[Derived from slide by Andrea Vedaldi]

Computation in a neural net

$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

Downsampling

Downsampling

Strided operations

Conv layer

Strided operations combine a given operation (convolution or pooling) and downsampling into a single operation.

Computation in a neural net

$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

Receptive fields

Receptive fields

Effective Receptive Field

Contributing input units to a convolutional filter.

@jimmfleming // fomoro.com

[http://fomoro.com/tools/receptive-fields/index.html]

Some networks

... and what makes them work

ImageNet Classification Error (Top 5)

2012: AlexNet 5 conv. layers

Error: 16.4%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]

Alexnet — [Krizhevsky et al. NIPS 2012]

What filters are learned?

What filters are learned?

11x11 convolution kernel (3 color channels)

96 Units in conv1

[Hubel and Wiesel 59]

[Slide from Andrea Vedaldi]

ImageNet Classification Error (Top 5)

ImageNet Classification Error (Top 5)

2014: VGG 16 conv. layers

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015]

VGG-Net [Simonyan & Zisserman, 2015]

2014: VGG 16 conv. layers

Error: 7.3%

Main developments

Small convolutional kernels: only 3x3

Increased depth (5 -> 16/19 layers)

Chaining convolutions

25 coefficients, but only18 degrees of freedom

9 coefficients, but only 6 degrees of freedom. Only separable filters... would this be enough?

ImageNet Classification Error (Top 5)

2016: ResNet >100 conv. layers

Error: 3.6%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]

2016: ResNet > 100 conv. layers

ResNet [He et al, 2016]

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512 \$\square\$
3x3 conv, 512

avg pool

fc 1000

Main developments

 Increased depth possible through residual blocks

Error: 3.6%

Residual Blocks

Residual Blocks

Why do they work?

- Gradients can propagate faster (via the identity mapping)
- Within each block, only small residuals have to be learned

If output has same size as input:

If output has a different size:

Projects into the right dimensionality: dim(F(x)) = dim(Wx)

Some debugging advice

Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance

Good training: hidden units are sparse across samples and across features.

Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Other good things to know

- Check gradients numerically by finite differences
- Visualize hidden activations should be uncorrelated and high variance
- Visualize filters

Good training: learned filters exhibit structure and are uncorrelated.

Optimizing parameters versus optimizing inputs

 $\frac{\partial J}{\partial \theta}$ — How much the total cost is increased or decreased by changing the parameters.

Optimizing parameters versus optimizing inputs

 $\frac{\partial y_j}{\partial \mathbf{x}}$ How much the "chameleon" score is increased or decreased by changing the image pixels.

Unit visualization via backprop

 $\underset{\mathbf{x}}{\operatorname{arg\,max}} y_j$

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \eta \frac{\partial y_j(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^k}$$

Unit visualization

Make an image that maximizes the "cat" output neuron:

$$\underset{\mathbf{x}}{\operatorname{arg\,max}\,y_j} + \lambda R(\mathbf{x})$$

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \eta \frac{\partial (y_j(\mathbf{x}) + \lambda R(\mathbf{x}))}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^k}$$

[https://distill.pub/2017/feature-visualization/]

Unit visualization

 $\underset{\mathbf{x}}{\operatorname{arg\,max}} h_{l_j} + \lambda R(\mathbf{x})$

$$\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \eta \frac{\partial (h_{l_j}(\mathbf{x}) + \lambda R(\mathbf{x}))}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^k}$$

Make an image that maximizes the value of neuron j on layer I of the network:

[https://distill.pub/2017/feature-visualization/]

"Deep dream" [https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html]

Preview of backprop

Gradient descent

$$\theta^* = \operatorname*{arg\,min}_{\theta} J(\theta)$$

Backpropagation is a way of efficiently computing the gradient $dJ/d\theta$ of a neural net.

Preview of backprop

Differentiable programming

Deep nets are popular for a few reasons:

- 1. High capacity
- 2. Easy to optimize (differentiable)
- 3. Compositional "block based programming"

An emerging term for general models with these properties is differentiable programming.

OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep Learning est mort. Vive Differentiable Programming!

10. CNNs and Spatial Processing

- How to use deep nets for images
- New layer types: convolutional, pooling
- Feature maps and multichannel representations
- Popular architectures: Alexnet, VGG, Resnets
- Getting to know learned filters
- Unit visualization