Lecture 22

How to write papers and give talks.
Outline

• writing technical papers

• giving technical talks
A paper’s impact on your career

Effect on your career

Paper quality

- Bad
- Ok
- Pretty good
- Creative, original and good.

Lots of impact

nothing
Our image of the research community

- Scholars, plenty of time on their hands, pouring over your manuscript.
The reality: more like a large, crowded marketplace

http://ducksflytogether.wordpress.com/2008/08/02/looking-back-khan-el-khalili/
(1) Start by stating which problem you are addressing, keeping the audience in mind. They must care about it, which means that sometimes you must tell them why they should care about the problem.

(2) Then state briefly what the other solutions are to the problem, and why they aren't satisfactory. If they were satisfactory, you wouldn't need to do the work.

(3) Then explain your own solution, compare it with other solutions, and say why it's better.

(4) At the end, talk about related work where similar techniques and experiments have been used, but applied to a different problem.

Since I developed this formula, it seems that all the papers I've written have been accepted. (told informally, in conversation, 1990).
Example paper organization: removing camera shake from a single photograph

1 Introduction
2 Related work
3 Image model
4 Algorithm
 Estimating the blur kernel
 Multi-scale approach
 User supervision
 Image reconstruction
5 Experiments
 Small blurs
 Large blurs
 Images with significant saturation
6 Discussion

Abstract

Camera shake during exposure leads to objectionable image blur and ruins many photographs. Conventional blind deconvolution methods typically assume frequency-domain constraints on images, or overly simplified parametric forms for the motion path during camera shake. Real camera motions can follow convoluted paths, and a spatial domain prior can better maintain visually salient image characteristics. We introduce a method to remove the effects of camera shake from seriously blurred images. The method assumes a uniform camera blur over the image and negligible in-plane camera rotation. In order to estimate the blur from the camera shake, the user must specify an image region without saturation effects. We show results for a variety of digital photographs taken from depth-of-field. A tripod, or other specialized hardware can mitigate camera shake, but these are bulky and most photographs are taken with a conventional, handheld camera. Manual retouching may avoid the use of flash due to the unnatural too-slow result. In our experience, many of the otherwise favorite images of amateur photographers are spoiled by camera shake; we show how to remove motion blur from a captured photograph. This is an important asset for digital photography.

Camera shake can be modeled as a blur kernel, describing motion during exposure, convolved with the image. Removing the unknown camera shake is thus a form of deconvolution, which is a problem with a long history in image and signal processing literature. The most basic case of the problem is underconstrained: there are simply not
The introduction

1 Introduction
2 Related work
3 --Main idea--
4 Algorithm
 Estimating the blur kernel
 Multi-scale approach
 User supervision
 Image reconstruction
5 Experiments
 Small blurs
 Large blurs
 Images with significant saturation
6 Discussion
Jim Kajiya: write a dynamite introduction

You must make your paper easy to read. You've got to make it easy for anyone to tell what your paper is about, what problem it solves, why the problem is interesting, what is really new in your paper (and what isn't), why it's so neat. And you must do it up front. In other words, you must write a dynamite introduction.
Underutilized technique: explain the main idea with a simple, toy example.

1 Introduction
2 Related work
3 Main idea
4 Algorithm
 Estimating the blur kernel
 Multi-scale approach
 User supervision
 Image reconstruction
5 Experiments
 Small blurs
 Large blurs
 Images with significant saturation
6 Discussion

Often useful here.
Show simple toy examples to let people get the main idea

From
"Shiftable multiscale transforms"

Fig. 1. Effect of translation on the wavelet representation of a signal. (a) Input signal, which is equal to one of the wavelet basis functions. (b)–(d) Decomposition of the signal into three wavelet subbands. Plotted are the coefficients of each subband. Dots correspond to zero-value coefficients. (e) Same input signal, translated one sample to the right. (f)–(h) Decomposition of the shifted signal into three wavelet subbands. Note the drastic change in the coefficients of the transform, both within and between subbands.
Experimental results are critical now at CVPR

1 Introduction
2 Related work
3 Image model
4 Algorithm
 Estimating the blur kernel
 Multi-scale approach
 User supervision
5 Experiments
 Small blurs
 Large blurs
 Images with significant saturation
6 Discussion

<table>
<thead>
<tr>
<th>Methods</th>
<th>Dataset</th>
<th>two-view?</th>
<th>si-full</th>
<th>si-env</th>
<th>si-hum</th>
<th>si-intra</th>
<th>si-inter</th>
<th>RMSE</th>
<th>Rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell et al. [31]</td>
<td>-</td>
<td>Yes</td>
<td>2.146</td>
<td>2.021</td>
<td>2.207</td>
<td>2.206</td>
<td>2.093</td>
<td>2.520</td>
<td>0.772</td>
</tr>
<tr>
<td>DeMoN [59]</td>
<td>RGD+MVS</td>
<td>Yes</td>
<td>0.338</td>
<td>0.302</td>
<td>0.360</td>
<td>0.293</td>
<td>0.384</td>
<td>0.866</td>
<td>0.220</td>
</tr>
<tr>
<td>Chen et al. [3]</td>
<td>NYU+DiW</td>
<td>No</td>
<td>0.441</td>
<td>0.398</td>
<td>0.458</td>
<td>0.408</td>
<td>0.470</td>
<td>1.004</td>
<td>0.262</td>
</tr>
<tr>
<td>Laina et al. [17]</td>
<td>NYU</td>
<td>No</td>
<td>0.358</td>
<td>0.356</td>
<td>0.349</td>
<td>0.270</td>
<td>0.377</td>
<td>0.947</td>
<td>0.223</td>
</tr>
<tr>
<td>Xu et al. [46]</td>
<td>NYU</td>
<td>No</td>
<td>0.427</td>
<td>0.419</td>
<td>0.411</td>
<td>0.302</td>
<td>0.451</td>
<td>1.085</td>
<td>0.274</td>
</tr>
<tr>
<td>Fu et al. [7]</td>
<td>NYU</td>
<td>No</td>
<td>0.351</td>
<td>0.357</td>
<td>0.334</td>
<td>0.257</td>
<td>0.360</td>
<td>0.925</td>
<td>0.194</td>
</tr>
</tbody>
</table>

I	MC	No	0.318	0.334	0.294	0.227	0.319	0.840	0.204
$IFCM$	MC	No	0.316	0.330	0.302	0.228	0.323	0.843	0.206
$ID_w M$	MC	Yes	0.246	0.225	0.260	0.233	0.273	0.635	0.136
$ID_w MC$ (w/o d. cleaning)	MC	Yes	0.272	0.238	0.293	0.258	0.262	0.688	0.147
$ID_w CM$	MC	Yes	0.232	0.203	0.253	0.234	0.262	0.570	0.129
$ID_w CMK$	MC	Yes	0.221	0.195	0.230	0.215	0.247	0.541	0.125

Table 2. Results on TUM RGBD datasets. Different si-RMSE metrics as well as standard RMSE and relative error (Rel) are reported. We evaluate our models (light gray background) under different input configurations, as described in Table 1. w/o d. cleaning indicates the model is trained using raw MVS depth predictions as supervision, without our depth cleaning method. Dataset ‘-’ indicates the method is not learning based. Lower is better for all error metrics.

Gone are the days of, “We think this is a great idea and we expect it will be very useful in computer vision. See how it works on this meaningless, contrived problem?”
How to end a paper

1 Introduction
2 Related work
3 Image model
4 Algorithm
 Estimating the blur kernel
 Multi-scale approach
 User supervision
 Image reconstruction
5 Experiments
 Small blurs
 Large blurs
 Images with significant saturation
6 Discussion
Conclusions, or what this opens up, or how this can change how we approach computer vision problems.
How not to end a paper

I can’t stand “future work” sections. It’s hard to think of a weaker way to end a paper.

“Here’s a list of all the ideas we wanted to do but couldn’t get to work in time for the conference submission deadline. We didn’t do any of the following things: (1)…”

(You get no “partial credit” from reviewers and readers for neat things you wanted to do, but didn’t.)

“Here’s a list of good ideas that you should now go and do before we get a chance.”

Better to end with a conclusion or a summary, or you can say in general terms where the work may lead.
General writing tips
Knuth: keep the reader upper-most in your mind.

Perhaps the most important principle of good writing is to keep the reader uppermost in mind: What does the reader know so far? What does the reader expect next and why?
Treat the reader as you would a guest in your house

Anticipate their needs: would you like something to drink? Something to eat? Perhaps now, after eating, you’d like to rest?
13. **Omit needless words.**

Vigorous writing is concise. A sentence should contain no unnecessary words, a paragraph no unnecessary sentences, for the same reason that a drawing should have no unnecessary lines and a machine no unnecessary parts. This requires not that the writer make all his sentences short, or that he avoid all detail and treat his subjects only in outline, but that every word tell.

Many expressions in common use violate this principle:

<table>
<thead>
<tr>
<th>the question as to whether</th>
<th>whether (the question whether)</th>
</tr>
</thead>
<tbody>
<tr>
<td>there is no doubt but that</td>
<td>no doubt (doubtless)</td>
</tr>
<tr>
<td>used for fuel purposes</td>
<td>used for fuel</td>
</tr>
<tr>
<td>he is a man who</td>
<td>he</td>
</tr>
<tr>
<td>in a hasty manner</td>
<td>hastily</td>
</tr>
<tr>
<td>this is a subject which</td>
<td>this subject</td>
</tr>
<tr>
<td>His story is a strange one.</td>
<td>His story is strange.</td>
</tr>
</tbody>
</table>
The underlying assumption of this work is that the estimate of a given node will only depend on nodes within a patch: this is a locality assumption imposed at the patch-level. This assumption can be justified in case of skin images since a pixel in one corner of the image is likely to have small effect on a different pixel far away from itself. Therefore, we can crop the image into smaller windows, as shown in Figure 5, and compute the inverse J matrix of the cropped window. Since the cropped window is much smaller than the input image, the inversion of J matrix is computationally cheaper. Since we are inferring on blocks of image patches (i.e. ignoring pixels outside of the cropped window), the interpolated image will have blocky artifacts. Therefore, only part of xMAP is used to interpolate the image, as shown in Figure 5.

We assume local influence—that nodes only depend on other nodes within a patch. This condition often holds for skin images, which have few long edges or structures. We crop the image into small windows, as shown in Fig. 5, and compute the inverse J matrix of each small window. This is much faster than computing the inverse J matrix for the input image. To avoid artifacts from the block processing, only the center region of xMAP is used in the final image, as shown in Fig. 5.

This editing benefits you twice: (1) you have 50% more space to tell your story, and (2) the text is easier for the reader to understand.
The readership of your paper

The “read every word” readers are your most important ones. But you should make the paper “work” for all the other readers, too.
SPECIAL ISSUE ON WAVELET TRANSFORMS AND MULTiresolution SIGNAL ANALYSIS

Introduction to the Special Issue .. 120

PAPERS

Theory andimplementation of Wavelet and Multidimensional Transforms
Neversatble Multidimensional Perfect Reconstruction Bases and Wavelet for \mathbb{R}^n 133
Multiresolution Analysis, Hart Box, and Self-Similar Tilings of $\mathbb{R^n}$ 156
Fast Algorithms for Discrete and Continuous Wavelet Transforms 169
Shift-and Multiscale Transforms ... 287
Noise Reduction in Tight Wavelet Frames 408

Time-Frequency and Event Localization
Singularity Detection and Processing with Wavelets ... 417
An applying Wavelet and Gabor Analysis: Extraction of Instantaneous Frequencies . 444

Performance Analysis of Tapered Detection Based on a Class of Linear Data
Transforms ... 665
A Generalized Wavelet Transform for Fourier Analysis: The Multiresolution Fourier
Transform and Its Application to Image and Audio Signal Analysis 674
Locality Measurement of Emergent Image Frequencies by Gabor Wavelets 491

Compressibility and Efficient Representation
Entropy-based Algorithms for Best Basis Selection ... 713
Image Compression Through Wavelet Transform Coding 719
On the Optimal Choice of a Wavelet for Signal Representation 747

Multiresolution Stochastic and Fractal Models
Modeling and Estimation of Multiresolution Stochastic Processes 766
Wavelet-based Represenations of a Class of Self-Similar Signals with Application to
Fractal Modulation .. 785
A Method of Sines for Multiresolution Spectrum Estimation and Radar Imaging 803
A Level-Combing Based Scaled-Dimensionality Transform Applied to Stationary
Gaussian Processes .. 814

Application to Wavelet Transforms
Auditory Representations of Acoustic Signals ... 834
Two Applications of Wavelet Transforms in Magnetic Resonance Imaging 840
Our title

• Was:
 – Shiftable Multiscale Transforms.

• Should have been:
 – What’s Wrong with Wavelets?
Figures and captions

It should be easy to read the paper in a big hurry and still learn the main points. Probably most of your readers will be skimming the paper.

The figures and captions can help tell the story.

So the figure captions should be self-contained and the caption should tell the reader what to notice about the figure.

Figure 3: (a) Time-frame assignments for the front-most surface pixels, based on stereo depth measurements alone, without MRF processing. Grey level indicates the time-frame assignment at each pixel. (b) Shape-time image based on those assignments. (c) Most probable time-frame assignments, computed by MRF. (d) Resulting shape-time image. Note that the belief propagation in the MRF has removed spurious frame assignment changes.
13. Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by “blah” or some other grunting noise.
Rule 2 (Good Samaritan rule). A Good Samaritan is compassionate and helpful to one in distress, and there is nothing more distressing than having to hunt your way back in a manuscript in search of Eq. (2.47) not because your subsequent progress requires you to inspect it in detail, but merely to find out what it is about so you may know the principles that go into the construction of Eq. (7.38). The Good Samaritan rule says: When referring to an equation identify it by a phrase as well as a number. No compassionate and helpful person would herald the arrival of Eq. (7.38) by saying “inserting (2.47) and (3.51) into (5.13) . . .” when it is possible to say “inserting the form (2.47) of the electric field \mathbf{E} and the Lindhard form (3.51) of the dielectric function ε into the constitutive equation (5.13) . . .”
Tone: be kind and gracious

Efros’s comments within our texture synthesis paper about competing methods.

A number of papers to be published this year, all developed independently, are closely related to our work. The idea of texture transfer based on variations of [6] has been proposed by several authors [9, 1, 11] (in particular, see the elegant paper by Hertzmann et.al. [11] in these proceedings). Liang et.al. [13] propose a real-time patch-based texture synthesis method very similar to ours. The reader is urged to review these works for a more complete picture of the field.

Written from a position of security, not competition
Develop a reputation for being clear and reliable
(and for doing creative, good work…)

• There are perceived pressures to over-sell, hide drawbacks, and disparage others’ work. Don’t succumb. (That’s in both your long and short-term interests).

• “because the author was Fleet, I knew I could trust the results.” [a conference chair discussing some of the reasons behind a best paper prize selection].
Be honest, scrupulously honest

Convey the right impression of performance.

MAP estimation of deblurring. We didn’t know why it didn’t work, but we reported that it didn’t work. Now we think we know why. Others have gone through contortions to show why they worked.
Author list

- My rule of thumb: All that matters is how good the paper is. If more authors make the paper better, add more authors. If someone feels they should be an author, and you trust them and you’re on the fence, add them.
- It’s much better to be one of many authors on a great paper than to be one of just a few authors on a mediocre paper.
- The benefit of a paper to you is a very non-linear function of its quality:
 - A mediocre paper is worth nothing.
 - Only really good papers are worth anything.
From an area chair’s point of view, the two types of borderline papers...
Quick and easy reasons to reject a paper

With the task of rejecting at least 75% of the submissions, area chairs are groping for reasons to reject a paper. Here’s a summary of reasons that are commonly used:

- Do the authors not deliver what they promise?
- Are important references missing (and therefore one suspects the authors not up on the state-of-the-art for this problem)?
- Are the results too incremental (too similar to previous work)?
- Are the results believable (too different than previous work)?
- Is the paper poorly written?
- Are there mistakes or incorrect statements?
Sources on writing technical papers

• Three sins of authors in computer science and math, Jonathan Shewchuck, http://www.cs.cmu.edu/~jrs/sins.html

Outline

• writing technical papers

• giving technical talks
How to give talks

• Giving good talks is important for a researcher.

• You might think, “the work itself is what really counts. Giving the talk is secondary”.

• But the ability to give a good talk is like having a big serve in tennis—by itself, it doesn’t win the game for you. But it sure helps. And the very best tennis players all have great serves.

• Researchers as little corporations (see http://people.csail.mit.edu/billf/publications/How_To_Do_Research.pdf).
Sources on giving talks

Patrick Winston’s annual IAP talk on how to give talks: https://vimeo.com/101543862

Books on speaking.

Suggestions from your advisor or helpful audience members.

Analyzing good talks that others give.
High order bit: prepare

- Practice by yourself.
- Give practice versions to your friends.
- Think through your talk.
- You can write out verbatim what you want to say in the difficult parts.
- Ahead of time, visit where you’ll be giving the talk and identify any issues that may come up.
- Preparation is a great cure for nervousness.
David Jacob’s bad news

The more you work on a talk, the better it gets: if you work on it for 3 hours, the talk you give will be better than if you had only worked on it for 2 hours. If you work on it for 5 hours, it will be better still. 7 hours, better yet…

(told to me by David on a beach in Greece, a few hours before my oral presentation at ICCV. That motivated me to leave the beach and go back to my room to work more on my talk, which paid off).
A tip to not be nervous that I found useful

• Get over it. They’re not there to see you, they’re there to hear the information. Just convey the information to them.
The different kinds of talks you’ll have to give as a researcher

• 2-5 minute talks
• Longer talks (10 - 20 minute conference presentations, or 30-60 minute colloquia)
Recommendation

• For your five-minute talks, write down:
 – what problem did you address?
 – why is it interesting?
 – why is it hard?
 – what was the key to your approach?
 – how well did it work?
The different kinds of talks you’ll have to give as a researcher

• 2-5 minute talks

• Longer talks (10 -20 minute conference presentations, or 30-60 minute colloquia)
Figure out how one part follows from another

Ahead of time, think through how each part motivates the next, and point that out during the talk. If one part doesn’t motivate the next, consider re-ordering the talk until it has that feel.
Your audience

• Your image of your audience:
 – Paying attention, listening to every word

• Your audience in reality:
 – Tired, hungry, not wanting to sit through yet another talk at the conference…
Layering the talk. When we read a paper, headings and sections help us follow the paper. You should provide the verbal equivalents of headings to the listener.

The probability of an observation has three terms to it. Blah blah

So that gives us the objective function we want to optimize. Now, how do we find the optimal value? There are two approaches you can take. Blah blah

So now, with these tools in hand, we can apply this methods to real images. Blah blah
You tell the story at several different levels of detail

The main idea

Then come up for air, summarize, and say what this leads to next,

Then dive into lots of details describing what you’ve done,

Then more details or equations fleshing that next part out,
Ways to engage the audience

• So you’ve been talking on and on. You want to break things up and keep the audience engaged. Can you think of a way to bring the audience into the talk?

• Demos can also help.

• Or add audience participation components to the talk. For human or computer vision talks, you can often present to the audience what the task is that the human or computer has to solve.

• The audience loves to figures things out, to solve puzzles, to make guesses. Feed those desires.
“people like to see a good fight”

The flat earth theory predicts that ships will appear on the horizon as small versions of the complete ship. Under that theory, you’d expect approaching ships to look like this:
Present a fight

Whereas the **round earth theory** predicts that the top of the sails will appear first, then gradually the rest of the ship below it.
Add dynamics to the talk

- A talk is a story. As in a story, there can be different levels of excitement or tension in different parts of the talk. This makes it easier for the audience to pay attention to what you’re saying. Perhaps move to another location.

- I like to find some part of the work that really grabs me, that I’m really excited about, and let that show through. (The audience loves to see you be excited. Not all the time, but when appropriate). “I love this problem; it’s beautifully underdetermined. There are lots of different ways we can explain the observed blurry image. It could be that that’s what was there in the world, and we took a sharp picture of it....”
Multiple possible solutions

Blurry image = Sharp image \times Blur kernel

=

=
What I think the audience of a technical talk wants

To have everything follow and make sense
To learn something
To connect with the speaker, to share their excitement.
They want to watch you love something!

Alan Alda: https://www.youtube.com/watch?v=j4XgjkXDxss, and others
Let the audience see your personality

• They want to see you enjoy yourself.
• They want to see what you love about the work.
• People really respond to the human parts of a talk. Those parts help the audience with their difficult task of listening to an hour-long talk on a technical subject. What was easy, what was fun, what was hard about the work?
• Don’t be afraid to be yourself and to be quirky.
How to end a talk

- People often say “are there any questions?” but then people don’t know whether to applaud or to raise their hand.
- If you say “thank you”, then everyone knows that they’re supposed to applaud now. After that is over, then you can ask for questions.