Lecture 9
Neural Networks
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9. Neural Networks

e Brief history

e Basic formulation (hierarchical processing)
e Optimization via gradient descent

e Layer types (Linear, Pointwise non-linearity)
e Linear classification with a perceptron

e Batch processing

 Regularizers

e Normalization



Deep learning

Modeling the visual world Is incredibly complicated. WWe need high
capacity models.

In the past, we didn’t have enough data to fit these models. But now we do!

We want a class of high capacity models that are easy to optimize.

Deep neural networks!



A brief history of Neural Networks

enthusiasm

time



Perceptrons, 1958

http://www.ecse.rpi.edu/homepages/nagy/PDF chrono/
2011 Nagy Pace FR.pdf. Photo by George Nagy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep 1 &type=pdf



http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf
http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/2011_Nagy_Pace_FR.pdf

Perceptrons, 1958




Perceptrons,
1958

enthusiasm




Minsky and Papert, Perceptrons, 1972

Fypanded Edibon

Perceptrons

Marvin L. Minsky
Seymour A Papert

i £ 0 [ E3

FOR BUYING OPTIONS, START HERE

Select Shipping Destination —

Paperback | $35.00 Short | £24.95 |
ISBN: 9780262631112 | 30B pp. | 6 x
8.9 in | December 1987

Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neuronlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects" or "agents" with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind."
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Parallel Distributed Processing (PDP), 1986
"PARALLEL DISTRIBUTED! ‘
PROCESS!NG |

Explorations s the M
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DAVID E. RUMELHART, JAMES L. McCLELLAND.
L “AND THE PDP RESEARCH GROUP




XOR problem

Output —

PDP authors pointed to the backpropagation algorithm

as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can
represent but a single-layer network cannot: the XOR function.



Perceptrons, PDP book,
1958 1986
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[ eCun conv nets, 1998

PROC. OF THE TEEE, NOVEMBER 1998 7

C3:f. maps 16@10x10
C1: feature maps S4: 1. maps 16 @5x5

INPUT 6@28x28
32x32 DE: 1. maps CS5:layer rg: jayer OUTPUT

o1 |T_
i
-i ) |

‘ Full conr#ection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

S

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Demos:
http://yann.lecun.com/exdb/lenet/index.html



http://yann.lecun.com/exdb/lenet/index.html
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input

Neural networks to
recognize
handwritten digits®
TN | yes

Neural networks for
tougher problems?
not really

http://pub.clement.farabet.net/ecvw(09.pdf



http://pub.clement.farabet.net/ecvw09.pdf

Neural Information Processing Systems 2000

e Neural Information Processing Systems, is the
oremier conference on machine learning. Evolved
from an interdisciplinary conference to a machine
learning conference.

e For the 2000 conference:

— title words predictive of paper acceptance: “Belief
Propagation” and “GGaussian”.

— title words predictive of paper rejection: “Neural” and
“Network”.




Perceptrons, PDP book,
1958 1986
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Krizhevsky, Sutskever, and Hinton, NeurlPS 2012

"Alexnet”
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Slide from Rob Fergus, NYU

ImageNet Classification 2012

» Krizhevsky et al. -- 16.4% error (top-5)

e Next best (non-convnet) — 26.2% error

35
30
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Krlzhevsky, Sutskever, and Hinton, NeurlPS 2012
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28 years 28 years
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Krizhevsky,
Perceptrons, °DP book,  Sutskever,
1958 1986 Hinton, 2012
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Minsky and Papert, Al winter,
1972 2000




What comes next?

enthusiasm

Perceptrons,
1958

Minsky and Papert,

1972

28 years

ﬁ

D

19380 Hi

D

Krizhevsky,

P pbook,  SutsSkever,

Al winter,
2000

28 years

ﬁ

aton, 2012

2028 ?

time



What comes next?

Krizhevsky,
Perceptrons, PDP book, Sutskever,
1958 1986 Hinton, 2012

enthusiasm

Minsky and Papert, Al winter, ) :
1972 2000 20287 time
28 years 28 years
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what color is the vase?

is the bus full of passen-
gers?

is there a red shape above
a circle?

classify[color]( measure[is]( measurel[is](
attend[vase]) combinel[and]( combine[and](
attend[bus], attend[red],
attend[fulll) re-attend[above](
attend[circlel)))
green (green) yes (yes) no (no)

[“Neural module networks”, Andreas et al. 2017]
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PIX2PiX

process
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Vitaly Vidmirov @vvid “pix2pix”, Isola et al. 2017]




Classification
units
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Object recognition

-dges
\ Segments \
Texture ‘clown fish”
Parts /
Colors /

Feature extractors Classifier



Object recognition

L earned
—dges
: \ Segments
lexture % ‘clown fish”
Parts
Colors / .
O () fo(z) = ;ngbk(@

Feature extractors Classifier



Object recognition

| earned

“clown fish”




Object recognition

| earned

“clown fish”

Neural net



Object recognition

| earned

“clown fish”

Deep neural net



y@>
“clown fish”

()

Deep learning

L earned

Loss

L(fo(x"),y")



Gradient descent

N
9* = argmin > L(fo(xD), y¥
3 ; (fo(x*), y*")

- e

J(0)
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Gradient descent

N
9* = argmin Y L(fe(x\?). y(®
3 ; (fo(x*), y*")

- e

J(0)

One iteration of gradient descent:

0J(0)
00 |p—pt

6)t—|—1 __ (9t —

learning rate



Stochastic gradient descent (SGD)

*  Want to minimize overall loss function J, which is sum of individual losses over each example.
* |In Stochastic gradient descent, compute gradient on sub-set (batch) of data.
f batchsize=1 then 6 is updated after each example.
f batchsize=N (full set) then this is standard gradient descent.
» Gradient direction is noisy, relative to average over all examples (standard gradient descent).
* Advantages
* Faster: approximate total gradient with small sample
* |Implicit regularizer
* Disadvantages

* High variance, unstable updates



Optimization

0" = arg min J(0)

0
* What'’s the knowledge we have about J”
 We can evaluate J (9 ) /—Gradient <+— Black box optimization
» We can evaluate J(0) and VyJ(0) <— First order optimization

* We can evaluate J(0), Vg J(0) ,and Hy(J(6)) <+— Second order optimization

L Hessian



Comparison of gradient descent variants

AN \\“\\ R ™

N E

| = Momentum [

= NAG -
- Adagrad
— Adadelta

—| — Rmsprop

[http://ruder.io/optimizing-gradient-descent/]



Computation in a neural net

Input OQutput
representation representation




Computation in a neural net

Linear layer

Input Qutput
representation representation

Li
wij

elelelelelele
00000000



Computation in a neural net

Linear layer
Input Qutput
representation representation
Lqi () :

e weights
C /
(}
O 2j = ) Wi + b
O g
(O k bias
C

1C



Computation in a neural net

Linear layer

Input Qutput
representation representation

/ weights

@
‘ E— T o o
< 2 =X W; + b,
@
le k bias
@
S 9 = {W,b)}
1 C k parameters of the model



Example: linear regression with a neural net

Linear layer
Input Qutput
representation representation

C
C
8x

le W Oz
o—-
C

3



Computation in a neural net

“Perceptron”
I, it 2>0

Z ) =
nput , OUtDUt, 9(2) {O, otherwise
representation representation

1.0

0.8

Q W | O g(z) 0:4-
— 2 g(2) 02

o E 0.0 — . . . .
| O/ — & Pointwise 4 ; ‘ :

Non-linearity



Example: linear classification with a perceptron

&

s =x'w4b




Example: linear classification with a perceptron

&

s =x'w4b

I, if z>0
9(2){

0, otherwise




Example: linear classification with a perceptron

&

- 15

10

—10

s =x'w4b

g9(z)

|

1,
0,

it z>0

otherwise



Example: linear classification with a perceptron
g(2)

s =x'w4b

I, if z>0
9(2){

0, otherwise




80

60

40

20

Example: linear classification with a perceptron

s =x'w4b

I, if z>0
9(2){

0, otherwise

N
w* b* =aremin > L(g(z¥), y®
g1 ; (9(z*"), ™)

0 20 40 60 30 L1



Example: linear classification with a perceptron

s =x'w4b

I, if z>0
9(2){

0, otherwise




Computation in a neural net

(2) I, it z>0
A
nput , OUtDUt, 7 0, otherwise
representation representation

‘ 1.0

‘ 0.8

Ox 0-6

x|©- 9(2)
O W O 0.4
— 2 g(2) 02




Computation in a neural net — nonlinearity

Sigmoid
Input Output o(z) = —
. . 1_|_€—h
representation representation
‘ 1.0
‘ 0.8
OX 0.6 1
x| ©- g(2)

Q W O 0.4
— 2 g(2)
0.0

}_\

@\.
|
I
I

N o



Computation in a neural net — nonlinearity

* Interpretation as firing rate of neuron

» Bounded between [0, 1]

» Saturation for large +/- inputs

» Gradients go to zero

» Qutputs centered at 0.5
(poor conditioning)

* Not used In practice

1.0

0.8

0.6

0.4 -

0.2

0.0

Sigmoid
1
g(Z) o 1 _I_ €_h
—4 —2 0 2
2




Computation in a neural net — nonlinearity

Tanh
* Bounded between [-1,+1] 07 _ o7
z p—
9(z) = — g

» Saturation for large +/- inputs

» Gradients go to zero
» Outputs centered at O g(z) oo

* Preferable to sigmold

tanh(z) = 2 sigmoid(2z) —1



Computation in a neural net — nonlinearity

* Unbounded output (Oﬂ pOSitiVG side) Rectified linear unit (ReLU)
. Effie ' . 99 _JO, i 2<0 2) = max(0, 2
Efficient to iImplement: 5 = {1’ £ 2> 0 g(2) (0, 2)

* Also seems to help convergence (see
ox speedup vs tanh in [Krizhevsky et al.])

* Drawback: if strongly in negative g(2) 2-
region, unit is dead forever (no gradient). L
* Default choice: widely used In current B

models. >



Computation in a neural net — nonlinearity

| Leaky RelLU
» where a is small (e.g. 0.02) .
o(2) = {max((), z), if z>0
g . . dg  J—a, if 2<0 amin(0, z), if 2z <0
Efficient to iImplement: 5, = {17 s> 0 )
* Also known as probabillistic ReLU (PRelU) 4

* Has non-zero gradients everywhere (unlike  ¢(z) ,.
Rel.U)

* A can also be learned (see Kaiming He et

al. 2015). -4 =2 0 2 4



Stacking layers

Input Intermediate Qutput
representation representation representation
z h=g(z)
C O—C O
C O—C O
8& 8
O O
C O—C O
C O——C
b1, bo. O
1C 1C

Z, h = “hidden units”



Stacking layers

Qutput
representation

Intermediate
representation

INnput
representation

°7bL}

W..by,..

h=(W,,..



Stacking layers

Qutput
representation

Intermediate
representation

INnput
representation

negative

°7bL}

. W_..by,..

h=(W,,..



Stacking layers

Qutput
representation

Intermediate
representation

INnput
representation

negative

°7bL}

. W_..by,..

h=(W,,..



Stacking layers

Qutput
representation

Intermediate
representation

INnput
representation

negative

°7bL}

. W_..by,..

h=(W,,..



Stacking layers

negative
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Qutput
representation

|
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Intermediate
representation
h

INnput
representation
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. W_..by,..

h—=(W,,..



INnput
representation

W,

Connectivity patterns

Qutput
representation

‘ll
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Fully connected layer

INnput
representation

Qutput
representation

: Q
\5
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Og
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Locally connected layer
(Sparse W)



Deep nets

X

(o> .
o2 /\\OQ’ o

‘ S
\><\ gOQ ¢

\.:A (¢ . 1)
— “clown fish

f(x) = fo(fo—1(... f2(/1(x))))



Last layer

dolphin
cat
grizzly bear

angel tish

VH

00000000

chameleon
clown fish
iguana

elephant

Classitier layer

argmax

e

“clown fish”



| 0SS function

Network output Ground truth label
()| dolphir “clown fish”
Q cat
Q grizzly bear l
— | @] angelfish Loss —* error
:: Q chameleon /
‘ clown fish
<:> iguana
Q elephant




| 0SS function

Network output Ground truth label

()| dolphir “clown fish”

Q cat

Q grizzly bear l
— | @] angelfish Loss — small
:: Q chameleon /

‘ clown fish

<:> iguana

Q elephant




| 0SS function

Network output Ground truth label
()| dolphir “grizzly bear”
Q cat
Q grizzly bear l
— | @] angelfish L oss — large
:: Q chameleon /
‘ clown fish
<:> iguana
Q elephant




Prediction y Ground truth label vy

f@ : X — QK

dolphin |8 dolphin

cat |§ cat

grizzly bear (§ grizzly bear

f angel fish || angel fish
chameleon ||l (+) chameleon

clown fish || NGNGB clown fish

iguana | iguana

elephant I elephant
O 1 O



Network output  Ground truth label

y y

Q dolphin Q

O ca O Probability of the observed

Q grizzly bear —— ‘ data under the model
— ‘ angel fish Q A K A

softmax — Q harmeleon Q H(Yp Y) — Z Yk log Yk
k=1

@ — cownfish ()

Q iguana Q

Q elephant Q




Representational power

* 1 layer? Linear decision surface.

* 2+ layers? In theory, can represent any function.

Assuming non-trivial non-linearity.
— Bengio 2009,

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf

— Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

— Simple proof by M. Neilsen

http://neuralnetworksanddeeplearning.com/chap4.html

— D. Mackay book
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491 . pdf

* But issue Is efficiency: very wide two layers vs narrow
deep model? In practice, more layers helps.



http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.deeplearningbook.org/contents/mlp.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

Example: linear classification with a perceptron

(e

s =x'w4b

y = g(2)

One layer neural net
(perceptron) can
perform linear
classification.



Example: nonlinear classification with a deep net net

@ @_,@\ z = W1x + by
@W@@ o

y:WQh—I—bQ
hy ha
1 1 ‘ 1
1 S | —1
—1 0 1 —1 0 1 —1
X1 L1

Z3 Y

1
go.
~1

0 1 1 0 1
X1 L1




yCU
“clown fish”

(D)

Deep learning

L earned

Loss

L(fo(x1),y1)



Deep learning

L earned

Loss

L(fo(x*),y¥)



Deep learning
(4) Learned

—|Loss| L(fs(x'V),y™)




Batch (parallel) processing

0000000000
0000000000

L [6000000000

>S5 [O0000000 00
#a. 0000000000

Q@ 0000000000
LU 0000000000
0000000000

sebeul|

—» | Loss

|

—» [ Loss

-» [ Loss




lensors
(multi-dimensional arrays)

—ach layer is a representation of the data



(multi-dimensional arrays

%Nbatch X Cl

# Neurons j

# features
# units
# “channels”

lensors

fvbatch

= Q0000000

N

VIOI0l JOIOIVI®

CO00®LOO0| L
QOO@O0@OO|”
VIO I JOl JVI@
QO000®0OO0




hi € R

1

# features
# units
# “channels”

lensors
(multi-dimensional arrays)

Nbatch X Cl

F Neurons j

fvbatch




“Tensor flow”

Nbat ch
Nbat ch

T st

v
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I

Layer 1 representation Layer 6 rep(esentation

structure, construction
covering

commodity, trade good, good
conveyance, transport
invertebrate [DeCA
Eggting dog [Visualization technique : t-sne, van der Maaten & Hinton, 2008]

Donahue, Jia, et al. 2013]




Regularizing deep nets

Deep nets have millions of parameters!

On many datasets, it is easy to overfit — we may have more free
parameters than data points to constrain them.

How can we regularize to prevent the network from overfitting®
1. Fewer neurons, fewer layers

2. Welight decay

3. Dropout

4. Normalization layers

D.




Recall: regularized least squares

K
fo(x) = Z 0, x"
k=0

R(&’) — A\ ||6’||§ <+— Only use polynomial terms if you really need
them! Most terms should be zero

ridge regression, a.k.a., Tikhonov regularization

Probabillistic interpretation: R is a Gaussian prior over values of the parameters.



Regularizing the weights in a neural net
N
" = arg min > LUfox),y™) + R(0)

R(W) =\ HWH% <+<—— weight decay

“We prefer to keep weights small.”



Dropout

Qutput
representation

Q5
[SlE=
O +
O &
=X
5 ¢
= 0

INnput
representation



Dropout

Qutput
representation

Q5
[SlE=
O +
O &
=X
5 ¢
= 0

INnput
representation



Dropout

Qutput
representation

Q5
[SlE=
O +
O &
=X
5 ¢
= 0

INnput
representation



Dropout

Qutput
representation

Q5
[SlE=
O +
O &
=X
5 ¢
= 0

INnput
representation



Dropout

Randomly zero out hidden units.

Prevents network from relying too much on spurious correlations between
different hidden units.

Can be understood as averaging over an exponential ensemble of
subnetworks. This averaging smooths the function, thereby reducing the

effective capacity of the network.
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Normalization layers

Keep track of mean and variance of a unit (or a population of units) over time.
Standardize unit activations by subtracting mean and dividing by variance.
Sguashes units into a standard range, avoiding overflow.

Also achieves Invariance to mean and variance of the training signal.

Both these properties reduce the effective capacity of the model, I.e.
regularize the model.



9. Neural Networks

e Brief history

e Basic formulation (hierarchical processing)
e Optimization via gradient descent

e Layer types (Linear, Pointwise non-linearity)
e Linear classification with a perceptron

e Batch processing

 Regularizers

e Normalization



