Lecture 10
CNNs and Spatial Processing

———

N . | |
III | l J’| 6.869/6.819 Advances in Computer Vision Spring 2021

Bill Freeman, Phillip Isola

Announcements

e Pset 4 out today

e Question 3 is on backprop, which correspond to next Monday’s
material, save it for last

e preview of backprop at end of this lecture

e Review lectures 5 through 8 for background on signal processing,
convolution, and multiscale image processing — this is the
technology that underlies convnets!

10. CNNs and Spatial Processing

How to use deep nets for images

New layer types: convolutional, pooling

Feature maps and multichannel representations
Popular architectures: Alexnet, VGG, Resnets
Getting to know learned filters

Unit visualization

lmage classification

oELI T ——

mage X lapel y

—>

Classifier B

: = Classifier B o

Bird

= Classifier B o

Problem:

What happens to objects that are bigger?

What if an object crosses multiple cells?

“Cell”-based approach is limited.

What can we do instead”?

What's the object class of the center pixel?

) E=
) =
)
) B

B | What's the object class of the center pixel?

N
Training data
X Y
!\ “Bird” } !*\
)
7 Ir b, ¢ f‘(> “Sky”

(Colors represent one-hot codes)

This problem is called semantic segmentation

What's the object class of the center pixel?

Translation invariance: process
each patch in the same way.

An equivariant mapping:
f(translate(x)) = translate(f(z))

W computes a weighted sum of all pixels in the patch

(}
O—|w —0
O

W is a convolutional kernel applied to the full image!

Convolution

-ully-connected network

Fully-connected (fc) layer

|_ocally connected network

Often, we assume output is a
local function of input.

It we use the same weights

(weight sharing) to compute
(z) each local function, we get a

convolutional neural network.

00000000

< 66555068

Convolutional neural network

Conv layer

99999935

Zz=woX-+Db

Often, we assume output is a
local function of input.

It we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

Conv layer

QO ?f?@
R

Zz=woX-+Db

Weight sharing

{53

Often, we assume output is a
local function of input.

It we use the same weights

(weight sharing) to compute
each local function, we get a
convolutional neural network.

Linear system: 'y =/f(x)

[t can also be represented as a fully
. connected linear neural network

A linear function f can be written
as a matrix multiplication:

| ".‘0 ,/
_ < ." Q nl| = n,
Y| = ,y-wu DI
I O - O

n indexes rows,

Is the strength of the connection
K iIndexes columns h [n k]

between x[k] and y[n]

Convolution

It can also be represented as a
| convolutional layer of neural net:

A LTI function f can be written
as a matrix multiplication:

: TR O O
O O
h|-1] O’h[_l] O

ag 8~ 0 8 1 h [k k

- h|l X hl Nni| = X |ln —
y i O 9y -}y[] k_zl k| x |n -k
On[-1] O T

O O
I O O

’i Is the strength of the connection
- h|n—k| %

2 [n B k] N indexes rows,
k indexes columns between x[k] and y[n]

Toeplitz matrix

<~ QY &
> Q = & &
- Q O &
S OO &, D

Q ~ 2 O O

e

X

e.d., pixel image

e (Constrained linear layer
e Fewer parameters —> easier to learn, less overfitting

Conv layers can be applied to arbitrarily-sized inputs

Five views on convolutional layers

. Equivariant with translation f(translate(xz)) = translate(f(z))
. Patch processing
. Image filter

O

. Parameter sharing %
O}
Q==
O‘W

O

. A way to process variable-sized tensors

What if we have color?

(aka multiple input channels?)

Multiple channel iInputs

Conv layer
= O
BEW o7 Y
O c
°0o 0
N X1
00 @ O RVXC _y RIVX
C0@® @
OO0 O
X y

Multiple channel outputs

Conv layer

QNXC QNXK

1

O00@®
C000®

5
g OQOOQM
00000060

S

K

\

S

%N

O

s

“ 1 0000@

90000000
ool J9) 101 IO

S

Conv layer

i

Multiple channels

0000000 ®

< 100000000

QNXC

1

<
2
|
[
S
&
O
e
@

%NXK

2-dimensional output
Input features A bank of 2 filters feature maps

%HXWXC(Z_Fl)

[Figure modified from Andrea Vedaldi]

-eature maps

Z RNEUE
convl E.a-

=
BEpERzZz

relul convz reluz

e Each layer can be thought of as a set of C feature maps aka channels
e Fach feature map Is an NxM image

Image source: https://stackoverflow.com/questions/456784 7 3/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0

Multiple channels: Example

X A (1+1)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many parameters does each filter have”
@ 9 b)27 ()96 (d) 864

Multiple channels: Example

X A (1+1)

128
I:{> Filter Bank with I:{>
3x3 filters
128

3 96

128

128

How many filters are in the bank®
(a) 3 b)27 (c)96 (d) can’t say

Fllter sizes

When mapping from

RHXW X C P HXW XC(141)

X & — X(+1) €

using an filter of spatial extent M x N

Number of parameters per filter: M x N x C

Number of filters: C'(;4.1)

s

We need translation and scale

Pooling and downsampling

Invariance

1AS

mage pyram

Gaussian Pyramid

Multiscale representations are great!

W W V - - .
128 -

.

512 256

Gaussian Pyr Laplacian Pyr

How can we use multi-scale modeling in Convnets?

43

molelliale

Filter Pool

Max pooling

1
Yp = max h;

N | jeN()

Imax

- 56855068

<« 00000000

molelliale

Filter Pool
O OO O Max pooling
O O—-0 O
= % Yp = : max h;
> S S sy S N 5N)
O O—COr O _
O O—0O O Mean poollng
O O——0 O
2 y W n

JEN(J)

Pooling — Why"

Pooling across spatial locations achieves
stability w.r.t. small translations:

Imax

Pooling — Why"

Pooling across spatial locations achieves
stability w.r.t. small translations:

large response

regard
DOSItIo

ess of exact

N of edge

Pooling — Why"

Pooling across spatial locations achieves
stability w.r.t. small translations:

CNNs are stable w.r.t. diffeomorphisms

[“Unreasonable effectiveness of

Deep Features as a

Perceptual Metric”, Zhang et al. 2018]

Pooling across channels — \Why"

Pooling across feature channels (filter outputs)
can achieve other kinds of invariances:

large response
for any edge,
regardless of Its
orientation

[Derived from slide by Andrea Vedaldi]

Computation in a neural net

~ ' y)
— “clown fish

f(x)=fo(... f2(f1(x)))

Downsampling

Filter Pool and downsample

O—0
O—0O
O—0O
O—CO-
O—CO
O—0O
O—0

00000000

z g(z)

Downsampling

Filter Downsample
O OO0 O
O O—-0
O O—-0 O
O- OO0
O O
O O—0
O O—0 O
O O—0
z g(z)

Strided operations

Conv layer
Q
O W =(0—C0 _ _ |
O Stride 2 Strided operations combine a
o @O given operation (convolution or
O pooling) and downsampling into
8 OO a single operation.
O

Computation in a neural net

~ ' y)
— “clown fish

f(x) = fo(... f2(f1(x)))

Receptive fields

Receptive fields

Pool and t?’o;vnsamp/e 351 Filter Pool and downsample

® % by 2
O
O
O
O O O
O O O
@- O O O
® —@- O o
® —@— — =@ o
@ —@- O
o O

O O

RF = RF2 RF = RF + floor(3/2)*2 RF = RF2

\ kernel size gownsample

factor

O
O

Effective Receptive Field
Contributing input units to a convolutional filter. @jimmfleming // fomoro.com

Input Features

7 // 2 Convolution
Each filter sees 7 input units

Convolutional Features

2 // 2 Max Pool

Each filter sees 9 input units

Max Pool Features

3 // 1 Convolution
Each filter sees 17 input units

Features .
Conv1D Filter [

Padding or Stride

Convolutional Features Receptive Field I_

[http://fomoro.com/tools/receptive-fields/index.html]

Some networks

... and what makes them work

30,0

25,0

20,0

15,0

10,0

5,0

0,0

ImageNet Classification Error (Top 5)

2011 (XRCE)

2012: AlexNet

ImageNet Classification Error (Top 5) 5 conv. layers

30,0
250 | 11x11 conv, 96, /4, pool/2 |
| 5x5 conv, 256, pool/2 |
20,0
| 3x3 conv, 384 |
15,0 3x3 conv, 384
| 3x3 conv, 256, pool/2 \
10,0
| fc, 4*096 |
5,0 | fc, $)96 |
| fc, 1000 |
0,0 ' I 1
2011 (XRCE) 2012 (AlexNet) Error: 16.4Y%

[Krizhevsky et al: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012]

Alexnet — [Krizhevsky et al. NIPS 2012]

[227x227x3] INPUT

11x11 conv, 96, /4, pool/2

\

5x5 conv, 256, pool/2

\

3x3 conv, 384

\ 4

3X3 conv, 384

\ /

3x3 conv, 256, pool/2

\ 4

fc, 4096

\

fc, 4096

\ 4

fc, 1000

27X27x256
13x13x256

13x13x256

Jyayyas

55x55%x96] CONV1: 96 11x11 filters at stride 4, pad O
27x27x96] MAX POQOL1: 3x3 filters at stride 2
27x27x96] NORM1: Normalization layer

CONV2: 256 5x5 filters at stride 1, pad 2
MAX POOQOLZ2: 3x3 filters at stride 2
NORMZ2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2
3x3 conv, 384
3x3 conv, 384
3x3 conv, 256, pool/2
fc, 4096

fc, 4096

fc, 1000

What filters are learned?

What filters are learned?

Get to know your units

i
I
! +
x

11x11 convolution kernel
(3 color channels)

Get to know your units

Get to know your units

Afy

Get to know your units

Get to know your units

Afy

H

Get to know your units

Afy

Get to know your units

Afy

Get to know your units

L
Ll bl II . R o i Bl s Rl e 18
o e . 11, SR S

- o e 8|
L’!' H-.._ . Hlll‘i @ ||
d P ENFIl=T - el 3
Eﬂli—fﬂ-ﬂaﬁﬁ‘ e ﬂ
HllsEes=2381 -

i EEE R

96 Units in conv1

”

\

[Hubel and Wiesel 59]

Electrical signal

from brain R
Recording electrode — s W
Visual area
of brain

oriented filter

[Slide from Andrea Vedaldi]

30,0

25,0

20,0

15,0

10,0

5,0

0,0

ImageNet Classification Error (Top 5)

|

2011 (XRCE) 2012 (AlexNet)

2014: VGG
16 conv. layers

3x3 conv, 64

\ 4
3x3 conv, 64, pool/2

ImageNet Classification Error (Top 5)

3x3 conv, 128

3x3 conv, 128, pool/2

v

3x3 conv, 256

\ 4

3x3 conv, 256

\ 4

3x3 conv, 256

\ 4

3x3 conv, 256, pool/2

\ 4
3x3 conv, 512

\ 4
3x3 conv, 512
v
3x3 conv, 512
\ 4
3x3 conv, 512, pool/2
v
3x3 conv, 512
\ 4
3x3 conv, 512
\ 4
3x3 conv, 512
\ 4
3x3 conv, 512, pool/2
\ 4
fc, 4096
4
fc, 4096
|| 1 §

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) fc, 1000

Error: 7.3%

[Simonyan & Zisserman: Very Deep Convolutional Networks
for Large-Scale Image Recognition, ICLR 2015]

VGG-Net [Simonyan & Zisserman, 2015}

2014: VGG
16 conv. layers

Main developments

e Small convolutional kernels: only 3x3

e Increased depth (5 -> 16/19 layers)

o e et ¢ ¢ € €€ €€ <- <-_

Error: 7.3%

Chaining convolutions
3x3 3x3

OI=

5x5

25 coefficients, but only
18 degrees of freedom

9 coefficients, but only
6 degrees of freedom.
Only separable filters... would this be enough?

30,0

25,0 -

20,0 -

15,0 -

10,0 -

50 -

0,0

ImageNet Classification Error (Top 5)

|

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG)

ImageNet Classification Error (Top 5)

w 0 R R RO R R R R O R R R R R R R R R R R R R R R R O R O R R R R R O R R R R R R R R R R R R R R R O R R R R R RIS~

| 1 | ' | | J =

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet)
(GoogleNet)

2016: ResNet
>100 conv. layers

25,0 -

20,0 -

15,0 -

10,0 -

0,0 -

SULLUBLLU LS YL BU S UBSUEUS LSS UEU LY

Error: 3.6%

[He et al: Deep Residual Learning for Image Recognition, CVPR 2016]

2016: ResNet

>100 cony layers | ReSNet [He et al, 201 6]

Main developments

* Increased depth possible
through residual blocks

weight layer

X
identity

SULUBBUUELU LS UUEULUULEEBUSLLVBEEELLEYY

SyLLYY

Errof: 3.6%

Residual Blocks

weight layer

X
identity

Residual Blocks

. Why do they work?
!
F(x) _1—Iwelght Iraeys\ e Gradients can propagate faster
welght layer / dentity (via the identity mapping)
F(x) + x

relu

e \Within each block, only small
residuals have to be learned

If output has same size as input: If output has a different size:

X
weight layer weight layer

.F(X) « F(X) relu weight layer
ight |
dentity
+
F(x) + x F(X) +Wx Trel

Projects into the right

dimensionality:
dim(F(x)) = dim(Wx)

Vlake them bigger

A

AlexNet
5 conv. layers

VGG
16 conv. layers

GooglLeNet
22 conv. layers

A A A A AT T

ResNet
>100 conv. layers

2012 2013

2014

2016

Some debugging advice

Other good things to know

e Check gradients numerically by finite differences
e \Visualize hidden activations — should be uncorrelated and high variance

samples

hidden unit

Good training: hidden units are sparse across samples and across features.

[Derived from slide by Marc’Aurelio Ranzato]

Other good things to know

e Check gradients numerically by finite differences
e \Visualize hidden activations — should be uncorrelated and high variance

z
-
L
r

q

hidden unit

Bad training: many hidden units ignore the input and/or exhibit strong correlations.

[Derived from slide by Marc’Aurelio Ranzato]

Other good things to know

e Check gradients numerically by finite differences
* \Visualize hidden activations — should be uncorrelated and high variance
e Visualize filters

BAD
s AN EEIEE
ARl
AR A
AN B30
AN
PRI AR
BlANR AN
P 43380 2 10
too noisy too lack

correlated structure
Good training: learned filters exhibit structure and are uncorrelated.

[Derived from slide by Marc’Aurelio Ranzato]

Optimizing parameters versus optimizing Inputs

dolphin

cat

grizzly bear

angel fish

chameleon —— J
clown fish

iguana

elephant

- 0000000 0| <«

a J - How much the total cost is increased or decreased by changing the

8 6) parameters.

Optimizing parameters versus optimizing Inputs

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana
elephant

CO00@O00O0| =«

8yj How much the “chameleon” score Is increased or decreased by
aX changing the image pixels.

Unit visualization via backprop

al'g Inax yj
X

Dy;(x)
OxX

k+1
X" %qutn

Unit visualization

Make an image that maximizes the “cat”
output neuron:

arg max y; + AR(x)

[https://distill.pulb/2017 /feature-visualization/]

Unit visualization

Make an image that maximizes the
value of neuron | on layer | of the

arg max h;, + AR(x) network:
»
O(h; (x) 4+ MNR(x T~
xF L xF g (fu ()ax (%)) g
x=xF

AN\
2o

[https://distill.pulb/2017 /feature-visualization/]

e e
1 - W e e o Sy - il ',".. Pl
pa™ o5 o P r’f"‘t-ﬁ_.‘..“’j"::;,f-;"- i

-

- 'f":;;.

Y DA

! Deep dream” [https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.ntml]

Preview of backprop

Backpropagation is a way of
efficiently computing the
gradient dJ/d6 of a neural net.

0" = arg min J(0)
Z

Preview of backprop

*
l 4 l A oL /
| * | x lf)x“‘l A

) oft Of oL

| * | f @ w > @ § 3
—F [S
| | v Ox!

T f f

Differentiable programming

Deep nets are popular for a few reasons:

* Yann LeCun

1 . H |gh CapaCi’[y OK, Deep Learning has outlived its usefulness as a buzz-phrase.
2 : Easy 'tO Optimize (diﬁereﬂtiab‘e) Deep Learning est mort. Vive Differentiable Programming!

3. Compositional “block based programming”

1:3 Thomas G. Dietterich
: 3

DL is essentially a new style of

An emerging term for general models with these TP et e ek s 1 5
oroperties is differentiable programming. e Ple s arhE A

pooling, LSTM, GAN, VAE, memory
units, routing units, etc. 8/

ssremecs 134l PO DSOS 3O

10. CNNs and Spatial Processing

How to use deep nets for images

New layer types: convolutional, pooling

Feature maps and multichannel representations
Popular architectures: Alexnet, VGG, Resnets
Getting to know learned filters

Unit visualization

