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Image synthesis

emmdl Generator
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Image transiation
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lmage synthesis via generative modeling

X is high-dimensional! ...

Model of high-dimensional structured data P(X|Y =y)

In vision, this Is usually what we are interested in!



What can you do with generative models”
1. Image synthesis
2. Structured prediction

3. Domain mapping



1. Image synthesis

2. Structured prediction

3. Domain mapping

[\aes: http://ganbreeder.app/]

Image synthesis



https://ganbreeder.app/

Procedural graphics

[Anders Schell]



";;P) Ayliean @/yliean - Nov 17
v “} Made up a set of rules and rolled some dice ta decide how this plant
) woult grow. | never did get thal five of a kind, as expected, but | was still
hopeful! 'ag




lmage synthesis from "noise”




|_earning a generative model

[.earner latent variables

Objective

Hypothesis space

Optimizer
Input samples Generated samples

[figs modified from: http://introtodeeplearning.com/materials/2019 65191 | 4.pdf]



http://introtodeeplearning.com/materials/2019_6S191_L4.pdf

| earning a density model

Learner
Density
Objective
o E
Hypothesis space | .
p: X — |0,1]
Optimizer A

Normalized distribution
(some models output unormalized energy functions)

[figs modified from: http://introtodeeplearning.com/materials/2019 65191 L 4.pdf]



http://introtodeeplearning.com/materials/2019_6S191_L4.pdf

Case study #1: Fitting a Gaussian to data

fig from [Goodfellow, 2016]

Max likelihood objective

N

mea’X 4J$diata [log p@ ('CC)]

Considering only Gaussian fits
p9(37) — N(QE, oy U)
0= w0

Closed form optimum:



Case study #1: Fitting a Gaussian to data

Data —

lL.earner

Objective "

N

mea’x <L':13"\deata [log p@ (x)]

Hypothesis space
p(z) = N(x;p,0)

Optimizer

.
o**
.
e®

"'max likelihood”

Density
p: X — |0,1]



Case study #2: learning a deep generative model

L.earner

Objective
Usually max likelihood

Data  — Hypothesis space — p: X — 10,1

Deep net

Density

Optimizer
SGD




Case study #2: learning a deep generative model

Learner
Objective
Usually max likelihood
Data — . —
Hypothesis space Sampler
D t
ER e G:Z X
Optimizer 2~ p(z)
SGD r = G(2)

Models that provide a sampler but no density are called implicit generative models



Deep generative models are distribution transformers

Prior distribution Target distribution




Deep generative models are distribution transformers
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(Gaussian noise Synthesized
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Deep generative models are distribution transformers

(Gaussian noise Synthesized
2~ N(D,1) mage



Autoencoder —> Generative modagel




Variational Autoencoders (VAES)
[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014

Prior distribution Target distribution




Mixture of Gaussians

larget distribution




Variational Autoencoders (VAES)
[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014

Prior distribution larget distribution

g‘ Density model;

/ (2] 0)p(2)d>
p(x|z;0) ~ N(z; Gy (x), Gg (x))

Sampling:
z~p(z) e~N(0,1)
r=GY(2)+Gg(2)e



Variational Autoencoder (VAE)

LLearner
S Density
Objective po : X — [0,1]
Da;ta; — mgx ﬂprdata [lOg Po <$)] %
Sampler
Hypothesis space Gop: Z2 —> X

pe(T) = /p(f\Z; 0)p(z)dz
v = GI(2) + G5 (2)e




Current model of
Prior distribution target distribution

In order to optimize our
model, we need to measure

the likelihood It assigns to
each datapoint x

po(x) = /p(:v\z;é’)p(z)dz

=p(a|"V)p('V)dz+
p(z|z)p(2*))dz+
p(z|zB3N)p(z3Ndz + ...




Current model of
Prior distribution target distribution

In order to optimize our

G " model, we need to measure
N

the likelihood It assigns to

each datapoint x

Q- g
a\f’é."% pe(r) = / p(x|z;0)p(2)dz
S
o o

po(T)




Current model of
Prior distribution target distribution

It only we knew z*, we
wouldn't need the integral...

po () = / p(]2: 0)p(=)dz

~ p(e|z”;0)p(27)

po(T)



Current model of
Prior distribution target distribution

po(T)

Technical note: for the continuous math to actually work out, z* ~ E(X)
needs to be a distribution (typically set to Gaussian), but here we
(incorrectly) treat it as deterministic for simplicity.

It only we knew z*, we
wouldn't need the integral...

po(z) = / p(z]2: 0)p(2)d>
~ pla]=*; O)p(=")

SO, we simply try to predict
z* for the given x!

arggnaxp(le (z); 0)p(E(x))



Current model of
Prior distribution target distribution

po(T)

(assuming unit Gaussian prior, isotropic
Gaussian likelihood model)

It only we knew z*, we
wouldn't need the integral...

po(z) = / p(z]2: 0)p(2)d>
~ pla]=*; O)p(=")

SO, we simply try to predict
z* for the given x!

- argmin |G(B(x)) — x5 + || E(z)[3

E



Autoencoder!

arg min ||G(E(z)) - z)l; + || E(x)|13



Autoencoder!

argminE, [[|G(E(x + €)) — 2[5 + || E(z + €)||3]

G.E



Classical Autoencoder

arg min B, [[|G(E(x)) — x|/

G.E



Variational Autoencoder

argminE, [[|G(E(x + €)) — 2[5 + || E(z + €)||3]

G, E



Variational Autoencoder

All of that math was basically
just to make z have a
Gaussian distribution, so
that we sample random
Images by inputing random
(Gaussian noise.




Generative Adversarial Networks (GANS)

(Gaussian noise Synthesized
2~ N(@,1) mage



e G(z) D

Z ADDH— J ﬂﬂﬂ— real or fake”?

(Generator Discriminator

G tries to synthesize fake images that fool D

D tries to identity the takes

|Goodfellow et al., 2014]
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argmax By [ | 108 D(G(z)) | + [log (1 = D))
D

|Goodfellow et al., 2014]




real or fake”

G tries to synthesize fake images that fool D:

ar Czx| log D(G(z)) + log(1—D(x)) |

|Goodfellow et al., 2014]




G G2) D
/4 —I}DH— = 2 ﬂﬂﬂ— real or fake”

G tries to synthesize fake images that fool the best D:

arg x| log D(G(z)) + log(1—D(x)) |

|Goodfellow et al., 2014]




Training
D

ﬂﬂﬂ— real or fake?

G tries to synthesize fake images that fool D

D tries to identify the fakes

e Jraining: iterate between training D and G with backprop.

e Global optimum when G reproduces data distribution.

|Goodfellow et al., 2014]



Samples from BigGAN

[Brock et al. 2018]




GGenerative Adversarial Network

LLearner
Objective Critic
argménmgx 2z x| log D(G(z)) log (1 —D(x)) | D:Xx —[0,1]
Data — —

Hypothesis space Sampler

Deep nets G and D - Z 5 X
Optimizer

Alternating SGD on G and D




Latent space Data space
(Gaussian) (Natural image manifold)

X

Z

[BIgGAN, Brock et al. 2018]




Generative models organize the manifold of natural images

latent space Image space
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VAEs
Pros: Cheap to sample, good coverage

Cons: Blurry samples (in practice)

GANs
Pros: Cheap to sample, fast to train, require little data

Cons: No likelihoods, bad coverage (mode collapse), finicky to train (minimax)

Other deep generative models:

Autoregressive models, Normalizing flows, Energy-based models

[adapted from slide by

David

Duvenaud]
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Data prediction problems (“structured prediction”)

Semantic segmentation

- ‘

‘ection

[Lg t al. 2015, ...]

Text-to-photo

“this small bird has a pink
—
breast and crown...”

[Reed et al. 2014, ...] [Mathieu et al. 2016, ...}




Structured prediction

X is high-dimensional ...

Model joint distribution of high-dimensional data P(X|Y =y)

In vision this Is usually what we are interested In

Unstructured: HP(XAY =y)



Deep learning In 2012

Use a hypothesis space that can model complex structure
(e.g., a CNN, nearest-neighbor)

L.earner

Objective
Data — | seeseessasnasnnsnnns B N f

Optimizer




Why deep learning

Deep learning

Performance

Amount of data

How do data science techniques scale with amount of data?
[Slide credit: Andrew Ng]



[Photo credit: Fredo Durand] (Colors represent one-hot codes)

~

alg, IIlJ}_Il 44x,y [L<‘F(X)7 Y)]
/ Objective function
Hypothesis space (loss)




yH X W x3

yH X W X K

Semantic Segmentation

L.earner

Objective

N
f* = arg min Z H(yi, yi)
fer

Hypothesis space

Convolutional neural net

Optimizer
Stochastic gradient descent




HxW x3
HxW x3

Sat2Map

LLearner
Ob jective

_argmlnz f9 _yz
Hypothesis space

Convolutional neural net

Optimizer
Stochastic gradient descent




INnput Deep net output




Structured prediction

Use an objective that can model structure! (e.g., a graphical model, a GAN, etc)

L.earner

Data —s | e N f
Hypothesis space

Optimizer
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> real or fake?

Discriminator

G tries to synthesize fake images that fool D

D tries to identity the takes



arg max
D

> fake (0.9)




> real or fake?

G tries to synthesize fake images that fool D:

ar ixy| log D(G(x)) + log(l—D(y)) |




> real or fake?

G tries to synthesize fake images that fool the best D:

arg xyl log D(G(x)) + log(l —D(y)) |




>|  LosSs Function
¢'1 D

G’s perspective: D is a loss function.

Rather than being hand-designeaq, it Is /learned and
highly structured.



il > real or fake?

arg mci¥n max x.y| log D(G(x)) + log(l— D(y)) |



il > real!

arg mci¥n max x.y| log D(G(x)) + log(l— D(y)) |



1t > real or fake pair”?

arg min max {‘,X,y[ log D(G(X)) + lOg(l — D(y)) ]

G D



il > real or take pair

arg min max
G D
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> real or fake pair”?




Training Details: Loss function

Conditional GAN

G* = arg mén max Loaan(G, D)+ ALr1(G).



Training Details: Loss function

Conditional GAN

G* = arg mgn max L.aan(G, D)+ ALr1(G).

~ G

Stable training + fast convergence
[c.f. Pathak et al. CVPR 2016]



Groundtruth

]

Input
ale.com

Qoo

Data from
maps.



http://maps.google.com

Qutput Groundtruth

Input

]

Mmaps.google.com

Data from |


http://maps.google.com

Why deep learning

Deep learning

Performance

Amount of data

How do data science techniques scale with amount of data?
[Slide credit: Andrew Ng]



Performance

Why structured objectives

(cartoon)

Deep learning

Older learning algorithms

Amount of data



Performance

Why structured objectives

(cartoon)

DL w/ structured objective
(e.g., GANs, generative models)

DL w/ unstructured objective
(e.qg., least-squares regression)

//—>

Older learning algorithms

—>
Amount of data



Input Unstructured prediction (L1)




Input Structured Prediction (CGAN)

| p | by 'I 1 ‘l(..l : L‘-“ - |
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Training data

[HED, Xie & Tu, 2015]




#edges2cats |Chris Hesse]

INPUT OUTPUT




edgesZcats
TOOL INPUT OUTPUT

m clear random




OUTPUT

PIX2PIX

process

vy Tasi @ivymyt

g :. .
A
1)
’ »

Vitaly Vidmirov @vvid




1. Image synthesis

N Q
2. Structured prediction “\ ~

3. Domain mapping
k

Domain mapping

[Includes slides from Jun-Yan Zhu, Taesung Park

[Cartoon: The Computer as a Communication Device, Licklider & Taylor 1968



Unpalired data

Palred data
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. D

% real or fake pair

argminmax Ex y| log D(x,G(x)) + log(1 — D(x,y)) |

G D




real or fake pair

arg m&nmgx x.y| log D(x,G(x)) 4+ log(l — D(x,y

NO Input-output pairs!



real or fake”

arg min max {',X,y[ log D(G(X)) + lOg(l — D(y)) ]

G D

Usually loss functions check if output matches a target instance

GAN loss checks it output is part of an admissible set






Nothing to force output to correspond to input



CycleGAN, or there and back aGAN

[Zhu*, Park™ et al. 2017], [Yi et al. 2017], [Kim et al. 2017]



CycleGAN, or there and back aGAN




Cycle Consistency Loss

reconstruction | ...
error




Cycle Consistency Loss

Gx)

F(G(x
..

e

o
reconstruction |,,..
" Q@

CIror

G(F())
R o 4 :,a:

reconstruction

CITror



Paired translation Unpaired translation

Training data Objective Training data Objective
X =z Y
‘ N\
\ / \ / ‘
X Y cycle-consistency error
Input Input Result
Li Li Yi

3 - Y vorR e
" » - - 4
Rl - AL

[“pix2pix”, Isola, Zhu, Zhou, Efros, 2017] ["CycleGAN”, Zhu*, Park*, Isola, Efros, 2017}













GANSs

(Gaussian Target distribution




CycleGAN

Horses /ebras




What would 1t look like If...?




What would 1t look like If...?

Sim
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[Hoffman et al, 2018]



