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16. Vision for Embodied Agents

 Formalisms for intelligent agents (environment, state, action, policy)
* Imitation learning

* Reinforcement learning

* Policy gradient method

* ODbject representations for interaction

3D meshes

 Dense descriptors



S0ston

Agent observation raw pixels

[Jaderberg et al., Science 2019]

Dynamics “Stretch”



1he whole purpose of visual perception, In humans,
IS t0 make good motor decisions.

VWe are sensorimotor systems.



Intelligent agents
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Recipe for deep learning in a new domain

1. Transform your data into numbers (e.qg., a vector)

2. Transform your goal into an numerical measure (objective function)

3. #1 and #2 specifty the “learning problem”

4. Use a generic optimizer (SGD) and an appropriate architecture (e.g., CNN or
RNN) to solve the learning problem



How to represent a state”? How to represent policy”?

state: pixels! policy: action classifier
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|_earning from examples

(aka supervised learning)

Training data

{atV) y1}
{2y — Learner | — f: X — Y

{x(i%) | y(S)}

fr= argmmZE Ly )

JFer



Imitation learning

(still just supervised learning, applied to learn policies)

Training data

{s1,0a1}]

{s9,a5} —> Learner | — T .S — Q

{83,0a3}




%

N -

N TN n

P - D

=~ K O D,

S . 5 D

@) - & & & .-

g S dx 2o §5

S = C B g S g5

SHEE T

- = 25 I B8 EC

™ N 0% % BT S A&

|~ o, O 2

O S S

— AN - n C

w3 HO %

n (( C S

S SEN N
I
I

d
d3 ib4d+
Nf3 4C6

j
j
- }

o o

e N R e B ORI W s S
A« BIN Nl Nl N«G B
S« HsE H«@ N Nl 5 W
0wl SE e (< E delel e T
Bl B T3 @ & A0 D[S
oS N0 <l < offs BN W-okd s B Gl <ok
B« B Ks B«l B K N« NN
ms 0 N0 ws B B wms B WG

—— = N——

VA







|_earning without examples

(includes unsupervised learning and reinforcement learning)

Data

{z1}
{«} — Learner | —> ?
{2}




Representation Learning

Data

(2}
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%

L.earner

— Representations



(“Return”)

BeNavIor ..o
“Trajectory”)

Reinforcement learning
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L.earner

Policy

m™T:s —a

T — {Sl,al,SQ,CLQ, o

What’s a good policy”? (what’s the learning objective®)



Reinforcement learning

PE=mN

Observations Actions
Rewards

o )

| earn a policy that takes actions that maximize reward




Imitation learning Reinforcement learning

No training data, have to play around
and collect the data yourself

+ No need for labeled data

+ Can learn things no human knows
how to do

- Less Instructive

- No curriculum

- Have to explore

Hand-curated training data

+ Instructive examples

+ Follows a curriculum

- EXpensive

- Limited to teacher's knowledge

homework
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Reinforcement learning

State, Reward Actions
St+15 Tt (¢

\ Environment ‘/
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Reinforcement learning

Policy

SR N Markov decision process (MDP)
State Actions
St+1 1 a Learnead

\ / Reward 7 ‘ O ‘ O
Action @ ‘&‘«‘&‘&
e S Ta 3

State S ‘

time

A sample from the MPD is called a Trajectory 7 — (SO, aop,To,S1,41,71, .. )



Reinforcement learning

Policy
/ TSt T Gt \ Trajectory T = (SQ,CLQ,TQ,Sl,al,Tl,...)

State, Reward Actions
St+15T¢ A

O
\ Environment / Discounted Returns R(T ) — Z vtT‘t, o~ (O, 1)
t=0

f D Sty At —7 St41

L earn a policy that takes actions that maximize expected reward

XK ~

" =argmaxE, .| R(7)]




Reinforcement learning

lLL.earner

Objective
R(7)
Data
Hypothesis space

7- — These days: deep net — T‘-
Optimizer

Can’t, in general, backprop through env!

/



Environment is not differentiable! — How to optimize”

l[dea #1 (trial and error):

Policy gradients: Run a policy for a while. See what actions led to high rewards.
Increase their probabillity.

raw pixels hidden layer

-
Song V4

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]



Policy gradients: Run a policy for a while. See what actions led to high rewards.
Increase their probabillity.

UP DOWN -® DOWN -® DOWN -® UP »® WIN
DOWN’. UP »® UP »® | OSE
DOWN"DOWN* DOWN* UP ~® | OSE
DOWN». UP »® UP -® WIN

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]



Prediction y Ground truth label y | 0SS

Jo : X — RH H(yaf’):—iykbg?)k
dolphin ||l dolphin =
cat |§ cat
grizzly bear |J grizzly bear
f angel fish ||l angel fish
chameleon ||l (+) chameleon
clown fish || INEGEE clown fish
iguana | iguana
elephant I elephant
0 1 0 1 0



Eventual return

_.p t10points
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Policy output
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Approximated via lots of sampling

l

bolicy output Average return after Expectea
¥ taking each action return
I Up
@ Down — Z —
1 0 +10

VoE r, |R(T)] = Err, |[R(T)Vglog mg| «—— Score function identity



Environment is not differentiable! — How to optimize”

Policy gradients
1. Start with an arbitrary initial policy

2. Rollout this stochastic policy a bunch of times, sampling different random
actions each time

3. Update your policy to place higher probability on actions that led to higher
returns

Mathematically, this approximates gradient ascent on policy parameters, so as
to maximize reward.



Reinforcement learning resources

Sutton & Barto: http://incompleteideas.net/book/lbookdraft2017novd.pdf]
[OpenAl Spinning Up: https://spinningup.openai.com/en/latest/spinningup/rl_intro.ntml]

[Pong from pixels: http://karpathy.github.io/2016/05/31/rl/]



Intelligent agents

AL SN

Observations Actions

N
N
N
[
[ |
n
n
u
|
|
|
u
u
.
.
.
2
| 2
2
*
’0
’0

" \Why vision?



Why vision®

(and audition, touch, etc... why perception?)

The brain’'s model estimation system

[Kanazawa, Tulsiani, et al., ECCV 2018]



Why vision®

(and audition, touch, etc... why perception?)

Universal interface from external world to mental model
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Intelligent agents

Agent

Model/Representation

Observations

———

Controller

N

B

Actions




End-to-end Deep Reinforcement Learning

Actions

fully

connected .
linear

ﬁ

e.g., [Levine, Finn, et al. JIMLR 201 7]

[Slide adapted from Yen-Chen Lin]



Object models for interaction

Meshes

Palazzi et al. ECCV 2018

Pose
(3D bounding box)

Zeng et al. ICRA 2017

Keypoints

D3 ‘
e

(a) D4
Manuelli et al. ISRR 2019

Dense descriptors

Florence et al. CoRL 2018

[Slide adapted from Yen-Chen Lin]



Learning 3D mesh models from photographs

L.earning Category-Specific Mesh Reconstruction
from Image Collections

Angjoo Kanazawa®, Shubham Tulsiani*, Alexei A. Efros, Jitencra Malik

University o California, Berkzley
{kanazawsa, shubhtuls, efros,malik}2eecs.berkeley.edu

Abstract. We present a lzarning framework for recaverirg the 3D shape, cam-
era. and texture o an object from a single image The shape is represented as
@ deformable 3D mesh model o an object category where a shape is param-
etenzed by a learned mean shapz and per-instancz predicted deformation. Our
approach allows leveraging an annotated image collection for training, wkere the
cdeformable model and th2 3D prediction mechanism zre learned without rely-
ing on ground-truth 32D or multi-view supervision. Our representation enables us
10 go beyond exisiing 3D prediction approaches by ncorporating texiure infer-
ence as prediction of an image in a caronical appezrance space. Additionally, we
show that semantic keypoints can be easily associated with the predicted shapes.

49v2 [¢s.CV] 30 Jul 2018

U
! We present gualitative and quantitative results of our approach en CUB and PAS

™~ P i | PP
—_ CALID datasets and show that we can learn o predict diverse shapes and texures
f——

(: 4Cross mjcus uxmk only annotated 1m: ny: collecuions, Thc project website can be
f_‘ found at ! e //akanazawa.github.io/cnr/.
—’
o0
r—

-

rXx

‘
C

Fig. 1: Given ar annotated image collection of an object category, we learn a predictor f that can
map a novel imege [ toits 3D shape, camera pose, and t2xure.

1 Introduction

Consider the image of the bird in Figure I. Even though this flai two-dimensional pic-
ture printed on a page may be the first time we are seeing this particular bird, we can

* The first two authors procrastinated equally on this werk.

0 A. Kanazawa®, S. Tulsiami®, A. A. Efros, J. Malik

Fig. 5: Sample results. We show predictions of our approach on imeges from the test set. For
each inpu: imzge on the left, we visualize (in ordar): the predicted 2D shape and texture viewed
from the predicted camera, and extured shape from three movel viewpoints, See the dl'pt:lldl\
for add tional randomly selected results and video at https://akanazava.github.lo/

rmy !

ECCV, 2018

Angjoo Kanazawa



Object modeling




Analysis by synthesis

FInd a [shape, camera, texture| combination (analysis) that renders to the

image (synthesis). Shape

\\ o N
Camera

)\

Texture




Recall: “Unsupervised” camera motion and monocular depth

Depth CNN

Depth estimation

Project

Pose estimation

View synthesis

Project

Training Loss: [ﬂUS — Z Z ‘It (pt) — 1 (ﬁs)‘

s€{nearby frames} P



Funny looking autoencoder

Find a [shape, camera, texture] combination that renders to the image.

Shape

Nnon-learned renderer

' f Camera
> A

- Texture

-

X

-
——-




Training

Keypoints Segmentation mask

Learn 3D only from 2D image-based annotations
Many images are only seen under a single view point



Approach

Camera

S Encoder

3D Keypoints

Losses:
Predicted, GT
Texture;

Mask:

SfM Camera:

['n =
Keypoints:



Shape Representation

Predicted Learned Mean Shape Deformation
Shape Shape P
— +

e .~ 3D keypoints



lexture Representation
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lexture Representation




lexture Representation




Texture as UV Image Prediction

Texture Flow UV Image
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Texture Transfer
- L —




exture Transfer




Dense object descriptors

Dense Object Nets: Learning Dense Visual
Object Descriptors By and For Robotic Manipulation

Peter R, Florence®, Lucas Manuelli®, Russ Ted rake
CSAITTL., Massachusats Instinne of Technology
{peteflo,manuelli, ruest}lceail .mit.edn
*These authors contributed equedly o this work.

Abstract:

What is the right object representation for manipulation? We would like robots to
visually perceive scenes snd leamn an understanding of the objects in them that (i) is
Lask-denostic and can be used 4s a bullding block for & variety of mampulation tasks, (1)
15 generally applicable to both ngad and non-rigid objects, (i) takes advantage of the
strong priees provided by 3D vision, and (iv) is entirely learned from self-supervisian.
‘This is hard to achicve with previous methods: much recent work in grasping does
not extend o grasping specific objects or other tasks, whervas task-specific Jearning
may require many trials to generalize well across nhject configurations or other tasks.
In this paper we present Dense Object Nets, which build on recent developments in
self-supervised dense descriptor leaming, as a consistent object representation for
visual understanding and manipulation. We demonstrate they can be trained quickly
(appruximately 20 minutes) for a wide vanely of previously unseen and polentially
non-rigid ohjects. We additionally present novel contributions to enahle multi-object
descrptor learning, and show that by modifving our training procedure, we can either
deguire deseriptors which generalize across classes of objects, or deseriptors thal are
distinct for each object instance. Tinally, we demonstrate the novel application of
learned dense descriptors to robouc manipulaton. We demonstrate prasping of specific
points an an ohject across petentially deformed ohject configurations, and demonstrate
using class peneral descriptors to transter specific grasps across objects in a class.

L ucas Manuelli

Keywords: Visual Descriptor Learning, Sell-Supervision, Robut Manipulation

1 Introduction

What is the right ahject representation for manipulation? While task-specific reinforcement leaming con
achieve impressively dexterous skills far a given specific task | 1], it is unclear which is the best route to
efliviently acmeving many ditferent tasks. Other recent work |2, 3] can provide very generdl grasping
functionality but does not address specificity. Achieving specificity, the ability to accomplish specific
tasks with specific objects, may require solving the data asseciation problem. At a coarse level the task of
identitving and manipulating individual objects can be solved by instance segmentation, as demonstrated
in the Amazon Robotics Challenge (ARC) [4, 5] or [6]. Whole-object-level segmentation, however, does
not provide any information on the rich structure of the objects themselves, ind benee may not be an
appropriale representation for salving more complex tusks. While not previously apphlied 1o the obatic
manipulation demain, recent work has demanstmted advances in leaming dense pixel level data association
|7. 8|, including self-supervision from mw RGBD data [8), which inspired our preseat work.

arXi1v:1806.08756v2 [cs.RO] 7 Sep 2018

In this paper, we propase and demaonstrate using dense visual description as a representation for mbatic

manipulation. ' We demonstrate the first autonomous system that can entirely self-supervise w learn
consistent dense visual representations of objects, and ours 1s the first system we know of thal 1s capable of

1 |
'y pixel is a
pertarming the manipulation demonstrations we provide. Specifically, with no human supervision during

training, our system can grasp specific locations on detormable objects, prasp semantically corresponding
locatons on instances m a class, and grasp specific locations on speeific instances in cluller. Towards ea r q e ea u re
this geal, we also provide practical contributions to dense visual descriptor 1earning with general computer

Video and source code avauloble ut htops://youtu.be/LEUNLVapKNE und hstps://github. con/ VeCtOr|
| |

Robetlocenolicn/pylorch-dense-cerrespondence.



(a) Robot-Automated Data Collection (b) 3D Reconstruction based
- Change Detection and
Masked Sampling




Multiview self-supervised
contrastive learning

LLearner
Dat
{ (z?}?\f N Objective
1=l arg ;rnm Z D(f1(g(x224)), fo(h(xt24
)) ; f 2 (h(

Distance tunction g and h are two views of the data x,

e.g., two different camera views



Matching points
(two views of the same
piece of the world)

Non-matching points
(two views of the two
different pieces of the
world)

Learn an embedding
such that matching
points have the same
vector representation
and unmatching have
different vector
representations




Colors capture the intrinsic geometry of the object, invariant to transformations



iforla class-general descrlptor

--1‘

Consistent
representation across
instances



16. Vision for Embodied Agents

 Formalisms for intelligent agents (environment, state, action, policy)
* Imitation learning

* Reinforcement learning

* Policy gradient method

* ODbject representations for interaction

3D meshes

 Dense descriptors



