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Identical local evidence...

-




...different interpretations




Information must propagate over
the image.

Local
information... ...must propagate

Probabilistic graphical models are a powerful tool for propagating
information within an image. And these tools are used everywhere
within computer vision now.



http://www.cvpapers.com/cvpr2014.html

From a random sample of 6
papers from CVPR 2014, halt

had figures that look like this...


http://www.cvpapers.com/cvpr2014.html
http://www.cvpapers.com/cvpr2014.html

Partial Optimality by Pruning for MAP-inference with General
Graphical Models, Swoboda et al

Figure 1. An exemplary graph con-
taining inside nodes (yellow with
crosshatch pattern) and boundary
nodes (green with diagonal pat-
tern). The blue dashed line en-
closes the set A. Boundary edges
are those crossed by the dashed line.

http://hci.awr.uni-heidelberg.de/Staff/bsavchyn/papers/swoboda-
GraphicalModelsPersistency-with-Supplement-cvpr2014.pdf
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Active flattening of curved document images via two
structured beams, Meng et al.
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Figure 5. The directed graph G for computing the correspondence
function. (a) discretization of the £ — s plane, (b) the constructed graph. All
the vertices of the graph locate in a parallelogram. The slops of its edges
are a and b, respectively.

file:///Users/billf/Downloads/dewarp high.pdf 9



A Mixture of Manhattan Frames: Beyond the Manhattan

World, Straub

et al
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Figure 3: Graphical model for a mixture of K’ MFs.

http://www.jstraub.de/download/straub2014mmf.pdf

10


http://www.jstraub.de/download/straub2014mmf.pdf
http://www.jstraub.de/download/straub2014mmf.pdf

MRF nodes as patches

image patches




Super-resolution

* Image: low resolution 1image
* Scene: high resolution 1image

ultimate goal...

Scene




Pixel-based images
are not resolution
independent

Pixel replication

Cubic spline,
sharpened

Training-based

Polygon-based super-resolution
graphics

1mages are

resolution

independent

13



3 approaches to perceptual

sharpening W
(1) Sharpening; boost existing high N

fl’e quenCle S. spatial frequency

amplitude

(2) Use multiple frames to obtain
higher sampling rate in a still framef%H

(3) Estimate high frequencies not
present 1n 1mage, although implicitly
defined.

In this talk, we focus on (3), which \ \

spatial frequency

we’ll call “super-resolution”. y

amplitude




Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.

o
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Low-resolution

Do a first interpolation
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Zoomed low-resolution Full frequency origin;l.

Low-resolution
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Representation

Zoomed low-freq.

Full freq. original
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Representation

Zoomed low-freq.

Full freq. original

. True high freqs

Low-band input \ & q

(contrast normalized, (to minimize the complexity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the inpud $mage,

and normalize the local contrast level).



Gather ~100,000 patches

E B B B N highfregs.
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raining data samples (magnified)

T
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Nearest neighbor estimate

Input low fregs.

° L Nt Age

» ‘e *

Estimated high fregs.

Training data samples (magnified)



Nearest neighbor estimate

Training data samples

~

magnified)



Example: mput image patch, and closest
matches from database

Input patch 5

#: ﬁange [-2 67 2.88]
Dims [7

L]
‘ 1osest 1| I lage v que [-ma 228] #10: nanga[-1 99 266] #1: Hangal-l sz 195 w2 mal-zm 241] 13 nmp[-zza 322) w4 nam;el-l 4 312] ws: mng. [-239 295] #16: Ranoa[-zns 131]
Dims

patches from database ‘ 1T 5 = =

"7 Ranqo [-203 1.82] #18: Hm [-l 87 3.14) =9 Hanoel-z 15 19] #20: Range l-246 226) #21: W[-Z% 225]) #22: ﬁange [-213 1.98] #23: Me [-2 |7 2.13) #24: RW [-1 B, 2.36]
Dims 7. Dims Dims [7, .71

mﬂwel|072$l #25: WI-SEIQB] 27 Rmoe[ﬁﬂ? 343 mawe(-an:m 29 Rmoe[*ﬂﬂﬁl ¥0: Mw[“SSN] a1 nmg:(sm 589) 402 Mw[4m‘5|!

high-resolution
T =l . M
patches from database : : :. s -

w53 nmgnna 439 mnmp(—ma 68| aesmg.[n 645 mnange(sw 585 #7 nange(zsa 308 436: Fenge [-523,3.32) #29: ane 324, 241] 440: Fange [-292,252)
s B, 5] s 5, 3] s 5, 5]

Corresponding
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Image patch

Underlying candidate
scene patches. Each
renders to the image
patch.
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Scene-scene compatibility function,
n [
F(x;, x)) o —
Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

. —\|d; —d; |? /202
\I!(xi,:cj) — exXp i—d; 1%/

Uniqueness constraint,

not smoothness. 5



Image-scene compatibility Ey

function, O(x, y.) |
-

Assume Gaussian noise takes you from A
observed 1mage patch to synthetic sample:

B (w;,y;) = exp Vi@ /207
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Markov network




B ellef Prop a g ation After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. 0

Iter. 1




Zooming 2 octaves

i : - We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204



Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

(cubic spline implies
thin plate prior)

Original
50x58

True
200x232
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(cubic spline implies
thin plate prior)

Original
50x58

True

Cubic spline 200x232
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Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58

True
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The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58

Markov

True
network
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Next, train on a world of vertically
oriented rectangles.

Original
50x58




The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original
50x58

Markov

True
network
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Now train on a generic collection of
images.

Original
50x58




The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.

Original
50x58

Markov
network



Generic training 1mages

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
a random collection of
photographs.
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Original
70x70

Markov

net,
training:
generic

True
280x280




Kodak Imagmg Science Technology Lab test.

3 test images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.

by ;. 140 : ~,~‘
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Algorithms compared

* Bicubic Interpolation

e Mitra's Directional Filter
* Fuzzy Logic Filter
*Vector Quantization

* VISTA
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Bicubic spline Altamira
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User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”
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Supar-resoiution zoom
—

Source image patches

Bandpass filterad and
contrast nomalized

Trua tagh rasclution pooals

High resclution pixels chossn
by super-rasolution

Bandpass fitered and conirast
mormahzed best match palches
fraem traming daia

Hest match patchas from
training data



Training 1mage

ANl ISl LU Srniiesog . o o
anelvacatedarul ingbythetes
Jztem, andsent i tdowntoanew
Finedastandardforweighing
=raproduct-bundl ingdeci=si
zottzaysthatthenewteature:
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Processed image




code available online

http://people.csail.mit.edu/billf/project%20pages/sresCode/
Markov%20Random%20Fields%20for%20Super-Resolution.html

ﬁ N Markov Random Fields fw&nper-kesollﬂon (

§t Visited ~ Getting Started  Latest Headlines & Google Apple Yahoo! YouTube Wikipedia News ~ Popular~ Google Maps
Markov Random Fields for Sup... 01’ MIT Human Resources | MITE.. €3 | MIT Payroll - Electronic Form ... @ ]

Markov Random Fields for Super-Resolution

l William T. Freeman | Ce Liu
[Massachusens Institute of Technology I Microsoft Research New England

[Download the package]

This is an implementation of the example-based super-resolution algorithm of [1]. Although the applications of MSFs have now extended beyond example-based super resolution and texture synthesis, it is still
of great value to revisit this problem, especially to share the source code and examplar images with the research community. We hope that this software package can help to understand Markov random ficlds
for low-level vision, and to create benchmark for super-resolution algorithms.

When you refer to this code in your paper, please cite the following book chapter:

W. T Freeman and C. Liu. Markov Random Fields for Super-resolution and Texture Synthesis. In A. Blake, P. Kohli, and C. Rother, eds., Advances in Markov Random Fields for Vision and Image
Processing, Chapter 10. MIT Press, 2011. To appear.

Algorithm

The core of the algorithm is based on [1]. We collect pairs of low-res and high-res image patches from a set of images as training. An input low-res image is decomposed to overlapping patches on a grid, and
the inference problem is to find the high-res patches from the training database for each low-res patch. We use the kd-tree algorithm, which has been used for real-time texture synthesis [2], to retrieve a set of
high-res, k-nearest neighbors for cach low-res patch. Lastly, we run a max-product belief propagation (BP) algorithm to minimize an objective function that balances both local compatibility and spatial
smoothenss.

Examples

Several examples of applying the example-based super resolution code in the package are shown below. These examplar images are also included in the package. Once you run the code, it should give you the
same result.

We first apply bicubic sampling to enlarge the input image (2) by a factor of 4 (b), where image details are missing. If we use the nearest neighbor for each low-res patch independently, we obtain high-res but
noisy results in (¢). To address this issue, we incorporating spatial smoothness into a Markov Random Ficlds formulation by enforcing the synthesized neighboring patches to agree on the overlapped arcas.
Max-product belief propagation is used to obtain high-res images in (d). The inferred high-frequency images are shown in (¢), and the original high-res are shown in (f).

- —
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