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12. Mechanisms of Training and Running Neural Nets

e Data
e Model
e Optimization

e [valuation, Execution, and Debugging

Lots of slides adapted fromm Evan Shelhamer’s
‘DIY Deep Learning: Advice on Weaving Nets”



Data

Machine learning == Data-driven intelligence
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“Become friends with every pixel”

| 0SS




L ook at your data




| 0SS

[ ook at the output

[ ook atthe filters Visualize neurons
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Data Look at the data!

inspect the distribution of inputs and targets
e |nspect random selection of inputs and targets to have a general sense
e histogram input dimensions to see range and variability
e histogram targets to see range and imbalance

e select, sort, and inspect by type of target or whatever else

[slide adapted from Evan Shelhamer]



Data

Inspect the Inliers, outliers, and neighbors:

e visualize distribution and outliers, especially outliers, to uncover dataset
ISSues

* |00k at nearest neighbors
e examples:

e rare grayscale images in color dataset, huge images that should have
been rescaled, corrupted class labels that had been cast to uint8

[slide adapted from Evan Shelhamer]



Data

pore-processing: the data as it is loaded Is not always the data as it is stored!

* |nspect the data as it is given to the model by output = model (data)

original Caffe

[slide adapted from Evan Shelhamer]



Data

pre-processing:

+ standardize:

Tl — “:[CC,ZC]

\/Var[a:k]

» Squashes all your data dimensions into the same standard range

VEk

Tl <

» [his makes it so that, a priori, N0 one dimension Is valued more than any other

» Important when different measurements have vastly different scales or units



Data

pre-processing:

- summary statistics: chec

loading values In the range

0,255] when the

K the min/max and mean/variance to catch mistakes like

model expects values in the range [0,1].

« shape: are you certain of each dimension and its size”?

» sanity check with dummy data of prime dimensions: there are no common factors,
attening/permuting will be more obvious. example: a

SO mistaken reshaping/f
04x064x064x064 array can

be permuted with

out knowing

» type: check for casting, especially to lower precision

- what’s -1 for a byte”? how does standardization change integer data”

[slide adapted from Evan Shelhamer]



Data

resample the data to decorrelate: that is, remember to shuffle

e when you shuffle your inputs, X, make sure your targets, vy, are shuffled in
the same order!

consider selecting miniature train and test sets for development and testing:
these should be chosen once and fixed throughout optimization + evaluation

e |t's heartbreaking to wait an entire epoch and then and only then have your
experiment-to-be crash

[slide adapted from Evan Shelhamer]



Data

check If you can do the task, as it Is given to the model

o take windowed data at receptive field size

... see If It's a reasonable perceptual task for a human

[slide adapted from Evan Shelhamer]



Data

Training data

X Y

‘Grizzly”
: ', 7

. “Chameleon”}
' y,

{ j

Data augmentation

“Fish”

"Fish”

"Fish”

"Fish”

—— —— = =

Mirror

Crop

Crop

Darken



l[dea:  Train on randomly perturbed data, so that test set just looks
Ike another random perturbation

Data space

Training data lest data

@ o © “ “
‘¢0 o

This is called domain randomization or data augmentation




Domain randomization

Training data Test data

[Sadeghi & Levine 2016
Above example is from [Tobin et al. 2017




target domain

source domain
(where we actual use our model)

\

Domain gap between Psource and Piarget WiIll cause
us to fail to generalize.

Space of images

Source data

arget data




OpenAl Dactyl

[https://openai.com/blog/learning-dexterity/]



https://openai.com/blog/learning-dexterity/

OpenAl Dactyl

FINGER PIVOTING SLIDING FINGER GAITING

[https://openai.com/blog/learning-dexterity/]



https://openai.com/blog/learning-dexterity/

M Odel Keep 1t as simple as possible!

sure, there are sophisticated models out there
but they were made by either
1) going step-by-step, from simple to complex, or

2) suffering, madness, and the gnashing of teeth

[slide adapted from Evan Shelhamer]



M Odel Keep 1t as simple as possible!

Why keep it simple”?

e easy to build, debug, share

e tractable to understand, make robust, build theories around

e SImple models also work better (Occam'’s razor, Solomonoff Induction)

My personal opinion: simplicity is highly
you focus on simplicity you will have an

undervalued in the community; If

unfair advantage



Moael

do your first experiment with the simplest possible model w/ and w/o your idea

f you have a classification problem, you might try:

model = torch.hub.load('pytorch/vision:v0.9.0', 'resnetl8')

f you have a detection problem, you might try:

git clone https://github.com/roytseng—tw/mask—rcnn.pytorch.git

find popular models and code here: https://paperswithcode.com/

[slide adapted from Evan Shelhamer]



Moael

double-check the model actually is what you thought you defined

# walk the model for inspection
for name , module 1n model.named modules():
1f name == 'name' or 1sinstance(module , nn.Conv2d):

... ]

[slide adapted from Evan Shelhamer]



Moael

simple baselines catch many issues and swiftly too

* learn a linear model on random features by freezing all the parameters at
thelr initialization except for the final output layer

 zero out the data by x.zero () and check that the results are worse

[slide adapted from Evan Shelhamer]



Moael

Transform your problem into a “solved” problem

 Case study: transforming image colorization to image classification

[C.f. the strategy of “polynomial-time reduction’]



Training data

lmage colorization

Input X

|Zhang, Isola,

—fros,

—CCV 2010]



Grayscale image: L channel Color information: ab channels

HxW x1 HxW x2

X ©

Yy ©

[Zhang, Isola, Efros, ECCV 2016]



Grayscale image: L channel Color information: ab channels

HxW x2

HxW x1

[Zhang, Isola, Efros, ECCV 2016]



Colorization —> Classification

vellow




COIOrS —> Classes one-hot representation of K discrete classes
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Image classification —> Pixel classification

vellow




Image classification —> Pixel classification
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Image classification —> Pixel classification




Moael

Recipe for deep learning in a new domain

1. Transform your data into numbers (e.g., one-hot vectors)
2. Transform your goal into an numerical measure (e.g., cross-entropy loss)

3. Use a generic optimizer (SGD) and an standard architecture (e.g., CNN) to
solve the learning problem



Moael

Remember that often the easiest way to get better performance is:

llllll

1) Scale your data: more (good) training examples . =

2) Scale your model: more layers, more channels | i, e

3) Scale your compute: train for longer el

In the current era, | would say these are the top three factors that determine
success, roughly in order

... but working at small scale forces efficiency, and then when you do scale up,
you get more bang for your buck



Optimization

we are still learning how to optimize deep nets
Mmuch progress Is being made but it’s nevertheless a dark forest

explore it you like, but balance exploration by exploitation of a known good
setting, or the closest setting you can find

[slide adapted from Evan Shelhamer]



Optimization

figure out optimization on one/few/many datapoints, in that order
o overfit to a data point
e then fit a batch
o and finally try fitting the dataset (or a miniature version of it)

first make sure you can fit train set, then consider generalization to test set

[slide adapted from Evan Shelhamer]



Optimization

sanity check the loss against a suitable reference value
e classification with cross-entropy loss: uniform distribution
e get to know log loss numbers:
-0.69 = In(0.5) [chance on binary classification]
-2.3 = In(0.1) [chance on 10-way classification]
* regression with squared loss: mean of targets (or even just zero)

and if your loss Is constant, double check for zero Initialization of the weights

[slide adapted from Evan Shelhamer]



Optimization

the learning rate and the batch size are more-or-less the cardinal
hyperparameters

e choose the learning rate on a small set (see Bottou)

o simplify your life and use a constant rate, that is, no schedule until
everything else Is figured out

e schedule according to epochs (== number of passes through the data),
not number of iterations of SGD

e sSet batch size to be as large as will fit in memory

[slide adapted from Evan Shelhamer]


https://cilvr.cs.nyu.edu/diglib/lsml/bottou-sgd-tricks-2012.pdf

Optimization

clear gradients after each iteration or else they accumulate (in Pytorch)

remember opt.zero grad()!

remarkably, with adaptive optimizers and enough time a model can still learn
f the gradients are never cleared out... but it's really sensitive

[slide adapted from Evan Shelhamer]



Optimization

checkpoint features + gradients to trade space for time and fit large models
e can then accumulate gradients across checkpoints
e can resume training If your computer crashes

e have a “paper trail” to debug later

[slide adapted from Evan Shelhamer]



Optimization

ive on the edge and try extreme settings (but just a little bit)
e |f optimization never diverges, your learning rate is too low
N the style of Umeshism

e |f you've never missed a flight, you're spending too much time in airports

[slide adapted from Evan Shelhamer]



Evaluation

switch to evaluation mode by model.eval () (Pytorch)
no, really

and check the mode by model.training

[slide adapted from Evan Shelhamer]



Evaluation

know the output! metrics and summaries can obscure all kinds of Issues
e NsSpect input/output pairs, across min/max/quartiles of the eval metrics

e Keep an eye on the output and loss for a chosen set across iterations to
have a sense of the learning dynamics (could be the whole validation set)

[slide adapted from Evan Shelhamer]



Ground Truth (Nayers
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Evaluation

separate evaluation from optimization
e save checkpoints at intervals and evaluate them offline

e there are the perils of nondeterminism, batch norm, etc when mixing
training and testing

e plus it only slows down training

[slide adapted from Evan Shelhamer]



Tuning

try the scientific method
e change one thing at a time

not the computer scientific method
e change everything every time

(joke courtesy Dave Patterson)

[slide adapted from Evan Shelhamer]



Tuning

to tune hyperparamters (architectural design choices, optimizer parameters,
etc) random search is better than grid search

Grid Layout Random Layout

(- S
(1) )
o -
@ g
E -
g )
[ - —
g g
(o (-
+— —
— —
= c
-

S o
(=8 .
E E
= =
s -

Important parameter Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) +hA(y) =
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of

g. This failure of grid search 1s the rule rather than the exception in high dimensional
hyper-parameter optimization.

[https://www.jmir.org/papers/volumel3/bergstral 2a/bergstrai2a.pdf] slide adapted from Evan Shelhamer]




Execution

don’t be finger-bound! script the optimization + evaluation of your models
every character you type Is a chance to make a mistake

also scripting makes the work reproducible!

[slide adapted from Evan Shelhamer]



Execution

log everything! especially arguments

import logging args = parser.parse_args()
def setup logging(logfile): log = setup_logging('log')
FORMAT = '[%(asctime)s.%(msecs)03d] %(message)s’ log.info(f"args: {vars(args)}")

DATEFMT = "2Y-7%m-7%d %H:%M:%S'
logging.root.handlers = [] # clear logging from elsewhere
logging.basicConfig(level=logging.INFO, format=FORMAT, dateftmt=DATEFMT,
handlers=|
logging.FileHandler(logfile),
logging.StreamHandler(sys.stdout)
1)
logger = logging.getLogger()

return logger

[slide adapted from Evan Shelhamer]



lTesting and debugging

debug with the default python debugger: pdb
import pdb; pdb.set trace()

https://www.digitalocean.com/community/tutorials/how-to-use-the-python-
debugger

[slide adapted from Evan Shelhamer]


https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger
https://www.digitalocean.com/community/tutorials/how-to-use-the-python-debugger

lesting and debugging

check gradients using finite difference methods

e gradcheck is the checker bundled into PyTlorch

e cs231 has graident checking rules of thumb

e [Im Vieira has further tips for accurate and thorough checking

[slide adapted from Evan Shelhamer]


https://pytorch.org/docs/stable/autograd.html?highlight=gradcheck#torch.autograd.gradcheck
https://cs231n.github.io/neural-networks-3/#gradcheck
https://timvieira.github.io/blog/post/2017/04/21/how-to-test-gradient-implementations/

Compute

more hardware, more problems don’t parallelize immediately
 make your model work on a single device first
e attempt to parallelize on a single machine
e only then go to a multi machine set

e and check that iterations/time actually improves

see Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour for good advice



https://arxiv.org/abs/1706.02677

12. Mechanisms of Training and Running Neural Nets

e Data
e Model
e Optimization

e [valuation, Execution, and Debugging

Lots of slides adapted fromm Evan Shelhamer’s
‘DIY Deep Learning: Advice on Weaving Nets”



