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15. Scene Understanding

« Semantics
e Object detection
e Semantic segmentation
® |nstance segmentation
e Geometry
e 3D in the deep learning era
e Single view depth estimation

e Unsupervised learning of monocular depth cues
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Scene understanding







A bit of history...



O, let’'s make the problem simpler: Block’s world
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3D, compositional models

Binford and generalized cylinders

Recognition by components
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Object Recognition in the Geometric Era: a Retrospective. Joseph L. Mundy. 2006

Recognition-by-Components: A Theory of Human Image Understanding.
Psychological Review, 1987.

Irving Biederman



Part based models

The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER
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Scene models

Multiple levels of representation -- pixels > patches > regions > subimages > objects
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Processing-Unit Hierarchy

| Illustration of Levels of Description in

NOUEL RU-FESTHNTATIONS END CONTROL STRUCTCURES
IN IMAGCE TUXDERSTAND NG

leX=l

Yanzde

Daparmment of Inforwacicn Scivice
¥yowo University Kyote, Janan

VR YT
A3ST L

This mopery overviews snd di13cuszes mocel re-
preserlatlces and control slruclures in imags urder-
Standioe. Fierarchias ara ohaervad in t-& lavals
T dpscription nsed in imege urderaetending along a
tew dimensions: processing anit, Secall, comscsition
and scens/view Cistinction. Bmphasis _x plaved O
e —mporlancsaf axplic’ By handling tha Riararehies
botn in represzsenting kncwledas and in 1sing 1o, hl
schele of "aowledge bleck" representation wihich is
struccar=d olorng Lie progess ng=aris hisvarchy is
also preseatad.

L. INTEROCIITICH

Imags Undorstanding SystonlITS) conslrucle a
dezcription of the scene beins wiswed from an array
vl _iEqe gensary data: intensiny, colar, and noma-
timee range dati, Imsgs undarstaniing is bost char-
aclerizac by desar-ption, wharaas pattarn rasognit-
ier by rlassificat on, ond image Jroves-ing Ly iwage
vulpui. The level sud scopes =F the gonl description
denerd on tha tags givas =e the 1U=: whether it is
interpretasion, abject aetention, changn: dotoarcion,
irage macching, etc. It nay appesr that <he discus

~on in Lhia paper wil' taka nsally the flavar of

scene interpreta+ion froma moncrular intens ty image.

Chserving that there are hizvarchies af levals
of desaripzior aleng a few dimencionz, this pager
avervisws and dis—~ussor madn] represcrtations and
control strustures in imege vnderstasding. Emphasis
g placed an Lhe ioportanee of explizizly handling
the hiararchies both in rezresenting knowlocoe
about. seenes and in using it, sspesially procsssinc-
anit hieravenv and scens/virw dannin distinesiar.

In zhe nuxl —weelicp, the lavals of dasscriptzon
ars idenzifies. Then scectize III IvESs ar overvicw
ans disenssiar nn o eceewodel raprasentations,
teresher with presentation ol our koaowledge hlack
reprasaczatise scheme. Sectisn IV deals with the
arablers of control stroetere, and £2rally che role
of low-level processing is discussed in zeclion .

=I. VELS OF SRSCRTETTCN TN THACE [HCEESTARDING

Duescriplicans are rat anly the g:al construces,
Bet alec the medis through which var_ous Coaemancts
“. oan ZUS commuricata in the sourse of unferstind-
irg the imace. Toove ave a Tew orthogonal dimensione.

a) Promessinc-uaie sierarchy

Ohis is e vinrarchy In che levels of unlts
cead ir pregessing. Lzt us icdentily five level: lor
Lhe nomenl. For 3 ragion=nasad U8, thay are 2ixel
(2 1nage ooint) ., patahia groupn of contigquons
pixels having similar pixel propertiss), reylonle
weanipglul craws of aatchen anrrasponcing to a suv-
Sace of an obklect), =subirsgeia part of ar imeg:

corrasponding to an ¢plect or a set of ckjecti),
and abjact jan =hiact 25 a real antity). o a lipe-

ansed TOS, the level of woteh can be replaosd Dy
line segment, regica by lirne, and scbirajge by =« et
af I rez corvasponding to an ablact, >dg. 1

illust>rates these lawvelzs for a region-haz=ed TH2.

Akin & Deddv(1976) obsereed that six lavelsare
uged whan huemar sukjects urderstand the ocuntonts of
an ioeger BEhroogh verbszl coaversalion: scene, cluster,
objecst, resion, segme=nt, w3el rlerzity.  The avrber
8 1=vels in nos very significsnt. Theze lavals a3
well an those in Pig. 1 cepend on Lhe unics on which
Ziffarent levels of processing are pertormedand “or
whazo descoription differans vesabulavies ava yeed,
Precessing in the pixsl-to-patch level i often
callen asz _ows=leval procassing. ke ragion—-te-acbh-
image laval 18 hignh leve. in the pietars proceszing
Somair. L[t clsarly aeed:s to denl with ssmantics
which stom Zrom the bighes., ohyeat level . TFHE patch-

.to—-racion leval migat be czlled as intermediate.

b1  WVigw Domain / Svene Dawa_n Distinction

The »oint o k2 noted heore is <hoclear & sper=
iLy exisling Leween view-domain ard scene-dermin
degcript_ons; in Fig. L, Lhe lawexr foar lewvels ave
in the visv domain and the ugzer ona in acane denain.
The neasd for Bis dosllaclion was argasc Ior first
end most sffectively by Jlowes(1271). I= usec Lho
merm "pictore domain® is plase of "viayw Zomain'.
But the latser is used in =his papuzr Lo oean Lhe
~omair of obsarvabla facts by viewing tihe 32z2ne 1In
s1ther inten3ity or rangn data. 17 e imgor.ance of
this distinction ie »eaiily undersscod by Lhanking
Lhal , Ior esxasple, Lke antnal maarirg of "aijacen-
sy" Ir the wiew-derain descriprtior is fully under-
stacd only efler Lhe raelition 1s intexrzreted in the
cospe=comsgin dezoription. Kota that <ha szane-doamein
deseorip=ions arz rot recez=ari’y in o mebrical 3<0
conrdirzLe epacs; €.9., Kaltz's labels of edge is =
symboliv systen Lo represenl Lhe edga f‘_,’pn.’.. in the -0
apace, orever agqress suhjsotive spuee wil? sallloe.

c)  Detedl Oferarchy and Ccmposition Hocrarchy

At~ detail hierarchy iz along preciscness ol
doscripsiaor.  Th cen axizl in Lolh Lhe view and tha
scena comains. Section .2 presents exaTples inThoe
view domain. A exa—ple in the gcere demain iz ths
deacription of cverall/dctail -hepe ol an obiect,
whicn ie found in saztiez Z.2bk). The coopo3ition
(oY part-ot] nierarchy reprasents parl/whole rsla-
tiornzhipe in tha scens dcmain.

T processing-nnithisrarchy actually containe
samewhat koth aspents of bhe d:slail and compcestion
hicrarchise L1 the sense that the low lsvel ertitinrs
ere parts: cnd delails of an apper-lavel entity.
unfzrtamately =his revezled 7 nrarchy cues acl di-
raectly corresoond Lo the hisrarchies whkich azntura -
1y sxist in the scens diea’r. This facs rakes image
undsratarding diffileult, and it is why thoe wmodels
often nezd tn reproeonk the azlural hisrarchses
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Train a set of multilayer perceptrons and arbitrate a deC|S|on

among all outputs
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Rowley, Baluja, and Kanade: Neural Network-Based Face Detection (PAMI, January 1998)
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Histograms of oriented gradients (HOG

Histograms of Oriented Gradicnts for Human Detection

1. Bin gradients from 8x8 pixel neighborhoods into 9 orientations
2. Linear SVM

Navneet Dalal and Bill Triggs
INRIA Rhéne-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
{NavneetDalal Bill Triggs } @inrialpes.fr, http://lear.inrialpes. fr

Abstract

We study the question of feature sets for mhust visua® nh-
ject recognition, adopting lincar SVM based human detec
hwon @8 @ tesi case, Alter reviewing enisiing edwe und gra-
dient cased descriptors, we show expenumentally that grids
af Histagrams of Oviented Gradient THOG ) deseriptors #ip-
nyicamly owperform existing feature seis for hwman detec
nwon. We study the influence of each slage of lhe computufion
on performaence, concluding that fine-scale gradienls, jine
orienfation binning, reiathvely coarse spatic! bining, and
high-quality lncal contrast normalization in averlanning de-
scripmor blocks are all important for good results, The new
Gpprosoh guoes near-perject sepuration on e orivinad MUl
pedestrian dafabase, s¢ we mtroduce a mere challenging
dataset rantaining over 1800 annotated human images with
a large range of pose vanations and backg rounds.

1 Infroduction

Detecting humnans in images is @ challenging isk owing
to their variable appearaice and the wide range of poses that
thev can adopt. The first meed is a robust feature set that
allows rhe huma= form 10 be discriminared cleanly, even in
cluttered buckzrounds under difZiculs illumination. We study
the issue o7 feature sels for humean deteciion, showing Lhal 1o
cally nommalized Histogram of Or.ented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feamire se1s including wavelets [17,22]. The proposed
descriplors are reminiscent of edge odentalion bistograms
14.5], SIF1 descriptors | 12] and sha2e contexts [ 1], but they
are computed on a dense grid of unifermly spaced cells and
they use averlapping Incal eontrast normalizatiens for im-
proved perfermance. We make o dewdled study o7 the effeers
of various implementation choices on delecwor performance,
taking “pedestian detection™ (the detection of mostly visible
people in more or less uprigat poses) as a lest case. Jor sime-
plicity and speed, we use linear SVM a5 a hoseline classifier
throughout the study. The new deteciors give esseniully per
fect resu.ts on the MI'T pedestrian test set | 18,17, so we have
created 2 more challenging set containing over L1800 asedes-
trizn images with a large rangze of poses and backgrounds.
Omgoing work si:ggests that enr feanire ser performs equally
well for other shape-based object classes.

We brieily discuss previous werk on human detection m
§2, zve an overview of our method §3, descrbe our data
se1s in §4 and give a desailed deserintion and experimental
evaludtion of each stuge of the process in §5 6. The main
conclusicns are sunmunarized in §7.

2 I'revious Work

lhere 15 a2 extensive Literature on ooject detection., but
here we meztion just a few relevant paperss ¢n human detec-
tan [15,17,22,14,20]. Ree [A] for a susvey. Papageorgion e
al [15] describe a pedestrian detec.or based on a polynomial
SVM using rectified Haao wavelets as .2 put cescriptors, with
a patts (subwindow) based vauant in [17]. Depooctere ef wl
give an optiriized version of this [Z]. Gavrila & Philomen
[R] mke a more direer appmach, extracting edge images and
matching them to 4 sel of ledrned exemplars using chamler
distazce. Lhis has been used wn a practical real-t.ne pedes-
tr:an detection system [7]. Viola ef al [22] build an efficient
maving person defecor, using AdoBoost 10 1rain a chain of
pregressively more complex region rejecion rules bused on
Ha:rlike wavelels and space time d:[ferences. Ronfard er
ad |19] ouild an articulated bocy detector by (ncorporating
SVM based lmb classifiers over 1* a=d 2™ order Gaussian
filers in a dy=amic programming framework sim:la=n rhose
of Felzenszwulb & Huttenlocher [3] and [ofle & Forsyth
Y], Mikolajczyk et wl |16] use combinations of crientation-
position histograms with binary-threshelded gradient mag=i-
rades 0 huild a pans hesed method eonmining detaciers r
faces, heads, e=d frent and side profiles of upper and lower
body paris. Im contmust, our detector uses a simpler amuhi
tecture with a single detection windew, but appears Lo give
significanily higher performance on pedestrian images.

3 Overview of the Mcthod

This sectiozn gives an overview of our feature extraction
chain, wh:ch is summarized in fig. 1. Tmplementarinn derails
are postponed undl 36. The method is based on evalualing
well-norma.ized lecal lustograms of unape gradiest onenta-
tions in a dense grid. Similar features have seen increasing
use over the nast decade [£,5,12,15]. The bas:ic iéea is that
local ahjeer appearance and shape can ofien be characterized
rather well by the distribudion of lecal intensily gradients or

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf



Families of recognition algorithms

Shape matching
Deformable models

Bag of words models Voting models

Viola and Jones ICCV 2001 Berg, Berg, Malik, 2005

Csurka, Dance, Fan, Willamowski, and Bray 2004 Heisele, Poggio, et. al., NIPS 01 Cootes, Edwards, Taylor, 2001
Sivic, Russell, Freeman, Zisserman, Schneiderman, Kanade 2004
ICCV 2005 Vidal-Naquet, Ullman 2003
Constellation models Rigid template models
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Object detection




Searching for objects

Scanning window approach

. Selective search
& Image pyramids

Input image Candidate bounding boxes
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Selective search

Stage 1: generate candidate bounding boxes

Input Image

Segmentation

Stage 2: apply classifier to each candidate bounding box
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R-CNN, Fast R-CNN, Faster R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (vS)

Ross Girshick Jeff Donahuc Trevor Darrell Jitendra Malik
UC Berkeley

{rbg, jdonahue, trevor, malik}eeecs.berkeley.edu
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S Abstract

™

— Cbiect detection performance, ai measwred on the

& cancnical PASCAL VOC dataset, has plateaved in the last
Jew years. The best-performng meihods are complex en-

] serible sysiems that typically conbine mudtiple iow-level

image fratures witk high-level cortext. In this paper, we

propose a simple arnd scclable deection algorithm thot im-
proves mean average precision (mAF) by more than 30%
relative (o the previows bes! result on VOC 201 2—achieving
amAP of 53.3%. Dur approach combines twe key insights:
(1) one car. apply high-capacity convolutional reura! net-
works (CNNi) 12 bottcm-up region proposals in ovder '0
localice wnd segmert vbjects erdd (2) when lubeled training
daia is scarce, supervised pre-traimng for an auwxilary task,
Jfollowed oy domain-specific fine-tuning, yields a signijicant
performance boodt. Since we combine reégion proposals
withh CNNs, we cail vur method R-CNN: Kegions with CNN
Sfeatures, We als? compare R-CNN to OverFeat, a recently
proposed sliding-window detecior based on a similer CNN
architecture. We fmd tha! K-CAN outperforms Overfeal
by a large margin cn the 200-c'ass ILSVRC2012 dereciion
duaiaset. Sonn.c code Ji Jor ihe Lomplcre' system (s availapls at

1311.2524vS [cs.CV] 2

.a rettp://www . ce. boerkaeley.edv/ ~rhy/rern.
<
H 1. Introduction

Feetures matter. The last decade of progress on various
visual recogniticn tasks ka: been dasad considerzbly on the
use of SIFL 129] and HOG [ 7], But it we look @t perfar-
mance on e canonical visuzl reoognition lask, PASCAL
VOC object detzction [15], it is generally sckacwledzed
that progress has beea slow during 2010-2012, with smazll
gams obtained by builcing ensemble systems and employ-
ing minor variams of svccessfal methods.,

SIFT wxd HOG we bluckwise uricntation histograms,
a representaton we could associate rcughly with complex
cells in V1, the first cortical area in the primate visnal path-
way. But we also know that recogniticn cccurs several
sages dowastreen, which suggess thal there maght be hicr-

R-(:I\\" Regions witk CNN feawres

hu;\d n‘.m Am\qln =
-:. -.{ wn" you
_‘4- = "(\ . "

vmomtar, m. |
3. Compute 4. Classify
CNN features regicns

L Input 2. Exml regian
mage  peaposals (~Ik)

Figure 11 Ohject detecion system overview. Our system (1)
takss an input imags, (2) extracts zround 2000 bottom-up region
proposals, (3) computes features for cach proposal using a large
corvolatioaal aeural retwork (CNN), end ther (4) classifies each
region usirg class-specific lineer SVMs. R-CNN achievas a mean
average precis.on (mAP) of 53.7% on PASCAL VOC 2010. For
comparison. [19] reparts 35.1% mAP using the same region pm-
posals, but with a spata pyranid and bag-of-voua-woeds ap-
peaach. The pooular deformable part models perform at 33.4%,

On the 200-¢class ILSYRC2013 detection dataset. R-CNN's
mAP 5 31.4%, a large improvement over OverFeat [24], which
had the previous hest result at 24 3%.

archical, multi-stage processcs for computing featurcs that
are even mor2 informative for visuzl recognition.

Fukushima's  “rescogmitrorn™ [1Y], 2 holgically-
inspired hierarchical anc shifi-lnvariaat moede! for pauemn
recognition, was ar cerly attompt #t just such a proosss,
The neocogritron, however, lacked a supervised t-aining
algorithm. Ruilding on Rumelhart ot sl [573], Lellun et
al. [26] showed that stockastic gradient descent vig beck-
propagation was cffective for training convolational ncural
networks (CNNs), aclass of models that exterd the neocoz-
nitran.

CINNS saw heavy use in the 19908 (e.g., [27]), bat then
fell vut of fashion with the r.5¢ of support vector machines.
In 2012, Krizheveky et al. [25] rekirdled irterest in CNNg
hy showing suhstantially higher imape classificztion acen-
racy on the ImageNet Large Scale Visual Recogn tion Chal-
lenge (ILSVRC) [2, 10]. Their success sesulted from rain-
ing a large CNN on 12 million labe'ed images, together
with a few twicte on LeCun’s CNN (e g, mex( =, 0) rectify-
ing non-linearities and “dropout’” regularizatior).

The sigrificance of e InageNet reault was vigorously

https://arxiv.org/pdf/1311.2524.pdf
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Fast R-CNN

Ross Girshick
Miosufl Research
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Abstract

Thiy paprer proposes ¢ Fuyi Region-tused Convolwiiona!
Nemwork wethod (Fast R-LUNN) par obpect delecticn. Fos!
R CNN builds on prevcus work to efficient!y classify ob
Jewt proposely wring deep covvoluional neiworks Com-
pared lo previous work, Fasl R-LNN empicys severa! in.
novations l¢ improve iraining and teiting speed while alze
increasing dereetton accuracy. Farct R-CNN iralne the very
deep VGG16 network 9% jaster than R CNN, is 213 foster
af sesi-tune. und wchieves a higner mAP on PASCAL YOC
2002, Campered ta SPPnet, Fast R-CNN trams VGGG 3%
Jasier, tests 10 fastey, and is mere accurate. Fast R-CNN
iy wnplerneried in Python and C=+ “aainy CaJx) and i
mw'able wrder the open-sawrce MIT Licente at nt - ns

....l s bs - gy S wahs o/ 4 ” "
31 ib.con/rbkairshicc/fest renn.

1. Introduction

Recealy. deep ConvNets [14, 16] have sigaificantly im-
praved image classificarion [14) and object detection [9, 197
sccuracy. Uompared to immage classitication, object detac-
tion is a more challenging task thar requires more com-
plex methods to solve. Due to this -'nrrplcxitv current ap-
proachas (2g., (9, 11, 19, 25]) tran models in multi gage
pipelines tat are slow and inelszanl.

Complexaty anses because datection requires the ac-
curate localizeticn of objects, creating two primary chal-
lenges. First, numercus candidate object locations (often
called “propesals™) mast be processed. Secand, these can-
didates provide only rough localizet.on that must be cfinec
0 ackieve peecise loczlizatior. Sohtions 1o thase prohlems
often compromise speed, accuracy, or simphicity.

[n this paper, we sireamline the raining process for saate-
of-the-art ConvNet-based cbject deteciors [V, 11]. We pro-
posc a single-stage trainirg agonthm that jointly learns o
classify object proposaks and refine their spatial Incations.,

The resulting method can train & very deep detection
network (YGG 16 [207) 9x faster than R-CNN [9] and 3=
faster than SPPaet |1 1]. At runtime, the dececticn network
processes images in (.35 (excluding ckject prepesal time)

while achieving tp zcamacy on PASCAL VOC 2072 [7)
with a mAF of 55% (vs. 62% for R CNN).

L.1. R-UNN and SPPnet

Tie Region-laseld Couvolutonal Neiwork metlxx] (R-
CINN) | J] achueves excellent object delection arcuracy by
asing & deep CorvNet 1o ¢lassify object proposals, R-CNN,
rowever, Fas nomhle d-awhacks:

1. Tralning Kk 2 maltl-stage plpellne. R-CNN firs: fine-
tunes a CoavNe: an object proposals using log loss
Tleeu, ot fits SVMs o ConvNet featwes, These SVMs
act as ahject dewectors. replacing the sofimax classi-
fier lezmt by fine tuning. In the third trzining stage,
bounding-2on 1egiessors arc keaned,

2. Tralning Is expensive In space and tdme. For SVM
and bounding-box regressor training, features are ex
trackal Joun cach objec, puoposal o cach Lnage asd
writer to disk.  With very deep networks, such as
VGG16, this process takes 2.5 GPU-days for the 5k
imnages of the YOCO07 sainvel set, These features 1e-
quirs hundr=ds of gigabytes of storage.

3. Object detaction is slow. At test-time, faatures are
catracted from cacl obiee; proposal in cach test Lnage.
Detection with VGG 6 takes 47s /image (on a GPLI)

KAONN s show because it performs a ConwviNet forward
pass for cach object proposal, without sharinz computation.
Spatial pyramic pooling nerworks [SPPnzis) [11) wers pro-
dosec to speed up K.CONN by shanng computation. ~he
52Pnct method computes a convelaciona! feature map for
‘he entire input image and then classifies each object pro-
posal using & festure vectar extracted from the shared fea-
wre map. [catures arc eatracted for a proposal oy max-
a00ling the porticn of the feamre map inside the proposal
mnto ¢ fixed-size output (e.g., 6 % 6). Multiple cutput sizes
are pooled and then concaterated as in spatial pyramid pool-
ing [15] SPPnet accelerates R-CNN by 10 10 100 a1 rest
ame. Training time 1s elso reduced by 3> due to faster pro-
poszl feanune extcacton.

All timings usc erc Nvidia K4) CI'U everclocked 10 E75 NIlla.

https://arxiv.org/pdf/1504.08083.pdf

Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks

Shaoaninrg Ren, Kaiming He, Ross Girshick, and Jian Sun

Abstraxt—Siale-of the-art ctject cetection retworks dapend on regior propoasl akorthma © Fypothesize o3 et ccalons
Adsmances li«g SPPnet [1] and Fag: R-CNN [2] hava reduced the runring time of these daiection neworks, @qosing regicr
PICPOSA CoMauta®n as a bDottlensis. In his wors we rtodsss a Seglior Progosal Nedvrork (PN that shares fulk mage
convolutional icatares with the deieation network, th s enading mearly 0ost ‘rec regior proposals. A1 RPN is a kuly 001w uiona

mwha b Dl sincc lameoosly pradicrs ofgec! Dourdcs A ohjeciness socms A sech posilion Tha RPN & vaced erddoseod i

O N
o generale high qualty 23¢n peogesels, which are used by Feat R-CNN ‘cr dotection WE Lrther marge RPN and Fast = CNN
- Into a single nework by sharing thair comciusional eatures—using the recently popdar lermincicgy cf neJmal netwera with
) ‘atention’ mechanisms, the RFN componsnt tells the unfied network where to <ok, =or the very deep NGG-1€ madel [2)
our cetaction eyziem NSE A 'rama ratp of Sipe (mowding av elege) on a GRU, ‘whie acthiavng etalo-of-he-ar cbjost catacticr
E sooracy on PASSA VNG 2007, 2012 amd MS COCO falass < wilh only 300 propseds pee image 10 1 SVRC ced GO0
b 2015 corpetions “aster 3 CNN and RFN are the loundations of the 1at plaxe winning ertica r several traza. Ccde has doar
’ wrsde publ cly aneilubly.
_— Index Terms  Ob.oot Deteoinn, Regon Frapesal, Conve Lt cnal Neural Network.
- +
r “
!
7
I

=1 INTRODUCTION

f:. Recent advances in objert detection are driven by
= the suxess of region prop ral nethods (2g, 4))
amt! regionshased convolutional neral networks (R-
-:r CNNW) [5]. Qlﬂmngh n‘gnn-lqul CNNs wens come
= puletionally expensive as arigivally developed in [5),
their cost has been drestically naduced Hianks to shar
ing, tonvolubons acnws praposals [1], (2] Toe Letest
incarnelion, Fast R-CNN 2], echieves near real-tiowe
rates using very deep wtworks [3], aben igniring the
. time spent on g pnpesals. Now, propxsals ane Pw
= testime compula onal botlleneck in state-clthe-arl
detretion syshers
Region pronosal methods typically mely on inex-
= persive fetures and econocdial inference sclwmes.
Selective Search [4], ore of the most popular meth-
ods, groedily menzes superpixels based on engineerad
low-level features Yet wren comparec to efficlent
detection networks |2], Selective Search is an onder of
magnitude slower, at 2 seconds per image n a CPU
implementation. EdgeBoxes [5] currentlv provides the
best trudeoff betwwun proposal quality and speed,
at 02 secords per image Nevertheless, the region
proposzl step still consumes as much running time
as the cetection retwork.

97y
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-
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Ir X1

& 5 Fen fconey Untoerstiy of Solexer a9d Techralogy of Chfna, Hefrd,
Ulung. flus 1ok tees dxee w5, Km was ov mbern af Mecrosoft
Rescarsys. Eranl span@radasic.sdeon
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Rrsearch Famefl: (ahe, lizossn)} Bwdemsot onm

o X Girdnek i with bacebok Al Kecoarch. The mapenity of this avork

s drtr where B Crakick roas oty Microofl Researsh Eoranl
ity @M.com

One may roce that tfast region-cased CNNs lake
advartage of GFUs, while the region proposal meth-
ods used in research are implemented on the CPU,
making such runtime comparisons inequitable. An ab-
vious wey to accelernte pronosal computation is 2o re-
implemen is for the GI'U, This mmay be an effective en-
gineering solution, but re-implementaton ignores tre
down-stream detection network and therckore misses
irportant ozportunisies for sharirg computetion

[~ :his paper we show that an algoritbmic change—
computing proposals with a deep conveluticnal neu-
ral reswork—leads to an elegart and effeciive solution
where proposal camputaticn s nearly cost-free given
the deteclion nelwork’s campulalion. To this end, we
introduce rovel Region Proposal Netwerks (RFNs) thas
share convolationa. kayers with state-of-the-art objec:
delection netwarks [1], |2]. Oy sharing convalulicns a.
test-time, the ma=ginel cost for carrputirg proposals
i= small (¢ g. 10ms per image).

Our observation is thal the convolulional ‘eature
maps used by repinn-based deteciors, like Fast R-
CNN, can also be usec ‘or generating region pro-
pesals. On top of these convolutdonal fealures, we
construc: an RPN by edding & few adcitional con-
voluticnal layers that simultancously regress region
bounds and objectoess scores at each location on a
reprlar grid. The RPN is thus a kind of fully conve-
lusional network (FCN) 7] and can be irained end-to-
exd soecifically for the lask for generaling detection
propimsas.

RPNs are designed o sfficieny predict region pro-
posals with a wide rarge of scales and aspect ratios. In
contrest b prevaken: methods [8], [51 [1], [2] that ose

https://arxiv.org/pdf/1506.01497.pdf




R-CNN

aeroplane? no.

N

_
| _
| _
“ \ !
| |
_ \ _
| _
| _
| _
| _
| |
| _

= _
QO “
.1 - —
2N | _
QO L !
r ‘ .H“.w/d. .

o> i

- Ty

h z
( .
tvmonitor? no.

—

. m
< _
A
- - _4
5 Y

N ]
M.H.ﬂ‘
....\hl

= %
- _.I.J
T

| '
. - )
1| > =
...!...., g
\o.w\ FONN ; .sn..l = - - 3
: ﬂ- -

4. Classity

2. Extract region

3. Compute
proposals (~2k) CNN features

1. Input
image




R —( : N N AlexNet, ImageNet pretrained

then fine-tuned on the
20 VOC classes

[X’y’W’ h]

227x227 < e o | |
Selective search 8l 18] sl 1<l B SVM bird/no bird
I |sl [ [ |
S C
HERCRE [X,y,w,h]
| |S| I&] [
58 SVM car/no car

=
O
7
)
O
Q.
Q.
=
7
'
=
>
©
;
-
O
Z

~ 2000 region proposals




person 0.82

oy ' ~.\ e 3 - i ¢! G 2 “" k’ *
++ ; snowmooile .83 21 . : i i o //‘\r:\/ 3
.‘ wmocle 0.83 5 L i > bi'd -

| N

i




helmeat fi &1
pitche 0.57

-"' ’.i/' l‘- g i
= ’ e ¥

Y _
T -l )

hzt with a wice brin 0.78

-

www shutiersiock con - 1623057

-

person 087
j surnglasses 0.51

persnn 0 51

A o - =
s 'y e S ESEE N
A, L4 b dth iy ’
:‘..'_!“. .‘,




Making the structure end-to-ena

Conv

feature map

Outputs: bbox
softmax regressor

Rol q—;c FC

pooling
layer | DFC[]S
Rol feature
vector

For each Rol

https://arxiv.org/pdf/1504.08083.pdf

Fast R-CNN

classifier

Region Proposal Network g
feature maps

r n
L AN

conv layers

https://arxiv.org/pdf/1506.01497.pdf
Faster R-CNN



Semantic segmentation

(Colors represent one-hot codes)



} What's the object class of the center pixel?

N
Training data
X Y
!\ “Bird’ } b\
,
: It ’:N i{> “Sky”

“Sky” } K-way classification problem

Solve with K-dimensional softmax regression:

fQ:X% QK




Fully Convolutional Networks

Fully Convolutional Networks for Semantic Segmentation
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Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
ticmal networks by themselves, traned end-to-end, pixels-
fo-pixels, exceed the siate-of-the-arl in semantic segmen-
tation. Our key insight is to build “fully comvolutional™
networks that fake input of arbitrary size and produce
correspondingly-sized owlput with efficient inference and
learming. We define and detail the space of fully convoiu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections o prior models. We
adapt contemporary classification networks (AlexNer [22],
the VGG net [ 4], and GooglLeNet [15]) into fully convolu-
tional networks and transfer thetr learned representations
by fine-tuning [5] to the segmentation task, We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
af-the-art segmentation of PASCAL VOC (20% relative im-
provemeni to 62.2% mean [U on 2012), NYUDVZ, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutdona! networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 44, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [<2, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30,3,9,31, 17,15, 11],in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

* Authors contributed equelly
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Figure 1. Fully coavolutional networks can efficiently leamn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the statc-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs,
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
eation. In-network upsampling layers enable pixelwise pre-
diction and lcarning in ncts with subsampled pooling.

This method is efficient, both asymplotically and shso-
lutely, and precluddes the need lor the complications in other
works. Patchwisc training is conunon [30, 3,9, 21, 117, but
lacks the efficieney of fully convolutionsl training. Our ap-
proach does not make use of pre- und posl-processing com-
plications, including superpixels [9, | 7], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9,31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what whilc local information resolves where. Decp feature
hierarchies encode location and semantics in & nonlinear



Fully Convolutional Networks

S1) 6L

227x227
| 5 e ——
H A D R SN




Fully Convolutional Networks

S1) 6L
227x227

H/32xW/32
B =T
4 &09%‘096{000

Upsampling



Encoder-decoder architectures

Skip connections

Decoder

Convolutions Deconvolutions

U-Net



Steerable Pyramid — A U-Net architecture
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Semantic segmentation




Instance segmentation

Challenge: unbounded number of output instances
(can’t just do K-way classification)



Instance segmentation




Approaches

InstanceCut, DWT, SAIS, DIN, FCIS, SGN, Mask-RCNN, PANet etc.

\‘ ..-. -n’.
[ f-;n‘; 1 Direction Ne&t < Viatershed Transform Net

RCE

Sk Seq : N

PANet [Llu et al, CVPR 18]
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Mask R-CNN

Kaiming He  Georgia Gkioxari
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Abstract

We present a concepiually simple, Jlexible, and peneral

Srumework jor object instance sepmentalion. Our approach

efliciently detects vbjecls tn an image whdle simaltaacously
generuling o hdgh-gualily scgmentulion mask for cach in-
stance, The method, called Mast R-CNN, extends Faster
R-CNN by adding a branch far predicting an object mashk in
parallel wizh the existing branch for boimding box recogni-
tion, Mask R-CNN is simple to train and adds only a small
overicad to Fasier R-CNN, running ar 5 fps. Morcover,
Mask B-CNN is easy to generalize 10 other masks, ¢.g., al-
lowing us ro essimare human poses in the same framework.
We show top resulls in all three tracks of the COCO suile
of challenpes, including instance segmenlalion, bounding-
tox obiject delection, and person keypowi! delection. With-
wid bedls and vwhisties, Mask R-CNN oatperforms all ex-
isting, single-model entrics on every iask, including me
COCO 2016 chalienge winners. We hope oitr simple and
effective approaek Wil serve as a roliad baseline and heip
ease future research in imstance-level recognition. Code
has been made available at: httes://oithue . con/

’
rfaocbooxrcscarch/sDotoocron.

1. Introduction

The vision cammunity hes mapidly improved nhject de-
lection and semantic segmentation results over a short pe-
riod of time. Lo larpe part, these advances bave been driven
by powerlful baseline systems, such as the FasuFasier R-
CNN [ 12, 36] and Fully Convolutional Network (FCNj |30]
frameworks for object detection and semantic segmenta-
ron, respectively. These methads are conceptually intuitive
and offer flexihility and robustness, together with fast train-
ing and inference ime. Our goal in this work s to develop a
comparahly enabling framework for instance segmentation.

Tnstance sepmentation is challenging because it requirgs
the correct detection of all objects in an image while also
precisely sepmenting each instance, 1t therefore combines
elements from the classical computer vision tasks of vb-
ject delection, where the poal is 1o classifv individual ob-
jects and localize cack using a bounding box, and semeniic

Igure 1 The Mask R-CNN [ramework for :nstance segmentation.

segmentanom, where the goal is to classfy each pixel intn
a fixed set of catepories without differentiating object in-
stunces.’! Given this, one might expect n complex method
1s required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior stare-of-the-art instance segmentation results,

Our mathod. called Mask R-CNN, extends Faster R-CNN
[36] by adding a hranch for predicting segmentation mosks
on each Region of Interest (Rol). in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 7). The mask hranch is a small FCN applied
to each Rol, predicting a segmentztion mask in a pixel-to-
pixel mamer. Mask R-CNN s simple i implement and
trevn goiven the Foster R-CNN fremework, which facihitates
a wide renge of flexible architecture designs. Additionally.
the mask branch only adds a small computational averhead.
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extensian of
Faster R-CNN, vet constructing the mask branch properly
is critical for pond results. Most importantly. Faster R-
CNN was not designed for pixel-to-pixel alignment be-
twen network inputs and outputs. This is most evident in
how RolPeol |18, 12], the de fucio core operation for at-
tending to instances, performs coarse spanal guanbzation
for fenture extruction. To Aix the misalignment, we pr
pose o simple, quantization-free layer, called RafAlign, that
faithfully preservas exact spatinl locations. Despite heing

Followirg common teeminology. we use olfery detection w deaowe
desecton via boanding boxes. 0ot nesks, end seamaniie segmentaion 1o
denote per-pixel classificaen wabont differenadeg instaaces. Yer we
100 Lt insiane sogmentenon is DOIL senaalie &nd a toonl of cetection.

https://arxiv.org/abs/1703.06870




Panoptic Segmentation
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Instance detection panoptic segmentation:
stuff and things are solved, instances distinguishable



Unified Panoptic Segmentation Network (UPSNet)
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Depth Perception




3D scene understanding
N the deep net era




N the deep learning era

Ground truth is collected by
using traditional methods



3D In the deep learning era

Data

LLearner
. N
{X(@)7 y(@) }7;:1
) - Objective
scale invariant MSE in log space
Regular old
Hypothesis space — f SUPGTWS'ed
Deep Neural Network learning!
Optimizer f* = arg min L(f(xD),y)
=

SGD




3D In the deep learning era
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Scale invariant error

With uncalibrated cameras (unknown K), the global scale of a scene
IS an “ambiguity” in depth prediction.

... you could learn estimate K from a single image ...



Scale invariant error

Estimate log depth instead of depth. Defining y; as the ground truth depth on
pixel i, and y”; its estimated depth:

1 n
Standard L2 error: DLz(ya y$) — = Z (lOg yi T IOg yi*)z
& =1

Scale invarianterror:  [) KY) — l N 1 o 1 S 2\ )2
(¥, y*) = . (logy; — logy* + a(y, y*))
=1

K 1 Y °K
i a(y,y*) = — ) (logy; — log y*)
j=1

[Eigen & Fergus, NIPS, 2014]



Training:

* Training loss: Mixture of both error measures (best \lambda=0.5):

Standard L2 error: Scale invariant error:

J = ADp5(y, y*) + (1 = A)Dg(y, y*)

Depth contains missing values. Only evaluate on valid pixels.

R e e

 Data augmentation: flips, translations, scalings, color scalings, ...

[Eigen & Fergus, NIPS, 2014]



Results

Prediction

Ground-truth

—igen & Fergus, NI

DS 2014]



Kinect Is a stereo active system that uses
structured light

—TIL -
R ST A ES -

Ground truth is collected by
using traditional methods



3D In the deep learning era

Teacher

What else can we
use as teacher?

SGD
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Student




Learning Single-View Depth Prediction from Internet Photos

McgaDepth: Learning Single-View Depth Prediction from Internet Photos

Zhengqgi L Noah Snavely
Department of Computer Science & Cornell Tech, Cornell University

o0 Abstract v,
—_— .
- Ningle-view depth predicrion is a fundamental prohlenr >
( in compurer vision. Recenly, deep learning methods have

- led 1o significant progress, but swch methods are limited by

- - - . » .

C the available training dara. Current datasers based on 30D : — '
Z sensors have key limitations. including indoor-only images (i) Iakermet, phuto of Colusseurs () Tussage Crvin Mahe3D (a) Image (b) GT (€) VGG* (d) VGG* (M)  (e)ResNet  (I) ResNet (M) (g) HG (h) HG (M)
o0 (NYU), small nunbers of raining examples (Make.$1)), and "
(J._"l sparse sampling (Ki1T1). We propose to use inilti-view In- Figure 6: Depth predictions on MD test set. (Blue=near, red=far.) For visualization, we mask out the detected sky region.

In the columns marked (M), we apply the mask from the GT depth map (indicating valid reconstructed depths) to the prediction
map, to aid comparison with GT. (a) Input photo. (b) Ground truth COLMAP depth map (GT). VGG™ prediction using the loss
and network of [6]. (d) GT-masked version of (¢). (e) Depth prediction from a ResNet [19]. (f) GT-masked version of (e). (g)

lernet phole colleciions, a virtwally anlimited duta source,
fo genevate training data via modern structure-from-motion
and muli-view sterveo (MVS) merhods, and present a large

P
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depth dataser called Megaldepth hased on this idea. Data
derived from MVS comes with its own challenges. includ-
ing noise and wnreconsiruciable objects, We address these
challenges with new data cleaning metheds, as well as auto-
matically augmenting our data with ordinal depth relagions
generated using semantic segmentation. We validate the use
of large amounis of Internet dara by showing that models
rrained on MegalDeprh exhibit strong genevalizarion not
only to novel seenes, but also to orther diverse darasezs in-
cluding MakeiD, K111, and DIV, even when no ingges
from those datasets ave seen during training.'

1. Introduction

Predicting 2D shape [rom a single mage 1s an unpertant
capability of visual reasoning, with spplications in robolics,
sraphics, and other vision Lasks such as ntnnsic imagoes.
While single-view depth estumation s a challenging, un-
derconstrained problem, deep learning methods have re-
cently dnven sigmibicant progress. Such methods thrive when
(raaned with large amounts ol data. Unfortunately, [ully gen-
eral training data in the form of (RGE image. depth map)
pairs 15 difficult o collect, Commodity RGB-D sensors
such as Kinect have been widely used for this purpose [34],
but are hmated o indoor wse. Tuaser scanners have enabled
imporlant datascls such as Muke3D [29] and KITTT [25],
but such devices are cumbersome to operate (in the case
of industrial scunners), or produce sparse depth maps (in

"Pm"xa websile: htTp: S wew. s ocornoll cdudpraloct s/
e yzdepthy

{c) O single-view depeh peadicnon (d) O single-view depth peedierion

(e Tmugne Froun KITTT
-

{1 Our single vaew Jeplh posdictivn

Figure 11 We use large Internet image collections, combined
with 31 reconstruction and sermantic labeling methads, 1o
aenerare large amounts of waining, data for single-view depth
prediction. (a), (h), (e): Kxample input RGH images. (el
(dy, (N: Depth maps predicted by our MegaDepth-trained
NN (blue —near, red—ftar). l'or these results. the network
was not trained on Make3D and KIPTT data.

the case of LIDAR). Moreover, both Make3D and KITTI
are collected in specific scenarios (a university campus, and
atop a car, respectively). Training data can also be generated
through crowdsourcing, but this approach has so far been
limited to gathering sparse ordinal relationships or surface
normals [12. 4, 5].

In this paper. we explore the use of a nearly unlimited
source of data For this problem: images from the Tnlemet
[rom overlapping viewpounts, [rom which structure-rom-

Depth prediction from an hourglass (HG) network [4] . (h) GT-masked version of (g).

Training set Method RMS  AbsRel  logl0
Make3D Karsch eral. [16] 9.20 0355 0127
Liu et al. [24) 949 0335 0137
Liveral [22 8.60 0314 0.119
Li et al. [20) 7.19 0,278  0.092
Lamna et al. [19] 445 0,176 0072
Xu eral, [39) 438 0,184 0.065
NYU Eigen er al. 6] 6.89 0.505 0.198
Liv et al. [22 7.20 0,669 0212
Laina et al. [19] 7.31 0.669 0216
KITTI Zhou et al. [43] 8.39 0.651 0231
Godard eral. [13] 988 0.525 0319
DIW Chen et al. [4]) 7.25 0.550  0.200
MD Ours 6.23 0402 0.156
MD+Make3D  Ours 425 0,178 0.064

Table 4: Results on Make3D for various training datasets
and methods. The first column indicates the training
dataset. Erors for “Ours™ are averaged over four models
trained/validated on MD. Lower is better for all metrics.

depth predictions from our model and several other non-
Make3D-trained models. Our network trained on MD have
the best performance among all non-Make3D-trained models.
Finally, the last row of Table 4 shows that our model fine-
tuned on Make3D achieves better performance than the state-
of-the-art.

KITTIL Next, we evaluate our model on the KITTI test set

e F e

(a) Image BYGT ) DIW 4] (@ NYU [ol (@) KITTI[15) (O MD

Figure 7: Depth predictions on Make3D. The last four
columns show results from the best models trained on non-
Make3D datasets (final column 1s our result).

based on the split of [7]. As with our Make3D experiments,
we do not use images from KITTI during training. The
KITTI dataset is very different from ours, consisting of driv-
ing sequences that include objects, such as sidewalks, cars,
and people, that are difficult to reconstruct with SIM/MVS.
Nevertheless, as shown in Table 5, our MD-trained network
still outperform approaches trained on non-KITTI datasets.
Finally, the last row of Table 5 shows that we can achieve
state-of-the-art performance by fine-tuning our network on
KITTI training data. Figure % shows visual comparisons
between our results and models trained on other non-KITTI

CVPR 2018



Structure from motion (stereo but with many cameras

The Internet can be an unlimited source of 3D data



Structure from motion
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MegaDepth dataset

200 locations, ~130k images

-~ : /

http://www.cs.cornell.edu/projects/megadepth



Stacked hourglass architecture

Stacked Hourglass Networks for

——

N

. -

— Human Pose Estimation o o
S - . = = my e .—"-— - - - ™ ~ o
(\I ”‘-_—- -.\-‘ ,-"F—. \\ -", \‘ ’.’ .

-~
-

— v - . ¥ -

- Alciandro Newell, Kaiyu Yang, and Jia Deng
p—

- University of Michigan, Ann Arbor
~ {elnewell ,yangky, jiadeng jQuuich, edu
~. \
- Abstract. This work introduces a noval convolutional network archi- - TS . CEERP . ITEED; e (CEEETINN * % e N e
r \ . . - Lemt " * e . .t . . .-
\/ tecture for the task of human pose estimation. Feztures are processed

/: acrass all scales and consolidatec to best captare the various spatizl re-

) lationships associated with the body, We show how repeatad bottom-up,
e top-down processing used in conjunction with iatermeadiate supervision
~J is critical to improving the performance of the retwork. We rafer to the

architecture as a “stacked hourglass” network based on the successive
~ stops of pooling and upsampling that are dene to produce a final set of
N precictions. State-ol=the-art results are achieved on the FLIC and MPII
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Fig. 1. Cur network for pose estimaricn consists of multiple stacked hourzlass modules
which allow for repeated bottom-up, top-down inference.

1 Introduction + -+ + -+

A key step toward understanding people in imnges and video is accurate pose
estimation. Given a single RGB image, w2 wish to determine the precise pixel
location of ill||)< rtant kc.')'I)t'illts of the be ul}'. A\('lliv.'\‘il‘_;_', an uml«ﬁr.-‘tmulin;.; of a
person’s posture and limb articulation s useful for higher level tasks like ac-
tion recognition, and also serves as a fandamental tool in fields such as human-
computer interaction and animation.




MegabDepth results

Notre-Dame, Paris Sagrada Familia, Barcelona The Louvre, Paris

ource: http://www.cs.cornell.edu/projects/megadepth/



MegabDepth results

Palace of Fine Arts, San Francisco Big Ben, London Pike Place Market, Seattle

Source: http://www.cs.cornell.edu/projects/megadepth/



3D In the deep learning era

Teacher

What else can we
use as teacher?

SGD
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How else can we collect depth?

Training




“Unsupervised”

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou* Matthew Brown
UC Berkeley Google
Abstract

We present an unsupervised learning framework for the
task of monocular depth and camera motion estimation
Sfrom unstructured video sequences. In common with re-
cent work [ 110, . we use an end-to-end learning ap-
proach with view synthesis as the supervisory signal. In
contrast 1o the previous work, our method is completely un-
supervised, requiring only monocular video sequences for
training. Our method uses single-view depth and multi-
view pose networks, with a loss based on warping nearby
views to the target using the computed depth and pose, The
networks are thus coupled by the loss during training, but
can be applied independently at test time. Empirical eval-
uation on the KITTI dataset demonstrates the effectiveness
of our approach: 1) monocular depth performs comparably
with supervised methods that use either ground-iruth pose
or depth for training, and 2) pose estimation performs fa-
vorably compared to established SLAM systems under com-
parable input settings.

1. Introduction

Humans are remarkably capable of inferring ego-motion
and the 3D structure of a scene even over short timescales.
For instance, in navigating along a street, we can easily
locate obstacles and react quickly to avoid them. Years
of research in geometric computer vision has failed to
recreate similar modeling capabilities for real-world scenes
(e.g.. where non-rigidity, occlusion and lack of texture are
present). So why do humans excel at this task? One hypoth-
esis is that we develop a rich, structural understanding of the
world through our past visual experience that has largely
consisted of moving around and observing vast numbers of
scenes and developing consistent modeling of our observa-
tions. From millions of such observations, we have leamed
about the regularities of the world—roads are flat, buildings
are straight, cars are supported by roads erc., and we can
apply this knowledge when perceiving a new scene, even
from a single monocular image.

*The majority of the work was done while interning at Google.

Noah Snavely David G. Lowe
Google Google

(8) Training: unlabeled video clips,

Target view Depth CNN

(b) Testing: single-view depth and multi-view pose estimation.
Figure 1. The training data to our system consists solely of un-
labeled image sequences capturing scene appearance from differ-
ent viewpoints, where the poses of the images are not provided.
Our training procedure produces two models that operate inde-
pendently, one for single-view depth prediction, and one for multi-
view camera pose estimation.

In this work, we mimic this approach by training a model
that observes sequences of images and aims to explain its
observations by predicting likely camera motion and the
scene structure (as shown in Fig. 1). We take an end-to-
end approach in allowing the model to map directly from
input pixels to an estimate of ego-motion (parametenized as
6-DoF transformation matrices) and the underlying scene
structure (parameterized as per-pixel depth maps under a
reference view). We are particularly inspired by prior work
that has suggested view synthesis as a metric [ /] and recent
work that tackles the calibrated, multi-view 3D case in an
end-to-end framework [177]. Our method is unsupervised,
and can be trained simply using sequences of images with
no manual labeling or even camera motion information.

Our approach builds upon the insight that a geomet-
ric view synthesis system only performs consistently well
when its intermediate predictions of the scene geometry
and the camera poses correspond to the physical ground-

B coov
B Decorw
> Comcad
~» Upsamp + CONCEt
* Predicion

(a) Singbaviow dopth natwaerk

’||
-

(h) Pesalarphinabiliey netware

Figure 4. Metwork archieciur: for our depthvposs/explainability prediztion modules, The width and heigat of each secangular block indi-
cat2s the ostput chanaels and the spatal dimension of the feature map at the correspondiag layer respectwvely, and each reduction'increase
n size indicales a change by the factar of 2. (a) For singlevizw depth, we adopt the DispNet [ -] archilecture with muki-scale side pre-
dictions. The kernel size is 3 for all the layers except for the first 4 corv lyerswith 7. 7. 5. 5, respectively. The number of output channels
‘or the first conv layer is 32. (b) The pose and explainabilty networks shzre the first few conv layers. axd then branch cut to predict 6-DoF
relative pose and multi-scale explainability masks, respectively. The number of output “hannels for the firzt corv layer & 16, and the kemel
size is 3 for all the lavers except for the first tvo conv and the last twe decen/prediction laoyers where we wse 7,5.5, 7, respectively. Sce

Sextion .5 for more details,

ework's belier ir where direct view synihesis will be success-
fully medelec for 2ach target pixel. Based on the predcted E,,
the viaw synthesis pbective is weightad corresponcingly by

Co= Y Y Eppp-LE). @)

<ly,.. Iy>ES p

sirce we do not have direct suparvision for £, traning with the
above loss weuld result in a trivial solution of the retwork always
oredicting £, to be z2rc, which perfectly minimizes the less. To
resolve this, wve add a regulanzation erm €., (F,) that encour-
ages nonzero peedictions by minimizing the cross-entrogy loss
with constant lase! 1 at each pisel lecacion. In otser words, the
wiwork is encourzgel © minimize the view syathesis objeciive,
oul alowed a certan amount of slack for discounting e lactos
w1 considered by the model,

3.4, Overcoming the gradient localily

Onc remaining ssuc with the above lcaming pipeline is that the
sradivnts ae mamly derived fion te piael atensity dilfaesce be-
tweer Iipe) and the mar neighbors of Tip,), ¥hich would inhibit
raning if the corract p, (projected wirg the ground-truth depth
and pase) 15 lecated in a low-t2xmure region or far from the cwmrent
estmation. This it a well known issue in meticn estimation [ 7).
Empitically, we foand two strategios 10 ne affactive far overcorr-
ng this iss30: 1) using 3 convolutional éncodir-decocer architec-
we with a small botdereck for the depil setaark Ut anplicitly
COAstrains the ourput to be globally smeoth and racil taes grad: -
ents 1o propagatz from meaningful regions to nearby regions; 2)

expliat multi-scale and smoothness 1ess (eg., asin [, of) hal
allows gradients to be derived from larger spatial regicns directly.
We adopt the second strategy in this work & it is less sensitive to
architecturzl choices. For samoothness. we minimize the Ly norm
of the secord.arder gradians for the peadictad depth maps (simila
© [1=].

Our fnal cbjective becomes

cflvar - Z Cf.. - '\'Cjnmw;m + Ae z C.._.(E:) ' “h
¢ »

where [ ind2xes over diff2rent imags scakes, s INCexas over source
meges, and A, and A, are the weighting for the depth smoochness
loss and the expliinability regalarization. respectively.

3.5, Network architecture

Single-view depth  For single-view depth prediction, we adopt
the DispNel achitecture proposed in |00 that is msainly based on
an encoder-decoder design with sKip cornections ad multi-scale
side predictions (see Figure ). All conw layers arz followed by
Rel.U activation except for the prediztion lavers, where we use
Jarsigmoid(z)+ 3) witha = 10and 53 = 0.1 to constrain the
pradicted dapth 10 he always positive withn 3 r2asonable range
Wo alio experimentac with using multiple views 38 input to the
depthneiwork, but Jic pot God this w improve the wsalts. This i
in line withthe observations in [+ ], wheme cprical Mlow consrainis
nead o ke enforced to utilize multiple views effectively.

CVPR 2017
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Main idea: supervision by view synthesis

Source: Tinghui Zhou



The allegory of the cave
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System components

Depth estimation

Pose estimation T

View synthesis

In this work, K is assumed to be known!



System components
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Results

Ground-truth Eigen el al. (depth sup.)  Garg el ol. (pose sup.) Ours (unsupervised)
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15. Scene Understanding

« Semantics
e Object detection
e Semantic segmentation
® |nstance segmentation
e Geometry
e 3D in the deep learning era
e Single view depth estimation

e Unsupervised learning of monocular depth cues



