Lecture 18 Image Synthesis

image **x** label y

image **x** label y

image **x** label y

label y

image **x**

Image synthesis

Image synthesis

label y

image **x**

Image translation

User sketch Photo

Image translation

Google Map

Satellite photo

Image translation

Image synthesis via generative modeling

X is high-dimensional!

Model of high-dimensional structured data $P(\mathbf{X}|\mathbf{Y}=\mathbf{y})$

In vision, this is usually what we are interested in!

What can you do with generative models?

- 1. Image synthesis
- 2. Structured prediction
- 3. Domain mapping
- 4. (Representation learning)
- 5. (Model-based intelligence)

1. Image synthesis

- 2. Structured prediction
- 3. Domain mapping

[Images: https://ganbreeder.app/]

Image synthesis

Procedural graphics

Ayliean @Ayliean · Nov 17

Made up a set of rules and rolled some dice to decide how this plant would grow. I never did get that five of a kind, as expected, but I was still hopeful!

Image synthesis from "noise"

Sampler
$$G: \mathcal{Z} \to \mathcal{X}$$

$$z \sim p(z)$$

x = G(z)

Learning a generative model

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

Learning a density model

Learner

Objective

Hypothesis space

Optimizer

Normalized distribution (some models output unormalized *energy functions*)

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

Case study #1: Fitting a Gaussian to data

fig from [Goodfellow, 2016]

Max likelihood objective

$$\max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}}[\log p_{\theta}(x)]$$

Considering only Gaussian fits

$$p_{\theta}(x) = \mathcal{N}(x; \mu, \sigma)$$
$$\theta = [\mu, \sigma]$$

Closed form optimum:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \quad \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \mu)^2$$

Case study #1: Fitting a Gaussian to data

Learner

Objective $\max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}} [\log p_{\theta}(x)]$

 $\text{Data} \rightarrow \text{Hypothesis space}$

$$p(x) = \mathcal{N}(x; \mu, \sigma)$$

Optimizer

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \quad \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \mu)^2$$

"max likelihood"

$$\begin{array}{c} \longrightarrow \\ \longrightarrow \\ p: \mathcal{X} \to [0, 1] \end{array}$$

Case study #2: learning a deep generative model

Learner

 $Data \rightarrow$

Objective Usually max likelihood

Hypothesis space
Deep net

Optimizer SGD

 $\begin{array}{c} \longrightarrow \\ \longrightarrow \\ p: \mathcal{X} \to [0, 1] \end{array}$

Case study #2: learning a deep generative model

Learner Objective Usually max likelihood Data Hypothesis space Deep net Optimizer SGD

Density $p: \mathcal{X} \rightarrow [0, 1]$ Sampler $G:\mathcal{Z} \to \mathcal{X}$ $z \sim p(z)$ x = G(z)

Models that provide a sampler but no density are called implicit generative models

Deep generative models are distribution transformers

Prior distribution Target distribution p(x)

Deep generative models are distribution transformers

Deep generative models are distribution transformers

Autoencoder —> Generative model

Variational Autoencoders (VAEs)

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Prior distribution

Target distribution

Mixture of Gaussians

$$p_{\theta}(x) = \sum_{i=1}^{k} w_i \mathcal{N}(x; u_i, \Sigma_i)$$

Target distribution

$$p_{\theta}(x)$$

Variational Autoencoders (VAEs)

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Prior distribution

Target distribution

Density model:

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$p(x|z;\theta) \sim \mathcal{N}(x; G_{\theta}^{\mu}(x), G_{\theta}^{\sigma}(x))$$

Sampling:

$$z \sim p(z) \quad \epsilon \sim \mathcal{N}(0, 1)$$

$$x = G^{\mu}_{\theta}(z) + G^{\sigma}_{\theta}(z)\epsilon$$

Variational Autoencoder (VAE)

Learner

Data

Objective
$$\max_{\theta} \mathbb{E}_{x \sim p_{\mathtt{data}}}[\log p_{\theta}(x)]$$

Hypothesis space

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$x = G^{\mu}_{\theta}(z) + G^{\sigma}_{\theta}(z)\epsilon$$

Density
$$p_{\theta}: \mathcal{X} \to [0, 1]$$

Sampler

$$G_{\theta}: \mathcal{Z} \to \mathcal{X}$$

Current model of target distribution

In order to optimize our model, we need to measure the likelihood it assigns to each datapoint x

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$= p(x|z^{(1)})p(z^{(1)})dz +$$

$$p(x|z^{(2)})p(z^{(2)})dz +$$

$$p(x|z^{(3)})p(z^{(3)})dz + \dots$$

Current model of target distribution

In order to optimize our model, we need to measure the likelihood it assigns to each datapoint x

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$= \sim 0+$$

$$\sim 0+$$

$$p(x|z^{(3)})p(z^{(3)})dz + \dots$$

Current model of target distribution

If only we knew z*, we wouldn't need the integral...

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$
$$\approx p(x|z^*;\theta)p(z^*)$$

Current model of target distribution

Technical note: for the continuous math to actually work out, $z^* \sim E(x)$ needs to be a distribution (typically set to Gaussian), but here we (incorrectly) treat it as deterministic for simplicity.

If only we knew z*, we wouldn't need the integral...

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$
$$\approx p(x|z^*;\theta)p(z^*)$$

So, we simply try to predict z* for the given x!

$$z^* = E(x)$$

$$\arg\max_{E} p(x|E(x);\theta)p(E(x))$$

Current model of target distribution

If only we knew z*, we wouldn't need the integral...

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$
$$\approx p(x|z^*;\theta)p(z^*)$$

So, we simply try to predict z* for the given x!

$$z^* = E(x)$$

 $\underset{E}{\operatorname{arg\,min}} \|G(E(x)) - x\|_{2}^{2} + \|E(x)\|_{2}^{2}$

(assuming unit Gaussian prior, isotropic Gaussian likelihood model)

Autoencoder!

$$\underset{G,E}{\operatorname{arg\,min}} \|G(E(x)) - x\|_2^2 + \|E(x)\|_2^2$$

Autoencoder!

$$\underset{G,E}{\operatorname{arg\,min}} \mathbb{E}_{x,\epsilon}[\|G(E(x+\epsilon)) - x\|_2^2 + \|E(x+\epsilon)\|_2^2]$$

Classical Autoencoder

Variational Autoencoder

$$\underset{G,E}{\operatorname{arg\,min}} \mathbb{E}_{x,\epsilon} [\|G(E(x+\epsilon)) - x\|_2^2 + \|E(x+\epsilon)\|_2^2]$$

Variational Autoencoder

All of that math was basically just to make z have a Gaussian distribution, so that we sample random images by inputing random Gaussian noise.

Generative Adversarial Networks (GANs)

G tries to synthesize fake images that fool D

D tries to identify the fakes

$$\arg\max_{D} \mathbb{E}_{\mathbf{z},\mathbf{x}} \left[\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x})) \right]$$

G tries to synthesize fake images that fool D:

$$\underset{G}{\operatorname{arg}} \min_{G} \mathbb{E}_{\mathbf{z},\mathbf{x}} [\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x}))]$$

G tries to synthesize fake images that fool the best D:

$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{z},\mathbf{x}} [\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x}))]$$

Training G

G tries to synthesize fake images that fool D

D tries to identify the fakes

- Training: iterate between training D and G with backprop.
- Global optimum when G reproduces data distribution.

real or fake?

Samples from BigGAN [Brock et al. 2018]

Generative Adversarial Network

Learner

Objective

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{z},\mathbf{x}} \left[\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x})) \right]$$

Hypothesis space Deep nets G and D

Optimizer
Alternating SGD on G and D

Critic

$$D: \mathcal{X} \to [0, 1]$$

Sampler

$$G:\mathcal{Z} \to \mathcal{X}$$

Latent space Data space (Natural image manifold) (Gaussian) [BigGAN, Brock et al. 2018]

Generative models organize the manifold of natural images

VAEs

Pros: Cheap to sample, good coverage

Cons: Blurry samples (in practice)

GANs

Pros: Cheap to sample, fast to train, require little data

Cons: No likelihoods, bad coverage (mode collapse), finicky to train (minimax)

Other deep generative models:

Autoregressive models, Normalizing flows, Energy-based models

- 1. Image synthesis
- 2. Structured prediction
- 3. Domain mapping

Strutured Prediction

Data prediction problems ("structured prediction")

Semantic segmentation

[Long et al. 2015, ...]

Text-to-photo

"this small bird has a pink breast and crown..."

[Reed et al. 2014, ...]

Edge detection

[Xie et al. 2015, ...]

Future frame prediction

[Mathieu et al. 2016, ...]

Structured prediction

X is high-dimensional

Model *joint* distribution of high-dimensional data $P(\mathbf{X}|\mathbf{Y}=\mathbf{y})$

In vision this is usually what we are interested in

Unstructured:
$$\prod_{i} p(X_i | \mathbf{Y} = \mathbf{y})$$

Deep learning in 2012

Use a **hypothesis space** that can model complex structure (e.g., a CNN nearest-neighbor)

Why deep learning

How do data science techniques scale with amount of data?

[Slide credit: Andrew Ng]

[Photo credit: Fredo Durand]

(Colors represent one-hot codes)

$$\arg\min_{\mathcal{F}}\mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathcal{F}(\mathbf{x}),\mathbf{y})]$$
 Objective function Hypothesis space (loss)

Semantic Segmentation

Data

Learner

Objective

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{N} H(\mathbf{y}_i, \hat{\mathbf{y}}_i)$$

Hypothesis space

Convolutional neural net

Optimizer

Stochastic gradient descent

$$\rightarrow$$
 f

Sat2Map

Data

$$\mathbf{x} \in \mathbb{R}^{H \times W \times 3}$$

$$\mathbf{y} \in \mathbb{R}^{H \times W \times 3}$$

Learner

Objective

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{N} (f_{\theta}(\mathbf{x})_i - y_i)^2$$

Hypothesis space

Convolutional neural net

Optimizer

Stochastic gradient descent

$$\rightarrow$$
 f

Input

Deep net output

Structured prediction

Use an objective that can model structure! (e.g., a graphical model, a GAN, etc)

G tries to synthesize fake images that fool D

D tries to identify the fakes

$$\underset{D}{\operatorname{arg\,max}} \ \mathbb{E}_{\mathbf{x},\mathbf{y}} [\ \log D(G(\mathbf{x})) \ + \ \log(1 - D(\mathbf{y})) \]$$

G tries to synthesize fake images that fool D:

$$\underset{G}{\operatorname{arg}} \quad \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

G tries to synthesize fake images that fool the best D:

$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

G's perspective: D is a loss function.

Rather than being hand-designed, it is *learned* and *highly structured*.

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

Training Details: Loss function

Conditional GAN

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

Training Details: Loss function

Conditional GAN

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

Stable training + fast convergence

[c.f. Pathak et al. CVPR 2016]

Data from [maps.google.com]

Input Output Groundtruth

Why deep learning

How do data science techniques scale with amount of data?

[Slide credit: Andrew Ng]

Why structured objectives (cartoon)

Why structured objectives (cartoon)

Input

Unstructured prediction (L1)

Input

Structured Prediction (cGAN)

Training data

 $G(\mathbf{x})$

[HED, Xie & Tu, 2015]

#edges2cats [Chris Hesse]

edges2cats

Ivy Tasi @ivymyt

- 1. Image synthesis
- 2. Structured prediction
- 3. Domain mapping

Domain mapping

[Includes slides from Jun-Yan Zhu, Taesung Park]

[Cartoon: The Computer as a Communication Device, Licklider & Taylor 1968]

Paired data

x_i y_i

Unpaired data

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

No input-output pairs!

$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

Usually loss functions check if output matches a target instance

GAN loss checks if output is part of an admissible set

Nothing to force output to correspond to input

CycleGAN, or there and back aGAN

[Zhu*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

CycleGAN, or there and back aGAN

Cycle Consistency Loss

Cycle Consistency Loss

Paired translation

Objective Training data \hat{y}_i 1 x_i y_i x_i y_i regression error Input Result $|x_i|$

["pix2pix", Isola, Zhu, Zhou, Efros, 2017]

Unpaired translation

["CycleGAN", Zhu*, Park*, Isola, Efros, 2017]

Input

Monet

GANs

Gaussian

Target distribution

CycleGAN

Horses Zebras

What would it look like if...?

What would it look like if...?

[Wolterink et al, 2017]

[Hoffman et al, 2018]