Lecture 2 Image formation

6.869/6.819 Advances in Computer Vision

|||;;

Spring 2021 Bill Freeman and Phillip Isola

Imaging

- Forming images with pinholes and straws:
 - Perspective projection and orthographic projection.
- Forming images with lenses

 Lens maker's formula
- More general imaging devices

 Inversion formulas

The structure of ambient light

Why is there no picture appearing on the paper?

Let's check, do we get an image?

Let's check, do we get an image? No

To make an image, we need to have only a subset of all the rays strike the sensor or surface

The camera obscura The pinhole camera

Let's try putting different occluders in between the object and the sensing plane

light on wall past pinhole

grocery bag pinhole camera

grocery bag pinhole camera

grocery bag pinhole camera

view from outside the bag

view from inside the bag

http://www.youtube.com/watch?v=FZyCFxsyx8o

http://youtu.be/-rhZaAM3F44

me, with GoPro

Pinhole camera

Photograph by Abelardo Morell, 1991

Line in 3-space

Perspective projection of that line

$$x(t) = x_0 + at \qquad x'(t) = \frac{fx}{z} = \frac{f(x_0 + at)}{z_0 + ct}$$

$$y(t) = y_0 + bt \qquad y'(t) = \frac{fy}{z} = \frac{f(y_0 + bt)}{z_0 + ct}$$

In the limit as $t \rightarrow \pm \infty$ we have (for $c \neq 0$):

This tells us that any set of parallel lines (same a, b, c parameters) project to the same point (called the vanishing point).

Vanishing points

- Each set of parallel lines (=direction) meets at a different point
 - The vanishing point for this direction
- Sets of parallel lines on the same plane lead to *collinear* vanishing points.
 - The line is called the horizon for that plane

http://www.ider.herts.ac.uk/school/courseware/ graphics/two_point_perspective.html

What if you photograph a brick wall head-on?

All bricks have same z_0 . Those in same row have same y_0

Thus, a brick wall, photographed head-on, gets rendered as set of parallel lines in the image plane.

Straw camera

(b)

(a)

Straw camera

Other projection models: Orthographic projection

Other projection models: Weak perspective

• Issue

- perspective effects, but not over the scale of individual objects
- collect points into a group at about the same depth, then divide each point by the depth of its group
- Adv: easy
- Disadv: only approximate

 $(X,Y,Z) \rightarrow \left(\frac{fx}{z_0},\frac{fy}{z_0}\right)$

Three camera projections

3-d point 2-d image position (1) Perspective: $(X,Y,Z) \rightarrow \left(\frac{fx}{z}, \frac{fy}{z}\right)$ (2) Weak perspective: $(X,Y,Z) \rightarrow \left(\frac{fx}{z_0}, \frac{fy}{z_0}\right)$

(3) Orthographic: $(X,Y,Z) \rightarrow (x,y)$

which is perspective, which orthographic?

Perspective projection

Parallel (orthographic) projection

A problem: pinhole camera images are dark, or require long exposures

Large aperture gives a brighter image, but at the price of sharpness

A lens allows a large aperture and a sharp image

Let's try putting different occluders in between the scene and the sensor plane

Influence of aperture size: with a small aperture, the image is sharp, but dim. A large aperture gives a bright, but blurry image.

A lens can focus light from one point in the world to one point on the sensor plane.

Images through large aperture, with and without lens present

Images through large aperture, with and without lens present

(a)

(b)

Light at a material interface

Snell's law, for small angles

 $n_1 \sin(\alpha_1) = n_2 \sin(\alpha_2)$

For small angles,

$$n_1 \alpha_1 = n_2 \alpha$$

Modern camera lens systems are designed by computer, using commercial programs such as Zemax. (Max was the name of the original programmer's dog, but was taken as a trademarked name, so they went with Zemax)

But let's design a very simple lens by hand...

OpticStudio[®]

eGuide

High-Yield Optimization

Streamlining the path to more easily manufacturable designs

what shape should we make a thin lens so that it will focus light? C θ_4 θ_1 a b

with angles distorted for labeling clarity

Lensmaker's equation

For thin lenses, both parabolic and spherical shapes satisfy that constraint. For a spherical lens surface, curving according to a radius R, we have $\sin(\theta_S) = \frac{c}{R}$. For small angles θ_S , this reduces to

$$\theta_S = \frac{c}{R},\tag{4.11}$$

where R is the radius of the sphere, which has the desired property that $\theta_S \propto c$. Substituting Eq. (4.11) into the focusing condition, Eq. (4.10) yields the Lensmaker's Formula,

$$\theta_{S} = \frac{c}{2(n-1)} (\frac{1}{a} + \frac{1}{b}) \qquad \frac{1}{R} = \frac{2}{n-1} (\frac{1}{a} + \frac{1}{b}) \qquad \frac{1}{a} + \frac{1}{b} = \frac{1}{f},$$
(4.12)
from previous slide combine with 4.11

where the lens focal length, f is

$$f = \frac{R}{2(n-1)}$$
(4.13)

Note: (1) off-axis rays are focussed, too, and (2) rays from infinity focus at a distance f

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

Lens demonstration

- Verify:
 - Focusing property
 - Lens maker's equation (f = ...)
 - The relationship between distances in the world and distances in the sensor plane

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

lens focal length: 20cm

lens to laser pointer center of rotation = 23.5 inches = 59.7 cm

lens to wall = 12.5 inches = 31.7 cm

1/59.7 + 1/31.7 = 1/20.7

Lens Demonstration

more general cameras

Photometric properties of general imagers

$$\vec{y} = A\vec{x} \tag{1.9}$$

For the case of conventional cameras, where the observed intensities, \vec{y} are an image of the reflected intensities in the scene, \vec{x} , then A is approximately an identity matrix.

For more general cameras, A may be very different from an identity matrix, and we will need to estimate \vec{x} from \vec{y} . In the presence of noise, there may not be a solution \vec{x} that exactly satisfies Eq. (1.9), so we often seek to satisfy it in a least squares sense. In most cases, A is either not invertable, or is poorly conditioned. It is often useful to introduce a regularizer, an additional term in the objective function to be minimized. If the regularization term favors small \vec{x} , then the objective term to minimize, E, could be

$$E = |\vec{y} - A\vec{x}|^2 + \lambda |\vec{x}|^2$$
(1.10)

Photometric properties of general imagers

Setting the derivative of Eq. (1.10) with respect to the elements of the vector \vec{x} equal to zero, we have

$$0 = \nabla_x |\vec{y} - A\vec{x}|^2 + \nabla_x \lambda |\vec{x}|^2 \qquad (1.11)$$

$$= A^{T}A\vec{x} - A^{T}\vec{y} + \lambda\vec{x}$$
(1.12)

(1.13)

or

$$\vec{x} = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^T \vec{y}$$
(1.14)

system matrix, A, for pinhole imager

Figure 1.8

(a) Schematic drawing of a small-hole 1-d pinhole camera.(b) Visualization of imaging matrices: The imaging matrix relating scene intensities to sensor readings; the inverse of that matrix; the regularized inverse. For the small-pinhole imager, all three matrices are approximately identity matrices.

system matrix, A, for large aperture pinhole imager

Figure 1.9

(a) Large-hole 1-d pinhole camera. (b) Visualization of imaging matrices: The imaging matrix relating scene intensities to sensor readings; the inverse of that matrix; the regularized inverse. For the small-pinhole imager, all three matrices are approximately identity matrices.

system matrix, A, for an edge

Another occlusion-based camera: edge camera

Corner Camera 1-D Image Computation

Rectified Image

Images you multiply the rectified ground plane images by to recover the input image around the corner (projected to 1d), for each different angle.

Experiment Proof of Concept

Experimental Proof of Concept

Experimental Proof of Concept

Experimental Proof of Concept

Video Corresponding to 1-D Camera

1-D Corner Camera Output

- How many people?
- Where slowed down, where moved quickly?

time

angle

1-D Corner Camera Output

- How many people?
- How fast is each person moving?

space time
Additional Results

Paper ID: 1983

Summary

- Pinhole camera models the geometry of perspective projection
- Lenses gather light and form images
- We designed a lens
 - Thin lens, spherical surfaces, first order optics
- Cameras as general linear systems.
 - specified by transfer matrix relating illumination in world to recorded data.
 - example: corner cameras