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3. Imaging Geometry

* Applications

o Stereo and how it works

» Homogeneous coordinates for clean description of the geometry
* |ntrinsic and extrinsic camera parameters

 Homographies for image stitching, for image rectification, etc.

 Ransac for fitting parameterized models such as homographies.



Relevant readings

— Relationship between coordinates in the world and
coordinates 1n the 1mage: geometric camera
calibration, see Szeliski, section 5.2, 5.3.

— (Relationship between intensities in the world and
intensities 1n the 1mage: photometric image formation,
see Szeliski, sect. 2.2.)

— (Class notes.



Multiple View
Geometry

In computer vision
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Richard Hartley and Andrew Zisserman




Devices for depth measurement

Depth map
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Lidar commonly used with self-driving cars.



Applications Gaming

1995 demo




Applications

3D reconstruction [ FUEIEgselas

fOr Vi rtual Presented by Erie Multimedia
: : Pennsylvania Craftsman Home
navigation




Applications

Autonomous driving
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Applications

Augmented reality




Applications

Augmented reality
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Vision systems

Two cameras N cameras

One camera
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L et’s consider two eyes

Two cameras N cameras
One camera




Stereo images of lunar rocks from Apollo 11

-Scan Of Transparent Images From Earth To The Moon's Apollo 11 Stereo Slide

NASA Processed Images For Photo ID AS11-45-6712

This artifact is a stereo slide of a pair of images taken during the Apollo 11 EVA using the Apollo Lunar Surface
Close-Up Camera (ALSCC). This 35 mm camera provides stereo close up images of the surface of the moon.
Each image captured an area of 3 by 3 inches with a resolution of approximately 80 microns. The camera is

sometimes referred to as "the Gold camera” in honor of its inventor, British Astronomer Thomas "Tommy" Gold.

These close up images showed detail that could not be seen by the astronauts or by other photographs brought
back from the Moon. These special photographs gave geologists a unique insight into the geological processes
that shaped the lunar surface.

http://www.earthtothemoon.com/ap_11_Stereo_slide.html https://www.hq.nasa.gov/alsj/a11/A



Stereoscope

e

Brewster-type stereoscope, 1870 Qé More details

B Alessandro Nassiri - Museo della Scienza e della Tecnologia "Leonardo da Vinci" @ CC BY-SA 4.0

Visore stereoscopico portatile di tipo Brewster, J. Fleury - Hermagis, 1870, con messa a fuoco manuale. B File: IGB 006055 Visore stereoscopico portatile
Per la visione di lastre e stampe stereoscopiche 8,5x17cm. Museo nazionale della scienza e della Museo scienza e tecnologia Milano.jpg
tecnologia Leonardo da Vinci, Milano. © Created: 1 July 2014

View of Boston, c. 1860; an early stereoscopic card for viewing a scene from nature @ More details

Bl Soule, John P., 1827-1904 -- Photographer - This image is available from the New York Public Library's Digital ® Public Domain

Library under the digital ID G90F336_113F: digitalgallery.nypl.org — digitalcollections.nypl.org guglejoizagei gg??t;l(\)ﬂ: I:IB jﬁgston SEINCE, 5]
© Created: Coverage: 1860?-1890?. Source

Imprint: 18607-18907. Digital item published
7-28-2005; updated 4-23-2009.




Depth without objects
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Random dot stereograms (Bela Julesz

FIGURE 8.13

, 1971
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Geometry for a simple stereo system




Geometry for a simple stereo system
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Geometry for a simple stereo system

Similar triangles




Geometry for a simple stereo system

Similar triangles




Geometry for a simple stereo system

P4
? Similar triangles:

T+Xr-X_
Z-f




Geometry for a simple stereo system

Similar triangles:

T+Xg-X_ T

Z-f Z




Geometry for a simple stereo system

Similar triangles:

T+Xg-X_ T

Z-f Z

Solving for Z:

T

Z=f X, - Xa

Disparity J



Measuring disparity

Left image Right image

| took one picture, then | moved ~1m to the right and took a second picture.



Measuring disparity

<

Left image Right image
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Disparity map

1(X,y) '(x,y) = 1(x+D(x,y), y) D(x,y)

-




FINnding correspondences

We only need to search for matches along horizontal lines.



Computing disparity




A COMBINED CORNER AND EDGE DETECTOR

Chris Harris & Mike Stephens

Plessey Research Roke Manor, United Kingdom
© The Plessey Company plc. 1988

Consistency of image edge filtering is of prime importance

for 3D interpretation of image sequences using feature
tracking algorithms. To cater for image regions containing
texture and isolated features, a combined corner and edge
detector based on the local auto-correlation function is
utilised, and it is shown to perform with good consistency
on natural imagery.

INTRODUCTION

The problem we are addressing in Alvey Project MMI149
is that of using computer vision to understand the
unconstrained 3D world, in which the viewed scenes will
in general contain too wide a diversity of objects for top-
down recognition techniques to work. For example, we
desire to obtain an understanding of natural scenes,
containing roads, buildings, trees, bushes, etc., as typified
by the two frames from a sequence illustrated in Figure 1.
The solution to this problem that we are pursuing is to
use a computer vision system based upon motion analysis
of a monocular image sequence from a mobile camera. By
extraction and tracking of image features, representations
of the 3D analogues of these features can be constructed.

To enable explicit tracking of image features to be
performed, the image features must be discrete, and not
form a continuum like texture, or edge pixels (edgels). For
this reason, our earlier work! has concentrated on the
extraction and tracking of feature-points or corners, since

they are discrete, reliable and mcaningfulz. However, the
lack of connectivity of feature-points is a major limitation
in our obtaining higher level descriptions, such as surfaces
and objects. We need the richer information that is
available from edges3.

THE EDGE TRACKING PROBLEM

Matching between edge images on a pixel-by-pixel basis
works for stereo, because of the known epi-polar camera
geometry. However for the motion problem, where the
camera motion is unknown, the aperture problem prevents
us from undertaking explicit edgel matching. This could be
overcome by solving for the motion beforehand, but we
are still faced with the task of tracking each individual edge
pixel and estimating its 3D location from, for example,
Kalman Filtering. This approach is unattractive in
comparison with assembling the edgels into edge
segments, and tracking these segments as the features.

Now, the unconstrained imagery we shall be considering
will contain both curved edges and texture of various
scales. Representing edges as a set of straight line
fragments#, and using these as our discrete features will be
inappropriate, since curved lines and texture edges can be
expected to fragment differently on each image of the
sequence, and so be untrackable. Because of ill-
conditioning, the use of parametrised curves (eg. circular
arcs) cannot be expected to provide the solution, especially
with real imagery.

Figure 1. Pair of images from an outdoor sequence.

AVC 1988 doi:10.5244/C.223

Total citations Cited by 16332

Harris corner detector
Harris & Stephens, 1988
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SIFT descriptor
David Lowe, 1999
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Object Recognition from Local Scale-Invariant Features

David G. Lowe

Computer Science Department
University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada
lowe@cs.ubc.ca

Abstract

An object recognition system has been developed that uses a
new class of local image features. The features are invariant
to image scaling, translation, and rotation, and partially in-
variant to illumination changes and affine or 3D projection.
These features share similar properties with neurons in in-
ferior temporal cortex that are used for object recognition
in primate vision. Features are efficiently detected through
a staged filtering approach that identifies stable points in
scale space. Image keys are created that allow for local ge-
ometric deformations by representing blurred image gradi-
ents in multiple orientation planes and at multiple scales.
The keys are used as input to a nearest-neighbor indexing
method that identifies candidate object matches. Final veri-
fication of each match is achieved by finding a low-residual
least-squares solution for the unknown model parameters.
Experimental results show that robust object recognition
can be achieved in cluttered partially-occluded images with
a computation time of under 2 seconds.

1. Introduction

Object recognition in cluttered real-world scenes requires
local image features that are unaffected by nearby clutter or
partial occlusion. The features must be at least partially in-
variant to illumination, 3D projective transforms, and com-
mon object variations. On the other hand, the features must
also be sufficiently distinctive to identify specific objects
among many alternatives. The difficulty of the object recog-
nition problem is due in large part to the lack of success in
finding such image features. However, recent research on
the use of dense local features (e.g., Schmid & Mohr [19])
has shown that efficient recognition can often be achieved
by using local image descriptors sampled at a large number
of repeatable locations.

This paper presents a new method for image feature gen-
eration called the Scale Invariant Feature Transform (SIFT).
This approach transforms an image into a large collection
of local feature vectors, each of which is invariant to image

Proc. of the International Conference on
Computer Vision, Corfu (Sept. 1999)

Cited by 51933

translation, scaling, and rotation, and partially invariant to
illumination changes and affine or 3D projection. Previous
approaches to local feature generation lacked invariance to
scale and were more sensitive to projective distortion and
illumination change. The SIFT features share a number of
properties in common with the responses of neurons in infe-
rior temporal (IT) cortex in primate vision. This paper also
describes improved approaches to indexing and model ver-
ification.

The scale-invariant features are efficiently identified by
using a staged filtering approach. The first stage identifies
key locations in scale space by looking for locations that
are maxima or minima of a difference-of-Gaussian function.
Each point is used to generate a feature vector that describes
the local image region sampled relative to its scale-space co-
ordinate frame. The features achieve partial invariance to
local variations, such as affine or 3D projections, by blur-
ring image gradient locations. This approach is based on a
model of the behavior of complex cells in the cerebral cor-
tex of mammalian vision. The resulting feature vectors are
called SIFT keys. In the current implementation, each im-
age generates on the order of 1000 SIFT keys, a process that
requires less than 1 second of computation time.

The SIFT keys derived from an image are used in a
nearest-neighbour approach to indexing to identify candi-
date object models. Collections of keys that agree on a po-
tential model pose are first identified through a Hough trans-
form hash table, and then through a least-squares fit to a final
estimate of model parameters. When at least 3 keys agree
on the model parameters with low residual, there is strong
evidence for the presence of the object. Since there may be
dozens of SIFT keys in the image of a typical object, it is
possible to have substantial levels of occlusion in the image
and yet retain high levels of reliability.

The current object models are represented as 2D loca-
tions of SIFT keys that can undergo affine projection. Suf-
ficient variation in feature location is allowed to recognize
perspective projection of planar shapes at up to a 60 degree
rotation away from the camera or to allow up to a 20 degree
rotation of a 3D object.

--llllullllll
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Finding correspondences

1. Detect features using

SIFT [Lowe, I[JCV 2004]




Finding correspondences (SIFT

1) detect keypoints 2) extract SIFT
at each keypoint
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Image gradients Keypoint descriptor

points = detectHarrisFeatures(img);




Finding correspondences (SIFT




Finding correspondences

2. Match features between
each pair of images




Finding correspondences

3. Refine matching using - M W
RANSAC between pairs™ | "




Stereo correspondence constraints

Camera 1 Camera 2

O @ .O’

If we see a point in camera 1, are there any constraints on where we
will find it on camera 27



Epipolar constraint




World and camera coordinate systems

g“ Camera plane

Y

World reference system

Desired applications:
—reconstruct shape from 2 or more camera views;
—align multi-shot image panoramas.

The understanding you want in order to support
those applications: how does world geometry

relate to pixel positions in a particular camera at a
particular position and orientation?
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Homogeneous coordinates
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Homogeneous coordinates
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Homogeneous coordinates

From heterogeneous to homogeneous:

X a
(z,y) = |y |=|ay
1

d

From homogeneous to heterogeneous:

-
y | = (z/w,y/w)
W




2D Transformations
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2D Transformations

y

Translation




2D Transformations

Translation

Heterogeneous
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2D Transformations

Translation
Heterogeneous
X X t,
= +
y y ty
I __
r =ax + 1
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Homogeneous to heterogeneous
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2D Transformations

Translation

Heterogeneous
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2D Transformations

y

Translation




2D Transformations

y

Translation




2D Transformations

vl

Translation
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Now we can chain transformations

X 1 0 r, 1 0 t X
y! — O 1 ry . O 1 ty - y
1 0 0 1 0O 0 1 1

x' = RTx



2D Transformations

y

Rotation

<\9 (rotation centered on the origin)

. X'




2D Transformations

y

Rotation

<\9 (rotation centered on the origin)

- XV




2D Transformations

y

Rotation

(rotation centered on the origin)

X ? ? ? X
y’ = ? ? ? Yy
2 ? ? 1



2D Transformations

y

Rotation

<\9 (rotation centered on the origin)

- XV

X cos® -sin® 0 X

y’ sin® cos®# 0 "y
1 0 0 1 1



2D Transformaticns

X’ 1 0 f{
y =0 1 t - y
1 O 0 1 1
a
--i-@ - -
X cosO -sin6 0 X
y B sin® cos 0 0 Y

1 0 0 1 1



2D Transformaticns

X’ 1 0 f X’
y =0 114 -y y =0 s 0 'y
"
--i-@ - -
X cosO -sin6 0 X
y 3 sin® cos 6 0 Y

1 0 0 1 1



2D Transformations

X! 1 0 tx X X’ Sy 0 0 X
y, =0 1 ¢t - y y, =0 s O y
O 0 1
1 1 1 o o 1 |
<\6
o . -
X’ cosf -sin® 0 X
y — . y y - ay 1 O y
y sin® cos 6 0) 1
1 0O 0 1

1 0 0 1 1



2D Transformations

X T 0 % sx 0 O 1 ax O cosO -sinf 0 A
y = 0 1.4 0 sy O a, 1 0 sin® cos® O -
1 601 0 0 1 0 0 1 0 0 1 1
e
J’.A / Y projective —
similarity
translation
P 4 \
Eucli 1‘7
uclidean
ﬂe >
N X

Euclidean = rotation and translation

Similarity = rotation, translation and uniform scaling (s« = sy)

Affine = rotation, translation, shearing and uniform scaling (s« = s,)



2D Transformations

X’ T 0 ¥ sx 0 O 1T ax O cos® -sin® 0 X
Y’ = 0 1 t° 0 s, O . a, 1 0 | sinf cosO O - Y
1 0 0 1 0 0 1 0 0 1 0 0 1 1

Affine = rotation, translation, shearing and uniform scaling (sx = s,)

X’ d b C X
y! - d e f y
1 0 0 1 1

Properties:

* 0 degrees of freedom
« Parallel lines remain parallel




Homogeneous coordinates
2D 3D

— N 8

L
(z,y) = {y] (2,9, 2) =
1

y | = (z/w,y/w) = (z/w,y/w, z/w)

S Ne 8




Perspective projection

Y

(0,0,0) .
World coordinates
S
x= fX/Z
Heterogeneous coordinates
y= fY/Z
A

Image coordinates



Perspective projection

Heterogeneous coordinates Homogeneous coordinates
World coordinates
X
x= fX/Z 2
y Y
y= fY/Z
W Z
1

image coordinates




Perspective projection

Heterogeneous coordinates Homogeneous coordinates

World coordinates

x= fX/”Z
y= fY/Z

image coordinates




Perspective projection

Heterogeneous coordinates Homogeneous coordinates

World coordinates

i /% X 1 0 0 o0 X
= y = 0 1 0 0.y
y=1YIZ W 0 0 1 0 7

1

image coordinates




Perspective projection

Heterogeneous coordinates Homogeneous coordinates
World coordinates
B X 1 0 0 o0 X X
x= fX/Z N - 001 0 0.va= Y
y=1tY/2Z W 0 0 1f 0 Z 7/
image coordinates 1




Perspective projection

Heterogeneous coordinates Homogeneous coordinates
World coordinates
_ . X 1 0 0 o0 X X
x= fX/Z N - 001 0 0.va= Y
y=1tY/2Z W 0 0 1f 0 Z 7/
image coordinates 1

Going back to heterogeneous coordinates:

X

Y (fX/Z fYIZ)
Z/f




Perspective projection

X
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Orthographic (parallel) projection

X D T e —
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Orthographic (parallel) projection
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Camera parameters

(X, V) 2D image
2
3D world

(X, Y, Z)

.I/

? ? ? ?



Camera parameters

AY Let’s start by placing the origin of the
world coordinate system at the
aperture of the pinhole camera

Sensor ”
\ i
. I Z . *

For the pinhole camera:

X

0 f 0 0. VY = — (f XIZ, T1Y/Z)
/
1



Camera parameters

Sensor /’”

o 2

X a 0 0 0 X ax
y = 0 a 0 0-Y = gy — (aX/Z,aY/Z)
W 0 0 1 0 7 >

1



Camera parameters

Sensor /’”

iIf pixels are rectangular

X

0 b 0 0- Y = py — (aX/Z,bY/Z)
Z
1



Camera parameters

World coordinates What if the camera origin is not at the world coordinates origin?

57 / Z Yo
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Camera coordinates



Camera parameters

World coordinates

Camera coordinates

In heterogeneous coordinates:

Pc=Py - T



Camera parameters

World coordinates

Camera coordinates

In heterogeneous coordinates:

Pc=R(Pw -T)



Camera parameters

World coordinates

In homogeneous coordinates:
[3x3]

Xe
Ye
Ze
1

[3x1]

-RT

[1x3]  [1x1]

Camera coordinates



Camera parameters
Yw

World coordinates Y
C
4.ZW

1. World coordinates to camera coordinates

X, Xw

v R RT Y, 2. Camera coordinates to image coordinates (square pixels)
7. Z. a 0 0 0 X,

1 0 1 1

s < X
I
o
Q
o
o
O_<



Camera parameters
Y

= = =
X > N ~
SN I o
SN I o
SN I o

Q- Q- -

X > =



Camera parameters

Yw
Xw
/ ZW
[3x4] [4x4]
. a 0 0 \0 X,
R -RT
y = 0 a 0 Y,
W 0 0 1 [0
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Xw
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Camera parameters

[3x3] [3x3] [3x4]
X a 0 O Xw
y = 0 a 0 R | -T Y.y
W 0 0 1 Zy
\ )| } 1

Y
Intrinsic parameters Extrinsic parameters



Making image panoramas

Example: two plctures taken by rotatlng the camera:




Mapping one camera into another

Image coordinates, camera 1
(X1!y1

)
Image coordinates, camera 2 \
(XZaYZ)@ ./

./

(X1,¥1) >/\ - (X2,Y2)

In general, we can not find a transformation from x1 to x2. It requires knowing
the 3D coordinates of each corresponding point.

(The general mapping has to depend on 3D shape, otherwise we would learn
no information from the 2nd image of a stereo cameral)



Mapping one camera into another

Image coordinates, camera 1

(X1,¥1)
Image coordinates, camera 2@
(X2’y2)

M

’
.,

(X1,¥1) - (X2,Y2)

Homography



Mlapping one camera into another

Image coordinates, camera 1
(X1 Y1)

Image coordinates, camera 2
(X2,Y2)

(X1,¥1) - (X2,Y2)

Homography




Homography
What happens if we allow 9 degrees of freedom?

)

X

|
O Q
- @D O

y!
W
(note that only 8 DOF are relevant here)

The homography allow mapping one camera into another when:’
* scene is planar
* both cameras only differ by a rotation (no translation)



Homography

Example two plctures taken by rotatlng the camera:




Homography

Example two plctures taken by rotatlng the camera:




Homography

X1’ a b c X1
y/ = d e f - vy,

(note that only 8 DOF are relevant here)



a b c X
yi = d e f Y1
Wi g h | 1
Going to heterogeneous coordinates:
ax4 + by +c
X1,= ,
gx1 + hy,+i
dX1 + ey, +f
1= gx4 + hy +I

Re-arranging the terms:
gx4X'1 + hy x'1+ixs = ax; + by +c

gx1y'1 + hyy'1+ix, = dxq + ey +f



Homography

gx4X'1 + hy x'1+ixs = ax; + by +c

gx1y'1 + hyy'1+ix, = dxq + ey +f

Re-arranging the terms:

In matrix form

gx¢X'q + hyX'1+iX4 - axqy - by;-c =0

gXq1Y'1 + hysy'q+ixs - dxq -eys-f=0

—-X1 -Y1 -10 0 O X1X,1 y1X,1 X4

0 0 0 -xq -y; -1 x4X4 y1X4 X

—

—_—

0 Q ™TDO QO TO

!oo\




Homography

With multiple corresponding points:

|
|

X1 Y1 -1 0 0 0 XXy yiXq Xq sh_ 8

O 0 O -X1 -Y1 -1 X1X,1 y1X,1 X1 C 0
d
e

XN YN -1 0 0 0 XX YNXN XN f

0 0 0 -xy-yn-1 XnX'n YnXN Xn| |9

— h 0
i ]

Ah=0

Compute SVD of A, and take the eigenvector with the smallest eigenvalue



Ransac

e M. A. Fischler, R. C. Bolles. Random
Sample Consensus: A Paradigm for
Model Fitting with Applications to Image
Analysis and Automated Cartography.
Comm. of the ACM, Vol 24, pp 381-395,
1981.

Graphacs and J. D. Foley
Image Processing Editor

Random Sample
Consensus: A
Paradigm for Model
Fitting with
Applications to Image
Analysis and
Automated
Cartography

Martin A. Fischler and Robert C. Bolles
SRI Intermational

A new paradigm, Random Sample Consensus
(Ransac), for fitting o model to experimental dats is
miroduced. mANSAC Is capable of interpreting/
smoothing data containing a significant percentage of
gross errors, and is thus eally sulted for applications
in automated image analysis where interpretation is
based om the data provided by error-prone feature
detectors, A major portion of this paper describes the
application of wansac to the Location Determination
Problem (LDFPx Given an image depicting a set of
landmarks with known locations, determine that point
in space from which the image was obtaised. In
response 10 8 KANSAC roguirement, new resules are
derived on the minimum number of laadmarks seoded
to obtain a sobation, and algorithms are perescented for
computmg these minimum - landmark solutions in ¢losed
form, These reselts provide the basis for an automatic
system that can solve the LDF wader difficedt viewing

Permsiion o cops wahost fee all of pant of an reatenal o
grarted peovided that 1he copies are nox eade of derdated foe et
commeroal sdvaniage, the ACM copanipghe notce and e sithe of Me
pobicaton and ds dute appear, and notce @ pven that coprng is by
permisdon of the Associaton fiw Comgalieg Machirery. To copy
otbcrwoe, of 1o republish, soqeires a fes and/or specific permison

The work reported heven was supporiad bry the Defezsc Advanced
Ressarch Poojects Ageocy under Costract Son. DAAGH. Te.C08?
aad MDA 5.04058

Aathins’ Presest Addrese Maren A Fochkr and Rodwes C
Bolies, Anificial Inseligence Cerner. SRI Ietermstoonal Merlo Park
CA e
IV ACMOLO722/'81L 0060 010 08

and amalyvix coaditions. Implementation details and
computational examples are also presented

Key Words and Phrases: model ftting, scene
analysis, camers Calibration, image matching, location
determination, autessatod cartagraphy.

CR Categoriesc 360, 361,371, 5081, 8.2

L Istroduction

We imtroduce a new parsdigm, Randomn Sample
Consensus (RANSAC), for fitting a model 10 experimental
data; and illustrate ss use in scene analysss and auto.
mated cartography. The application discussed, the loca
twon determanation problem (LDF), is treated at a level
beyond that of & mere example of the use of the xansac
paradigm; mew basic fimdings concerning the condations
under which the LDP can be solved are peesented and
a comprehensive approach to the solution of this problem
that we anucipate will have nearderm peactcal appls-
catxons is descnbed.

To a large extent, scene analysis (and, is fact, scsence
in gemeral) i concerned with the Laterpretation of seased
data in terms of a set of predefined models. Comceptually,
interpretation wnvalves two distanct activitses: First, there
15 the problem of finding the best maich betwees 1he
data and one of the available models (the clessafication
problem); Second, there is the peoblem of computing the
best values for the free parameters of the selecied model
(the parameter estimsation problem) In practice, these
WO problems are not independent—& solution 10 the
parameter estimation problem is often required to solve
the chassificatson problem

Classical techniques for parameter estimation, such
as Jewst squares, optimize (according to a specified ob
jective fanction) the fie of a functional description
(model) %o all of the presented data. These technigoes
have no internal mechanssms for detecting and repecting
pross errors. They are averaging techaiques that rely on
the assumption (the smoothing sssemption) that the
maximem expected deviatiom of any datem from the
assumed model 1 a direct function of the size of the data
set. and thus regardless of the size of the data set, there
will always be encugh good values to smooth owt any
gross deviations

In many practical parameter estimation problems the
smoothing assumption does not hold: 1.e, the data con-
tain uncompensated gross errors. To deal with thas situ-
ation, several heunstics have been proposed The tech-
nique usually employed is some variation of first using
all the data to derive the model parameters, then locating
the datum that is farthest from agreement wilth the
instantisted model, assaming that it i» & gross error,
dedeting i, and erating this process wnlil cither the
maximumn deviation is less then some preset threshold or
until there is mo loager sufficent data w procead

It can casily be shown 1hat a sisgle gross enoe
("posoned pount™), mixed in with 2 set ol good data, can

Commusicsions Jare 19%)
of Youme 24
the ACM Nureher 6
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Simple example: fit a line

 Use biggest set of inliers

Do least-square fit




RANSAC for estimating homography

RANSAC loop:
1. Select four feature pairs (at random)
2. Compute homography H (exact)

3. Compute inliers where ||p;’, Hp/|| < ¢

4. Keep largest set of inliers

5. Re-compute least-squares H estimate using all of the inliers



Image rectification, a pre-processing for stereo

The images from a stereo
pair can be transformed to
appear as they would have
had the cameras in the
stereo rig been rotated to
have coplanar sensors and
their epipolar lines oriented
along pixel scan lines.

Model used for image rectification example. ==

from Wikipedia

This transformation just
iInvolves virtual camera
rotations and thus is a
homography. Image
rectification is a common
pre-processing step for
stereo, since the search for
matching features can now
be along horizontal scan
lines.

Qaonirce: Alvacha Ffroc



summary / recap:

e Stereo and how it works

» Homogeneous coordinates for clean description of the geometry
* |ntrinsic and extrinsic camera parameters

 Homographies for image stitching, for image rectification, etc.

 Ransac for fitting parameterized models such as homographies.



