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13. lemporal Processing and RNNs

e Seqguence problems
 Temporal convnets
 Recurrent Neural Networks (RNNSs)
e |LSTMs
* Attention
 Example problems:
* Image captioning

e Sound prediction
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Sequences

“An”, “evening”, “stroll”, “through”, "a”, “city”, “square”
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one to many many to one

Input: No Input: Sequence
sequence
Output: No
Output: sequence
Sequence
Example: sentence

Example: classification,
Im2Caption multiple-choice

question answering

How do we model sequences?

many {o many

many to many

Input: Sequence

Output: Sequence

Example: machine translation, video
captioning, open-ended question
answering, video question answering

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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“The Persistence of Memory”,
Dal1 1931

It bothered him that the dog at three fourteen (seen from the side) should have the
same name as the dog at three fifteen (seen from the front).
— “Funes the Memorius™, Borges 1962
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNSs)
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Deep Recurrent Neural Networks (RNNSs)
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Backprop through time
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Recurrent linear layer




The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

e [his kind of memory Is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart



The problem of long-range dependences
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e Capturing long-range dependences requires propagating information
through a long chain of dependences.

e Old observations are forgotten

e Stochastic gradients become high variance (noisy), and gradients may
vanish or explode




LSTMs

Long Short Term Memory
[Hochreiter & Schmidhuber, 1997]

A special kind of RNN designed to avoid forgetting.

This way the default behavior is not to forget an old state. Instead of forgetting
by default, the network has to learn to forget.
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[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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Ci = Cell state

[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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ft Jt =0 (Wf’[ht—laft] bf)

Decide what information to throw away from the cell state.

Each element of cell state is multiplied by ~1 (rememlber) or ~0 (forget).

[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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/
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what to write to those Indices

Decide what new information to add to the cell state.

[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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Forget selected old information, write selected new information.

[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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After having updated the cell state’s information, decide what to output.

[Slide derived from Chris Olah: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/]
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Image Captioning

Vision Language A QrOU_P of people
Deep CNN Generating shopplng at an
RNN outdoor market.

O

= There are many

vegetables at the
fruit stand.

[Example above from: Vinyals, Toshev, Bengio, Erhan, CVPR 2015, https://arxiv.org/abs/1411.4555]



Recipe for deep learning in a new domain

1. Transform your data into numbers (e.g., a vector)

2. Transform your goal into a numerical measure (objective function)

3. #1 and #2 specity the “learning problem”

4. Use a generic optimizer (SGD) and an appropriate architecture (e.g., CNN or
RNN) to solve the learning problem



How to represent words as numbers?

One-hot vector

Training data Iraining data Training data




How to represent words as numbers?
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How to represent words as numbers?
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Rather than having just a handful of
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This problem Is called image captioning
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Alternatively, sample most likely word.
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The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

e [his kind of memory Is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart
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The problem of long-range dependences

Other methods exist that do directly link old
‘memories” (observations or hidden states) to future predictions:

e [emporal convolutions

o Attention / Transformers (see https://arxiv.org/albs/1706.03762)

e Memory networks (see https://arxiv.org/abs/1410.3916)


https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1410.3916
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Attention Is All You Need
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Ahstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mcchanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and conveolutions
entircly. Experiments on two machine translation lasks show these models o
be superior in quality while being more parallelizable and requiring significantly
less time ta train, OQur model achicves 28.4 BLEL on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
cnsembles, by over 2 BLEU, On the WMT 2014 English-lo-French ranslation Lask,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on cight GPUSs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applving it snecessfully to English constitueney parsing both with
large and limited training data.

1 Introduction

Recurrent neural networks, long shorl-term memory [13] and gated recurrent [7] neural nelworks
in particular, have heen firmly established as state of the art approaches in sequence madeling and

“Equal contrihution. Listing order i3 random. JTakoh propased replacing RNN= wirh self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Iransformer models and
has been crucially involved in every aspect of this work, Nowmn proposed scaled dol-preduct atlention, mulli-head
auenlion and (he parameter-free positon represen@tion and becane the other person invelved i nearly every
detail. Niki designed. implemented. tuned and evalvated countless model variants in our original codebase and
tensar2tensor. Llion also experimented with novel madel variants, was responsible for our initial codebase, and
etficient inference and visnalizations. |.okasz and Aidan spent conumrless long days designing various parts of and
implementing tensorZrenzor, replacing our earlier codebase, greatly improving results and massively accelerating
our resgarch.

'Work performed while at Goagle Brain.

'Work performed while at Google Research.

31st Conference on Neural Informaton Processing Systems (INIPS 2017), Long Beach, CA, LSA.
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[“Attention is all you need”, Vaswani et al. 2017]
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Modeling arbitrarily long sequences

O O
* RNNs — recurrent weights are shared across time O—>§ O O
O O O
O O

 Convolution — conv weights are shared across time
O O

O O
e Attention — weights are dynamically determined ﬁ\
O

O OO
O OO
O OO0
O OO



Anything you can do w.r.t. time, you can do w.r.t. space,

and vice versa.

Popular right now: treat
pIXels as a sequence and
then apply sequence
modeling methods.

Generative Pretraining from Pixels

Mark Chen! Alec Radford! Rewon Child! Jeff Wa! Heewoo Jun! Prafulla Dhariwal! David Luan!
Tlya Suiskever !

Abstract

Tnspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Irans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input structure.
Despite traiming on low-resolution ImageNet with-
oul labels, we find that a GPT-2 scale model learns
strong image representations as measured by lin-
ear probing, fine-tuning, and low-data classifica-
tion. On CIFAR-10, we achieve 96.3% accuracy
with a linear probe, outperforming a supervised
Wide ResNet, and 99.0% accuracy with full fine-
tuning, matching the top supervised pre-trained
models. An even larger model trained on a mix-
ture of ImageNel and web images is competitive
with self-supervised benchmarks on ImageNet,
achieving 72.0% top-1 accuracy on a linear probe
of nor features.

ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.






The Greatest Hits dataset




The Greatest Hits dataset

- 978 videos of people probing scenes with a drumstick
46,620 hits and scratches

- Material, action, and reaction labels (used for analysis

Concrete



Sound and materials

Waveform
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Sound and materials




Predicting sound features
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LSTM

CNN

Video

Predicting sound features

- Two-stream CNN: color + spacetime images




Generating a waveform
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Generating a waveform
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13. lemporal Processing and RNNs

e Seqguence problems
 Temporal convnets
 Recurrent Neural Networks (RNNSs)
e |LSTMs
* Attention
 Example problems:
* Image captioning

e Sound prediction



