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Today’s lecture
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• Gaussian pyramid

• application: recognition


• Laplacian pyramid

• application in image blending


• Steerable pyramid

• application in texture synthesis
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We need translation invariance
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We need translation and scale invariance



Image pyramids

5



Gaussian Pyramid
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Subsampling and aliasing
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Subsampling without blurring



The Gaussian pyramid
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For each level 
  1. Blur input image with a Gaussian filter
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The Gaussian pyramid
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For each level 
  1. Blur input image with a Gaussian filter 
  2. Downsample image



256×256 128×128 64×64 32×32

The Gaussian pyramid
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512×512 256×256 128×128 64×64 32×32

The Gaussian pyramid
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(original image)



The Gaussian pyramid
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The Gaussian pyramid
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The Gaussian pyramid
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The Gaussian pyramid
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For each level 
  1. Blur input image with a Gaussian filter 
  2. Downsample image



Gaussian pyramid applications

• Texture synthesis


• Object recognition


• Neural Network image synthesis
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The Laplacian Pyramid
Compute the difference between upsampled Gaussian pyramid 
level k+1 and Gaussian pyramid level k.
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The Laplacian Pyramid
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Gaussian pyramid



The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid



The Laplacian Pyramid
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Blurring and downsampling:

Upsampling and blurring: (blur)

(Downsampling by 2)



Upsampling
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=

Insert zeros

64x64
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The Laplacian Pyramid
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Blurring and downsampling:

Upsampling and blurring: (blur)

(Downsampling by 2)

(Upsampling by 2)(blur)



The Laplacian Pyramid
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The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid
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The Laplacian Pyramid
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Gaussian

residual

Laplacian pyramid Can we invert the  
Laplacian Pyramid?



The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid



The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid



The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid



The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid



The Laplacian Pyramid
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Gaussian pyramid

Laplacian pyramid

Analysis/Encoder Synthesis/Decoder



Laplacian pyramid applications

• Texture synthesis


• Image compression


• Noise removal


• Computing image features (e.g., SIFT)


• Image Blending…

31



Image Blending
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Image  Blending
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Image Blending
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IA IB m I

I = m * IA + (1 − m) * IB



Image Blending

35Slide by A. Efros



Image Blending
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Image Blending
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Image Blending
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Image Blending
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Image Blending with the Laplacian Pyramid
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Image Blending with the Laplacian Pyramid
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Image Blending with the Laplacian Pyramid

• Build Laplacian pyramid for both images: LA, LB


• Build Gaussian pyramid for mask: G


• Build a combined Laplacian pyramid:


• Collapse L to obtain the blended image 
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Image pyramids
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Gaussian Pyr Laplacian Pyr
And many more: QMF, steerable, …Convnets!



Orientations
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Steerable Pyramid
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Steerable Pyramid
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Steerable Pyramid
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Analysis/Encoder Synthesis/Decoder



Steerable pyramid applications

• Texture synthesis


• Noise removal


• Motion analysis


• Motion synthesis, motion magnification
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Linear Image Transforms
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Making textures



Textures

Stationary 

Stochastic





Pre-attentive texture discrimination

Bela Julesz, "Textons, the Elements of Texture Perception, and 
their Interactions". Nature 290: 91-97. March, 1981. 
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Pre-attentive texture discrimination

Bela Julesz, "Textons, the Elements of Texture Perception, and 
their Interactions". Nature 290: 91-97. March, 1981. 

This texture pair is pre-attentively indistinguishable. Why?





Jim Bergen’s conjecture
“If matching the mean amplitude of a bandpass spatial filter’s response 
goes a little way towards mimicking human texture perception, then 
maybe matching the histogram of the responses of filters (the marginal 
statistics) will do an even better job of capturing human texture 
perception.”

Dave Heeger’s response
“You mean if I took a steerable pyramid of some random noise, and 
forced the histograms of each subband level to match those of some 
target texture, that the modified noise image would then look like that 
texture???  No way!  I’ll prove it to you;  here, let me try it out…     hmm, 
gee, that worked pretty well…”



SIGGRAPH 1995
https://www.cns.nyu.edu/heegerlab/content/publications/Heeger-siggraph95.pdf



The main idea: it works by ‘kind of’ projecting a random image into the set of 
equivalent textures 

Space of all images

Set of equivalent textures

Set of perceptually  
equivalent textures



Overview of the algorithm

Two main tools: 

1- steerable pyramid 

2- matching histograms



Input texture

Steerable pyr

1-The steerable pyramid



Overview of the algorithm

Two main tools: 

1- steerable pyramid 

2- matching histograms



2-Matching histograms

9% of pixels have an intensity value 
within the range[0.37, 0.41]

75% of pixels have an intensity value 
smaller than 0.5

5% of pixels have an intensity value 
within the range[0.37, 0.41]

Histograms Cumulative Histograms



2-Matching histograms

?

Z(x,y)

Y(x,y)

We look for a transformation  
of the image Y 
  
Y’ = f (Y) 

Such that 
Hist(Y) = Hist(f(Z)) 

Problem: there are infinitely many functions  
that can do this transformation. 

A natural choice is to use f being: 
- pointwise non linearity 
- stationary 
- monotonic (most of the time invertible) 



2-Matching histograms

Y’= 0.5Y= 0.8

Y’ = f (Y)

The function f is just a look up table: it says, change all the pixels of 
value Y into a value f(Y).

Original 
intensity

New 
intensity

Y(x,y)



2-Matching histograms

Y’ = f (Y)



Matching histograms

10% of pixels are black 
and 90% are white

5% of pixels have an intensity value 
within the range[0.37, 0.41]

? ?

Histograms Cumulative Histograms



Matching histograms

Y= 0.8

Y’ = f (Y)

The function f is just a look up table: it says, change all the pixels of 
value Y into a value f(Y).

Original 
intensity

Y(x,y)
Y’= 1
New 
intensity



Matching histograms

Y’ = f (Y)

In this example, f is a step function.



Matching histograms of a subband



Y’ = f (Y)

Matching histograms of a subband



Texture analysis

Input texture

(histogram)

Wavelet decomposition (steerable pyr) (histogram)

The texture is represented as a collection of  
marginal histograms.

(Steerable pyr; Simoncelli & Freeman, ’95)



Texture synthesis

Input texture

(histogram)

(histogram)
Heeger and Bergen, 1995



Why does it work? (sort of)



Why does it work? (sort of)

The black and white  
blocks appear by  
thresholding (f) a  
blobby image

Iteration 0

…

Filter bank



Why does it work? (sort of)
The black and white blocks appear by  
thresholding (f) a blobby image



Why does it work? (sort of)

After 6 iterations

Histograms match ok

red = target histogram, blue = current iteration



Color textures

R

G

B

Three textures



Color textures

R

G

B



Color textures

R

G

B

This does not work



Color textures

Problem: we create new colors not present in the original image. 

Why? Color channels are not independent. 

R G B



PCA and decorrelation

R G B

R

G

In the original image, R and G are correlated, but, after synthesis,… 

R

G



PCA and decorrelation

R

G

The texture synthesis algorithm assumes that the channels  
are independent. 
What we want to do is some rotation

See that in this rotated space,  
if I specify one coordinate the  
other remains unconstrained.

U1

U2

Rotation



PCA and decorrelation

R

G

U1

U2

 1.0000    0.9303    0.6034 

 0.9303    0.9438    0.6620 

 0.6034    0.6620    0.5569

C = 

correlation(R,G)

C = D D’
  0.6347    0.6072    0.4779 

  0.6306   -0.0496   -0.7745 

  0.4466   -0.7930    0.4144

D = 

=
3 x Npixels 3 x Npixels3 x 3

D’ R 
G 
B

U1 
U2 
U3

PCA finds the principal directions of variation of the data. 
It gives a decomposition of the covariance matrix as: 

By transforming the original data (RGB) using D we get: 

The new components (U1,U2,U3) are decorrelated.



Color textures

R

G

B

Rotation 
Matrix 
(3x3)

These three textures 
look similar  
(high dependency)

These three textures 
Look less similar  
(lower dependency)

D’



Color textures

Inverse 
Rotation 
Matrix

R

G

B
D



Color textures

R

G

B

Rotation 
Matrix 

These three textures 
look similar  
(high dependency)

These three textures 
Look less similar  
(lower dependency)

D’

Inverse 
Rotation 

R

G

B
D



Color channels

Without PCA With PCA



Color channels



Color channels



Examples from the paper

Heeger and Bergen, 1995



Examples from the paper



Examples not from the paper

Input 
texture

Synthetic 
texture

But, does it really work even when it seems to work?



Portilla and Simoncelli

• Parametric representation, based on 
Gaussian scale mixture prior model for 
images. 

• About 1000 numbers to describe a texture. 
• Ok results;  maybe as good as DeBonet.



Portilla and Simoncelli



Portilla & Simoncelli

Heeger & Bergen Portilla & Simoncelli


